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Abstract

We present a comprehensive approach to the simultaneous design and control of a continuous stirred tank reactor (CSTR) for styrene solution
polymerization that must be able to produce different polymer grades. The resulting tool allows simultaneous selection of the polymerization
equipment, the multivariable feedforward–feedback controller’s structure and tuning parameters, the steady states and the transition paths
between them. For this purpose a multiobjective optimization is implemented to minimize the annualized reactor cost, the operating costs, the
production of off-specification polymer and the transition time between steady states. Trade-offs between the sometimes conflicting objectives
are dealt with by the optimization. Unlike many previous grade transition studies, steady states are not known a priori. The only known
parameters are the target molecular weights to be produced at each steady state. We have analyzed three different scenarios, and propose
practical criteria for selecting the most reasonable optimum when the solution is not unique.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer manufacture is one of the most important indus-
tries worldwide, and is constantly growing in sales volume. It
has been estimated that polymer consumption in developed and
developing countries increases in proportion to their gross na-
tional products. Nowadays, the volume of synthetic polymers
produced is greater than that of steel (Stepto et al., 2003). How-
ever, higher energy costs, more stringent environmental regu-
lations, increased worldwide competition and the demand for
lower prices have required more efficiency from production
processes, and therefore a strong need to improve plant design
and process operability has appeared.

Usually, designs of chemical processes are based on the op-
timization of objective functions that measure the economics
of steady-state operating points. Intense research has been per-
formed on steady-state optimization of polymerization pro-
cesses. For instance, Brandolin et al. (1991) and Asteasuain
et al. (2001) studied a high-pressure ethylene polymerization
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reactor. They analyzed the steady-state profiles of temperature
and initiator concentration, and different reactor configurations.
They aimed at maximizing conversion and minimizing cooling
costs, while keeping product quality within specified values.
Ray and Gupta (1985, 1986) and Srivastava and Gupta (1991)
studied the steady-state optimization of nylon 6 tubular reac-
tors. Their optimization variable was the jacket temperature,
but they also analyzed sensitivity to other parameters, such as
the reactor length and the desired average molecular weight.
McKenna and Malone (1990) and McKenna (1996) developed
a procedure for the systematic design of polymer production
processes. Based on the work by Douglas (1985), they pre-
sented a combination of heuristics and design estimates specific
for polymerization processes, which allow to choose among
alternatives and to identify the most promising designs. A sen-
sitivity evaluation allowed them to identify critical parameters
of the design. This conceptual design procedure was applied
to different homo- and co-polymerization processes. Costa Jr.
et al. (2003) optimized the steady-state operation of a three-
zone tubular styrene polymerization reactor. Considering the
wall temperature of each reactor zone as the only manipulated
variable, they solved a multiobjective optimization in order to
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find maximum conversion with minimum polydispersity. They
obtained optimal operating conditions that yielded lower poly-
dispersity at the same conversion level than when uniform
temperature existed along the whole reactor wall. Nascimento
et al. (2000) used a neural network based approach for the op-
timization of the nylon-6,6 polymerization in a twin-screw ex-
truder reactor. With the neural network, they mapped a grid of
more than 105 points of the input variables, and afterwards they
screened this grid first for feasible points and then for qualita-
tive economic optimums.

In the polymer industry, profitability depends not only on
steady-state operation, but also on grade transition policies.
Usually, several polymer grades are produced with the same
equipment in continuous plants. Market demands motivate pe-
riodic changes from one grade to another, so optimal grade
transition operation (minimization of off-specification product
and transition time) is an essential feature of a lucrative process.
For this reason, much work has been devoted to grade transi-
tion optimization. McAuley and MacGregor (1992) developed
optimal transition policies among three polyethylene grades in
a gas-phase reactor. Using dynamic optimization they calcu-
lated the best profiles of the input variables. Takeda and Ray
(1999) studied the grade transition optimization in polyolefin
loop reactors, comparing results with and without constraints
in the state variables. Cervantes et al. (2002) analyzed grade
transitions in a low-density polyethylene plant. They calculated
optimal profiles of butane feed and purge streams in order to
minimize transition time. In these works, however, grade tran-
sitions were conducted between fully specified steady states.
This is the approach that has been most commonly used, where
it is assumed that the steady states have been previously de-
termined according to some criteria, for instance, steady-state
optimization. Some works dealt both with the optimization of
the steady states in which the polymer grades are to be pro-
duced and the transition policies between them (Yi et al., 2003),
but they treated these two tasks sequentially, that is, the influ-
ence of the optimal steady states on the grade transition was
not analyzed. The more interesting problem of studying how
the selected steady-states influence the operability of the grade
changeover has rarely been explored. In this situation one might
find a sub-optimal, though still reasonable steady state, that
allowed a much easier grade transition, resulting in a better
process performance as a whole.

Transition policies can only be carried out under well-
controlled operating conditions. Different control designs have
been proposed for polymerization processes, from classical
PID controllers to modern nonlinear model predictive con-
trol (NLMPC) schemes (Embiruçu et al., 1996). Actually, a
well designed control system is essential to implement the
optimally determined dynamic trajectories in the presence of
process disturbances and model uncertainties. This is partic-
ularly important because plant safety is a major issue during
grade transition. Overshoots/undershoots are commonly per-
formed to reduce transition time, and this can lead to process
runaway. Therefore, several authors combined grade transi-
tion optimization with process control (Chatzidoukas et al.,
2003; Wang et al., 2000; Na and Rhee, 2002; Bindlish and

Rawlings, 2003; BenAmor et al., 2004). In most of these
works, a sequential approach has been used to deal with control
system design and grade transition optimization. For instance,
Wang et al. (2000) applied a sequential strategy to an ethylene
slurry polymerization reactor, where first an off-line optimizer
calculated optimal transition policies. Then, a NLMPC scheme
was used to implement the optimal transition policies in face
of uncertainties in model parameters. Na and Rhee (2002)
used a multivariable NLMPC for set point tracking in a styrene
solution polymerization. Instead of first principle models, a
polynomial auto-regressive moving average model (ARMA)
was used to describe the nonlinear behavior of the polymeriza-
tion reactor. This approach provided satisfactory control after
set point changes in conversion and/or weight average molec-
ular weight. These authors did not optimize transition policies.
Bindlish and Rawlings (2003) developed a target lineariza-
tion model predictive controller (TLMPC) to deal with plant
start up, grade transition and regulatory control of a methyl
methacrylate (MMA) and vinyl acetate (VA) copolymerization
reactor with satisfactory results. These authors focused exclu-
sively on process control. BenAmor et al. (2004) described
the application of an industrial real time optimization package
(ROMeo) to the NLMPC of a polymer grade transition. They
applied their algorithm to methyl methacrylate and ethylene
polymerization processes. The control scheme showed good
performance for grade changes and disturbance rejection in the
presence of model errors. As this study focused exclusively on
the control problem, it was assumed that suitable trajectories
of process outputs and inputs (i.e., optimal transition policies)
were available.

The sequential approach to process design and control does
not take into account that process control is an inherent prop-
erty of process design, and that there is a strong interaction
between them. Several works in other fields of chemical engi-
neering have demonstrated the necessity of integrating process
design and control (Bahri et al., 1997; Bansal et al., 2002).
One of the few works to pursue this line in Polymer Science
is that of Chatzidoukas et al. (2003), who performed a simul-
taneous process optimization and control, specifically control
structure selection and grade transition optimization in a gas-
phase olefin copolymerization reactor. However, they did not
include equipment design and steady-state operating conditions
in their optimization problem.

In this work a mixed-integer dynamic optimization (MIDO)
approach is applied to the simultaneous design and control of
a continuous styrene polymerization process. Here “process
design” refers to the selection of the continuous stirred tank re-
actor (CSTR) unit, the peroxide initiator, and the steady-state
operating points. With polymer grades as the only specifica-
tions, the process is designed to achieve optimal steady-state
operation and grade transition policies. Unlike many previous
grade transition studies, steady states are not known before-
hand. In this case, they are determined so as to minimize capi-
tal and steady-state operating costs, as well as off-specification
product during grade transition. At the same time, transition
policies are designed so as to minimize transition time and off-
specification polymer properties. As these two objectives might
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be in conflict, trade-off between them is analyzed solving a
multiobjective optimization. Simultaneously with the process
design, a multivariable feedforward–feedback control scheme
is optimally designed to drive the process from one operating
point to the other. This task includes optimal pairings between
controlled and manipulated variables and controller’s tuning
parameters for the PI feedback controllers, and the best control
trajectories of the feedforward controllers.

To the best of our knowledge, the integration of process
design, including equipment design, initiator selection, steady-
state operating points and transition policies, with the control
system design has not been addressed before for polymerization
systems.

2. Process description and modeling aspects

Solution polymerization of styrene in continuous processes is
often carried out using a combination of different reactor types.
In a typical plant, the mixture of styrene, solvent and initiator
goes through several polymerization units connected in series,
each of them equipped with an agitator and appropriate heat-
exchange systems. The output is then pumped to a devolatilizer
unit to separate the unreacted monomer and the solvent. The
hot viscous polymer is then pelletized and finally packaged
(Simon and Chappelear, 1979). Usually, CSTRs are appropri-
ate in the first stages, operating at low conversions to ensure
moderate viscosities. Then, the polymerization is continued in
other reactors, such as linear flow reactors, so as to reach higher
conversions (Simon and Chappelear, 1979). As a first step, due
to the complexity of the mathematical problem involved in this
study, only a first stage CSTR will be considered in the present
process design and control analysis. In this way the advantages
of the employed methodology are clearly illustrated. Since all
the pieces of equipment involved in the process work together
and are interdependent, forthcoming work will address the ex-
tremely challenging problem of applying this approach to an
entire plant.

Fig. 1 shows a schematic representation of the reactor for
modeling purposes. Please notice that this is only a diagram
and does not intend to reproduce a real reactor configuration.
Monomer, initiator and solvent streams compose the reactor
feed stream. Reactor output consists of polystyrene, uncon-
verted monomer, initiator and solvent. Cooling water is used to
remove the heat released by the polymerization.

In this work, a previous mathematical model (Hidalgo and
Brosilow, 1990; Russo and Bequette, 1998) for styrene solu-
tion polymerization is extended to take into account the spe-
cific characteristics of the process under study and to add new
predictive capabilities. The following reactions are considered:
initiator decomposition, chain initiation, propagation and termi-
nation by combination. In the original model monomer thermal
initiation and gel effect were neglected. The operating condi-
tion for the solvent fraction of 50% reported by Hidalgo and
Brosilow (1990) will be used in this work, as this allows ne-
glecting the gel effect (Choi, 1986). On the contrary, monomer
thermal initiation (Asteasuain et al., 2003) has been included
in the present model since it may become important at tem-
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Fig. 1. Polymerization reactor scheme including control superstructure.

peratures close to 100 ◦C. The calculation of the second mo-
ment of the polymer MWD has also been added in order to be
able to predict the polymer weight average molecular weight
and polydispersity. It should be mentioned that similar models
of this system in which three moments of the polymer MWD
are calculated, have also been reported in the literature (Prasad
et al., 2002; Fontoura et al., 2003). Although model parameters
may vary with time in polymerization processes (for instance
the heat-transfer coefficient), for the present design and con-
trol problem, an inherent off-line analysis, average values are
used. Therefore, density, specific heat and other physical prop-
erties of the reacting mixture are considered constant. Quasi-
steady state of living radicals is also assumed. Details about the
remaining model assumptions and the methodology of mass
balances formulation can be found in Hidalgo and Brosilow
(1990) and in Russo and Bequette (1998). For these model as-
sumptions, the resulting mass balance equations that describe
the process are shown in Table 1 (Eqs. (1)–(8)). Polymeriza-
tion rate, conversion, polymer number (Mn) and weight (Mw)
average molecular weights, and polydispersity, are calculated
according to (Eqs. (9)–(13)) in Table 1. To model the heat trans-
fer between the reacting mixture and the cooling fluid, it is
assumed that the heat-transfer coefficient is constant. For the
different reactor units, the product (UA) can be calculated as
shown in Table 1 (Eq.(14)). (UA)0 is the value of the product
(UA) employed in the work by Hidalgo and Brosilow (1990),
corresponding to a reactor of volume V0 = 3000 L. In order
to improve the efficiency of the numerical methods, the model
equations are converted to a dimensionless form obtained by
means of the dimensionless variables defined in Table 2. The
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Table 1
Process model equations
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numerical values of the different model parameters are listed
in Table 3.

2.1. Product specifications and process constraints

Product requirements include grade specifications defined as
number average molecular weight (Mn), which must be satisfied
at both steady states. For this work polymer grade A is defined
as MnA=50 000 g mol−1, and grade B as MnB=40 000 g mol−1.

Table 2
Dimensionless variables

I= I
If 0

M= M
Mf 0

If = If
If 0

Mf
Mf

Mf 0
T = T −Tf 0

Tf 0

T j = Tj −Tf 0
Tf 0

T f = Tf −Tf 0
Tf 0

T j,f = Tj,f −Tf 0
Tf 0

M0= M0
Mf 0

M1= M1
Mf 0

Qi= Qi
Q0

Qm=Qm
Q0

Qs= Qs
Q0

Q= Q
Q0

t=Q0t
V0

Table 3
Model parameters

effic 0.6a �j Cpj 4045.7048 J L−1 K−1a

Ad,AIBN 5.95×1013 s−1a If =If o 0.5888 mol L−1a

Ed,AIBN 123853.658 J mol−1a Mf =Mf 0 8.6981 mol L−1a

Ad,TBPB 8.439×1013 s−1b Tf 0 330 K
Ed,TBPB 133888 J mol−1b Q0 0.2625 L s−1

Ap 1.06×107 L mol−1 s−1a MwM 104.15 g mol−1

Ep 29572.898 J mol−1a MwAIBN 164.2 g mol−1

Atc 1.25×109 L mol−1 s−1a MwTBPB 194.2 g mol−1

Etc 7008.702 J mol−1a a 3.1536×107 s year−1

V0 3000 L c1 1.32 10−4 $ L−1c

−�Hr 69919.56 J mol−1a c2 1.1 10−2 $ g−1d

UA0 293.076 J s−1 K−1a c3 7.5 10−3 $ g−1d

�Cp 1507.248 J L−1 K−1a

aRusso and Bequette (1998).
bKim (1991).
cSchweiger and Floudas (1997).
dPersonal communication with Akzo Nobel Polymer Chemicals, Argentina,

2004.

As in this work we limit the design to the prepolymerization
CSTR unit, we define as acceptable conversion limits for this
intermediate stage the values indicated in Eq. (15). The lower
bound in steady-state conversion is selected to ensure prof-
itable production, and the upper bound to avoid high-viscosity
mixtures

0.18�xA, xB �0.50. (15)

In order to maintain the operating range within the bounds
where the model parameters were obtained, upper bounds for
the reactor temperature were set. Those bounds were selected
as 100 and 110 ◦C for the steady-state and the grade transition
operations, respectively. Another important point to consider
is that this type of process usually presents steady-state mul-
tiplicity. In order to exclude low conversion steady states, a
lower bound of 70 ◦C for the steady-state reactor temperature
was selected. These temperature bounds are within the range
of those employed for the first stage polymerizer in several in-
dustrial styrene polymerization processes (Simon and Chappe-
lear, 1979; US Patents, 1981, 1992, 1994). Steady-state tem-
peratures for production of both polymer grades (A and B) and
reactor temperature during transition must then verify Eqs. (16)
and (17), respectively,

70 ◦C�TA, TB �100 ◦C, (16)

T (t)�110 ◦C. (17)
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Besides, an upper limit for the jacket temperature at any time
was selected so as to keep a safety margin with respect to the
boiling point of water, as shown in Eq. (18)

Tj (t)�95 ◦C. (18)

Notice that reactor and jacket temperature constraints (Eqs.
(17) and (18)) during grade transition are path constraints. This
class of constraint was dealt with by converting them into end-
point constraints, following the procedure reported by Bansal
et al. (2002).

Bounds for the coolant flow rates at steady states were set
as shown in Eq. (19). These limits result from setting a range
around the value of a base case reported by Russo and Bequette
(1998):

0.079 L s−1 �Qj,A, Qj,B �0.26 L s−1. (19)

Additional process restrictions involve monomer flow rate at
steady states and cooling fluid inlet temperature, which are fixed
at 0.105 L s−1 and 22 ◦C, respectively. The feed temperature is
not known in advance, but it should be the same at both steady
states. An upper bound for this variable was set in order to keep
it within the typical values reported in the literature, as shown
in Eq. (20)

Tf �67 ◦C. (20)

3. Simultaneous process design and control problem

Even though it is not unusual for a polymer plant to produce
more than 30 polymer grades, the analysis in this work is lim-
ited to a transition between two polystyrene grades as a way to
test the methodology. Specifically, transition from grade A to
grade B production is considered. Transition from grade B to A
is also analyzed. Three different situations are considered. First,
the plant is producing grade A polymer since the start-up and
will make only one grade transition to grade B, which will be
produced up to a plant shut-down. In second place, the inverse
situation is analyzed (producing grade B polymer from start-
up, changing to grade A polymer at a certain moment). Finally,
periodical grade changes between grades A and B without in-
termediate shut-downs are studied. In order to make the three
cases comparable, exactly 50% of the time is devoted to the
production of each polymer grade in all three scenarios. Pro-
cess design should yield economically optimal steady states in
terms of capital and operating costs. At the same time, the grade
transition will be optimized to minimize off-specification prod-
uct. Therefore, the design problem constitutes a multiobjective
optimization. The �-constraint method (Tsoukas et al., 1982) is
used to deal with this multiobjective optimization. This method
presents the important advantage of allowing comparisons of
trade-offs between design objectives.

Process design includes the selection of optimal reactor size,
initiator, and steady-state operating points at which the polymer
grades are produced. The process and the control system for
the grade transition are designed simultaneously. A multivari-
able control scheme is considered that allows a combination

of feedforward and feedback controllers. The control scheme
is outlined in Fig. 1. The design solution provides the optimal
trajectories for the feedforward controllers. For the feedback
controllers, the “best” pairings between controlled and manipu-
lated variables, from the control superstructure, as well as con-
trollers’ tuning parameters, are determined.

3.1. Process design variables

Process design includes the reactor unit, selection of initiator,
and the steady-state operating points. Two of these process
design items involve discrete decisions. One of them is the
polymerization reactor. We assume that from previous process
analysis and equipment availability, the selection has to be made
from the following three alternatives:

R1 : V = 2000 L, R2 : V = 3000 L, R3 : V = 3500 L,

Vj = 2208 L, Vj = 3312 L, Vj = 3864 L,

A/A0 = 0.763, A/A0 = 1, A/A0 = 1.108.

These are typical dimensions of this type of units as reported
in the literature (Hidalgo and Brosilow, 1990). Therefore, the
reactor volume is modeled as a discrete variable with only
three possible values. The jacket volume verifies a constant
relationship to the reactor volume, that is

Vj

V
= 1.104. (21)

This ratio corresponds to the data reported in Hidalgo and
Brosilow (1990).

The other discrete decision is the initiator type. Through an
appropriate initiator selection, it is possible to enhance reactor
performance to increase production, achieve certain molec-
ular properties or improve controllability. Our model may
consider any finite number of initiators that can be selected
either alone or mixed. In this work, the initiators allowed
are azobis(isobutyronitrile) (AIBN) and tert-butyl peroxyben-
zoate (TBPB). AIBN is more reactive than TBPB but its cost
is higher. Initiator selection is modeled by means of binary
variables (yAIBN and yTBPB). These variables are employed
to select the pre-exponential factor and the activation energy
of the initiator decomposition constant corresponding to the
chosen initiator:

Ad = AAIBNyAIBN + ATBPByTBPB, (22)

Ed = EAIBNyAIBN + ETBPByTBPB, (23)

yTBPB + yAIBN = 1. (24)

The integer constraint represented by Eq. (24) was included
to specify that, for this particular design, it is desired to use
only one initiator. Besides, for the third situation analyzed, the
cyclic transitions between grades A and B, the same peroxide
must be used for both transitions.

The description of the process without considering the
control system comprises 37 equations: a set of 30 equa-
tions, 15 for each of the two steady states, that includes Eqs.
(1)–(13) and the specified values for Mn and Qm, together with
Eqs. (14), (21)–(24), the relation between the transfer area and
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its nominal value, and the imposition that the feed temperatures
must be equal at both steady states. These 37 equations involve
42 variables (the set of Qi , Qm, Qj , x, I, M, M0, M1, M2, �0,
T, Tj , Tf , Mw, Mn, Pr, and Pd at each of the two steady states,
together with V, Vj , UA, A/A0, Ad , Ed , yAIBN, and yTBPB).
This results in five degrees of freedom, so there can be up to
five process optimization variables. Two of them were already
selected, as mentioned above (V, and yAIBN or yTBPB). The re-
maining three process decision variables selected were the re-
actor temperatures at each of the two steady states (TA, TB)

and the coolant flow rate at steady state A (QjA). This simpli-
fies the inclusion of some process constraints in the optimiza-
tion problem, and also the solution of the nonlinear equations
corresponding to the steady-state operating points.

3.2. Control system design variables

In order to find the best control system that would drive
the process from one steady state to the other, a multivari-
able control scheme is analyzed. Reactor and jacket tempera-
tures, polymerization rate and Mn are considered as possible
controlled variables. Mn was selected as controlled variable,
although Mw might have been chosen as well. As the poly-
dispersity index presents small variations in styrene solution
polymerization, control objectives can be formulated in terms
of either Mn or Mw (Fontoura et al., 2003). Online size exclu-
sion chromatography (SEC) devices are available that provide
online measurements of the average molecular weights. How-
ever, these measurements involve a delay that ranges between
10 and 40 min (Ellis et al., 1994). To overcome this problem,
Kalman filters have been employed to provide online estimates
of the molecular weights between SEC measurements. Success-
ful molecular weight control schemes have been implemented
in this way (Kim, 1991; Ellis et al., 1994; Prasad et al., 2002).
Kalman filters or empirical correlations have also been used
in combination with online sensors of reaction mixture prop-
erties other than molecular weights, to obtain online estimates
of the molecular weights for control purposes (Fontoura et al.,
2003; Ponnuswamy et al., 1987). Therefore, in this article it is
assumed that online values of the polymer Mn, as well as reac-
tor and jacket temperatures and polymerization rate, are readily
available for the controllers by means of an appropriate online
device.

The variables that could be manipulated in this reactor are:
monomer, initiator and coolant flow rates. In solution polymer-
ization, solvent volume fraction should be kept approximately
constant (Hidalgo and Brosilow, 1990). Therefore, a ratio con-
troller is used to maintain a constant solvent volume fraction
of 50%. This value, which is approximately the one reported
by Hidalgo and Brosilow (1990), is high enough to allow ne-
glecting the gel effect. Then, the solvent flow rate is related to
the monomer and initiator flow rates as

Qs = Qi + Qm. (25)

The solvent ratio controller and a combination of feedfor-
ward and feedback controllers compose the proposed control

system: feedforward controllers for property control (Mn)

and feedback PI controllers for reactor and jacket tempera-
tures, polymerization rate and Mn control. For this work it
was established that feedforward controllers must manipulate
all control efforts, but optimal matching between manipu-
lated and controlled variables for the PI controllers should
be determined.

The overall control action on each manipulated variable is
composed by the action of the feedforward controller and of
each feedback loop in which the variable is involved. Hence,
the control superstructure can be represented by Eq. (26)

U∗
i =Ui,ff+

4∑
j=1

Ki,j

[
(Yj,set−Yj )+ 1

�i,j

∫ t

0
(Yj,set−Yj ) dt ′

]
.

(26)

U∗
i is the overall control action on the ith manipulated vari-

able (U∗
1 = Q∗

j , U
∗
2 = Q∗

i , U
∗
3 = Q∗

m), and Yj is the jth con-
trolled variable (Y1 = T , Y2 = Tj , Y3 = Mn, Y4 = Pr); Yj,set is
the set point of the Yj variable. Ui,ff stands for the feedforward
controller’s action. The terms in the sum represent the action
of the PI controllers over the ith manipulated variable.

It should be noted that Eq. (26) represents the control su-
perstructure, and therefore it includes all potential PI loops be-
tween controlled and manipulated variables. Which of these
loops will actually compose the final control system is part
of the design problem. If any of the manipulated variables is
not matched with a given controlled variable, the correspond-
ing term of the PI controller in Eq. (26) should vanish. This is
modeled using binary variables as follows:

Klb
i,j yi,j �Ki,j �Kub

i,j yi,j . (27)

The binary variable yi,j takes the value of 1 if the ith ma-
nipulated variable is matched with the jth controlled variable,
or 0 otherwise. The control superstructure yields 212 = 4096
control alternatives, identified by the 12 binary variables. How-
ever, some of these options were disregarded in advance based
on process knowledge and previous simulations. For example,
it is not reasonable to control jacket temperature manipulating
monomer or initiator flow rates. Besides, previous simulation
results showed that the combination Qj –Mn did not result in
an effective control action. This type of considerations results
in the following decisions previous to the actual optimization:

• Not controlling Tj by manipulating Qi (y2,2 = 0).
• Not controlling Tj by manipulating Qm (y3,2 = 0).
• Not controlling Mn by manipulating Qj (y1,3 = 0).

In this way, the combinatorial size of the optimization prob-
lem was reduced in 3584 discrete alternatives (212−29=3584).
No restrictions are imposed on the number of loops in which any
manipulated or controlled variable can be involved. It should
be noted that multivariable PI schemes in which a single ma-
nipulated variable is employed in more than one control loop
have been reported in the literature (Wang, 2003; Kookos and
Perkins, 2001; Chatzidoukas et al., 2003).



3368 M. Asteasuain et al. / Chemical Engineering Science 61 (2006) 3362–3378

Table 4
Constraints on the manipulated variables during grade transitions

Manipulated variable Lower bound (L s−1) Upper bound (L s−1)

Qj 0 41
Qi 0 0.066
Qm 0 1.31

In order to take into account constraints on the manipulated
variables, the following saturation function was defined

Ui =
⎧⎨
⎩

Ui,max if Ui,max < U∗
i ,

U∗
i if Ui,min �U∗

i �Ui,max,

Ui,min if U∗
i < Ui,min.

(28)

We developed the following expression so as to smooth
Eq. (28)

Ui = 0.25[(U∗
i − Ui,min) tanh(�(U∗

i − Ui,min)) + U∗
i + Ui,min]

× [tanh(�(Ui,max − U∗
i )) + 1]

+ 0.5Ui,max[tanh(�(Ui,max − U∗
i )) + 1]. (29)

Parameter � determines the “smoothness” of the expression
defined by Eq. (29). The larger the � is, the more Eq. (29)
resembles Eq. (28). Here we used � = 106. Ui,min and Ui,max
values are reported in Table 4.

Feedforward controller’s actions (Ui,ff), controlled variables’
set points (Yj,set), binary variables representing the matching
between controlled and manipulated variables (yi,j ) and the PI
controllers’ tuning parameters (Ki,j and 1/�i,j ), are determined
in the same optimization run, simultaneously with the process
design variables. The objective functions aim at minimizing off-
specification material and transition time, and steady-state op-
erating costs. At the same time, process safety constraints must
be satisfied. In this way, an optimal design for the process and
the control system as a whole is obtained. As all the elements
of the control system are designed simultaneously, all possible
interactions between the different loops are taken into account.
It should be noted that no simplification of the process model
is carried out in order to design the control system. The opti-
mizer calculates each of the time profiles for Yj,set and Ui,ff as
a series of piecewise constant values. The PI controllers’ tun-
ing parameters (Ki,j and 1/�i,j ) are considered time invariant
optimization variables.

3.3. Objective functions

One of the design objectives for steady-state operation is
minimizing costs for production of grade A and B polymers.
The cost function comprises an annualized reactor cost, and an
average of the operating costs for producing polystyrenes of
grade A and B:

C[$ year−1] = 1
4CR + 1

2 (Cop,A + Cop,B). (30)

CR is the reactor cost, which is annualized considering a
four-year amortization (Schweiger and Floudas, 1997). It is
calculated as

CR[$] = 343.16V 0.529. (31)

Eq. (31) was determined fitting cost data for a stirred jacket
reactor (material: carbon steel, operating pressure: atmospheric
to 25 psi) (Matches, 2004). Thirteen points corresponding to
reactor volumes ranging from 2000 to 3500 L were used to
obtain the cost equation, which provides a very good fit (R2 =
0.9999).

Cop,A and Cop,B are the operating costs when producing
grade A and B, respectively. Cop,A and Cop,B comprise coolant
(Ccool) and initiator (Cin) costs, which are shown in Eqs. (32)
and (33), respectively. Binary variables are used to include only
the cost of the selected initiator in the objective function. Values
for parameters a, c1, c2 and c3 are shown in Table 3

Ccool[$ year−1] = c1a(Qj,A + Qj,B)[L s−1], (32)

Cin[$ year−1] = (c2MwAIBNyAIBN + c3MwTBPByTBPB)

× If a(Qi,A + Qi,B)[L s−1]. (33)

The objective function for grade transition optimization mea-
sures the integral over time of the squared difference between
the Mn of the target grade and the Mn of the polymer being
produced at time t. That is,

Gt =
∫ tf

0
(MnTarget − Mn(t))2 dt . (34)

For A to B transition, MnTarget = MnB and Mn(0) = MnA;
for B to A transition, MnTarget = MnA and Mn(0) = MnB. An
objective function like Eq. (34) not only minimizes an off-
specification property, but also the transition time because the
upper limit of the integral in Eq. (34) (tf ) is treated as an
additional optimization variable (Chatzidoukas et al., 2003).

In the third situation considered, the cyclic transitions from A
to B and B to A, designs for each transition cannot be treated as
two different optimization problems, because they share some
of the optimization variables, i.e., reactor unit and peroxide ini-
tiator selections, and the steady-state operating points. A single
optimization problem that takes into account both transitions
simultaneously must be solved instead. In order to tackle this
problem, “twin” sets of process model equations were defined.
One of them represents the process going from grade A to grade
B operating point, and the other the opposite transition. Both
sets of differential and algebraic equations are solved together
from the initial time up the final time horizon (tf ). The initial
condition for the first set is the steady-state point of grade A
production, while grade B operating point is the target steady-
state; the opposite holds for the second set. The only connec-
tions between the “twin” sets are the optimization variables
mentioned before. Eq. (34) was modified so as to include both
transitions in the objective function. Then, the new objective
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function for the third situation is

Gt =
∫ tf,AB

0
(MnB − MnAB(t))2 dt

+
∫ tf,BA

0
(MnA − MnBA(t))2 dt . (35)

MnA and MnB are the number average molecular weights of
grades A and B, respectively, and MnAB(t) and MnBA(t) are,
respectively, the number average molecular weights in the first
and second sets.

Operating costs are not included in the grade transition ob-
jective function because minimizing off-specification polymer
is by far more important than reducing operating costs during
this operation (Yi et al., 2003).

4. Optimization problem formulation

The simultaneous process-control system designs that have
been presented constitute multiobjective mixed-integer dy-
namic optimization (MIDO) problems, which can be posed as
follows:

min
u(t),z,d,y,tf

[
C(x∗

a , z, y, d, p)

Gt(xd(tf ), xa(tf ), x∗
a , z, u(tf ), y, d, p)

]

s.t.

hd(ẋd(t), xd(t), xa(t), x
∗
a , z, u(t), y, d, p) = 0,

hd(xd(t), xa(t), x
∗
a , z, u(t), y, d, p) = 0,

h0(ẋd(0), xd(0), xa(0), x∗
a , z, u(0), y, d, p) = 0,

hy(y) = 0,

ge(ẋd(tf ), xd(tf ), xa(tf ), x∗
a , z, u(tf ), y, d, p)�0,

gq(x∗
a , z, y, p)�0,

ulb �u(t)�uub,

zlb �z�zub,

y ∈ {0, 1}11 or 20,

d ∈ D,

0� t � tf . (36)

hd and ha are the closed-loop model differential-algebraic sys-
tem; h0 is the set of initial conditions; hy are the pure inte-
ger equalities; ge and gq are the end-point and time-invariant
inequalities, respectively, and D is a set of three discrete val-
ues representing allowed reactor sizes. The set ha includes the
model differential equations set to zero, in order to define both
steady states. xd are the differential state variables, xa(t) and
x∗
a are the time variant and time invariant algebraic variables,

respectively; p are the model parameters; u(t) is the set of
time-varying optimization variables (seven elements in the first
and second cases (Yj,set, j = 1.4, Ui,ff , i = 1.3) and 14 in the
third case (Yj,set and Ui,ff for the “twin” sets)), z is the set of

time-invariant decision variables (29 elements in the first and
second cases (Ki,j and 1/�i,j (18 variables), TA, TB, Qj,A and
the length of the eight time intervals used to divide the time
horizon), and 47 in the third case (TA, TB, Qj,A and the length
of the eight time intervals (11 variables), and Ki,j and 1/�i,j

for the “twin” sets (36 variables)); y is a set of binary variables
(11 in the first and second cases (yi,j (nine variables), yAIBN
and yTBPB) and 20 in the third case (yi,j for the “twin” sets,
yAIBN and yTBPB)); d is a discrete variable (reactor volume).
Additional constraints were also included involving controlled
and manipulated variables, and time derivatives for the state
variables. These constraints ensured that the target steady-state
operating point was actually reached. The resulting MIDO was
solved following the strategy outlined below.

The multiobjective optimization is solved in this work by
employing the �-constraint method. It implies formulating
Eq. (36) as a single objective optimization problem, incorporat-
ing the second function as an inequality constraint. In this case,

min
u(t),z,d,y,tf

Gt

s.t.

C��,

� ∈ [�min, �max]. (37)

Eq. (37) is solved for different values of � in order to generate
the non-inferior or Pareto set. This set is composed by all fea-
sible points (that is, where all constraints are satisfied) among
which no improvement on one objective function can be made
without simultaneously worsening the other. From this set, the
final solution can be chosen according to a subjective criterion.

In order to determine �min and �max, Eq. (36) is solved sepa-
rately for C and Gt, respectively. �min is the value of C obtained
in the first optimization, and �max is the value of C in the second
one. It should be noted that function C involves only variables
associated with the steady states, reactor unit and type of ini-
tiator. Therefore, when solving Eq. (36) only for this function
to calculate �min, the optimization problem was decomposed in
this way: first, all optimization variables and constraints related
to the grade transition (including differential equations) were
excluded, and the minimum value of C was obtained. Then, the
value of Gt corresponding to this point was determined solving
Eq. (36) for Gt only, but with the reactor unit, type of initia-
tor and steady-state optimization variables fixed at the values
obtained before.

The MIDO problems were solved with the gPROMS/gOPT
package (Process Systems Enterprise Ltd.), which decomposes
the MIDO into a Master problem (mixed-integer linear prob-
lem) in which the discrete optimization variables are updated,
and a Dynamic optimization problem in which the remain-
ing optimization variables are determined for a fixed set of
the discrete variables (Process Systems Enterprise, Ltd., 2005).
Dynamic optimization problems are solved in gPROMS by con-
trol vector parameterization. For this parameterization, the time
horizon was divided into a fixed number of time intervals, as
required by gPROMS. Eight time intervals were used in this
work. It was verified that a larger number did not improve the
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optimal solution. As mentioned before, the length of each of
the time intervals was included in the set of optimization vari-
ables. Piecewise constant profiles were selected for the time
varying optimization variables.

In the general case, the problem described by Eq. (36) can be
highly nonlinear, and consequently susceptible of having local
optimums. Taking into consideration that we are using a gen-
eral deterministic optimization approach to solve it, we cannot
guarantee finding the global solution among the possible local
ones. However, to the authors’ best knowledge, a well devel-
oped deterministic approach to find the global solution of a non-
structured problem of the type shown in Eq. (36) is yet to be
found. On the other hand, evolutionary strategies, i.e., genetic
algorithms, have been considered in the literature (Bhaskar
et al., 2000; Guria et al., 2005) given their ability to approach
the global optimum, even though they cannot guarantee find-
ing the global solution in a general case either. Nevertheless,
for the particular problem analyzed in this paper we tried mul-
tiple starting points when solving the optimization problems,
and therefore we believe that the reported results are indeed
global optimums.

5. Results and discussion

5.1. Transition from grade A to B polymer

After solving Eq. (36) for C only (to determine �min), the
design solution obtained for the transition from grade A to B
polymer is shown in Table 5. Decision variables were reac-
tor size and initiator type (discrete), T at both operating points
and Qj at grade A production (continuous); Tj,f and Qm were
fixed in advance, and Qs is related to Qi and Qm, as explained
before. As may be seen, the smallest reactor is selected, which
is consistent with capital cost reduction. However, the most ex-
pensive initiator turns out to be the best option. Evidently, the
decomposition properties of this initiator allow smaller flow
rates resulting in a lower cost. It is important to note that ini-
tiator cost represents approximately 95% of the overall cost.
Conversion levels were similar for both A and B grades, falling
in the middle of the range of accepted conversions.

When solving Eq. (36) for Gt only (to determine �max), the
grade transition optimization resulted in the same process de-
sign variables (steady-state operating points, reactor unit and
initiator type) as in the previous optimization. This implies
that the objectives are not in conflict since the minima for C
and Gt coincide, resulting in only one point in the Pareto set.
This type of coincidence, which may be surprising, has also
been found by Bhat et al. (2004) when solving a multiobjective

Table 5
Optimal steady-states design for AB grade transition

C : 105746 $ year−1

Reactor volume: 2000 L Initiator: AIBN
Grade A Grade B

T 100 ◦C 100 ◦C
Tf 66 ◦C
Tj 54 ◦C 45 ◦C
Qj 0.079 L s−1 0.138 L s−1

Qi 2.51 × 10−3 L s−1 3.48 × 10−3 L s−1

Conversion 33% 37%

Tj
Qi

Qm

Qj

Mn

Pr

T

Fig. 2. Pairing between manipulated and controlled variables corresponding
to the optimal design for the A to B transition.

optimization for the continuous tower process for styrene poly-
merization. It is important to remark that the solution to this
multiobjective optimization problem was thoroughly checked.
First of all, the optimization was performed with multiple start-
ing points, and the same solution was obtained each time. Sec-
ondly, the optimization was repeated but relaxing the specifi-
cations on Mn at both steady states (MnA = MnA,desired ± c,
MnB=MnB,desired±c). Although Pareto sets were obtained with
the relaxed constraints, in all cases the points of the Pareto set
lied at the bounds of the constraints MnA,B =MnA,B,desired ± c.
This means that none of these points was a solution to the prob-
lem of interest in this work (MnA,B = MnA,B,desired ± 0). It
was also found that when the value of c approached zero, the
Pareto set points “moved” towards the unique solution we had
previously found.

The value of the objective function for grade transition from
A to B polymer is Gt = 3.5 × 10−4 at the optimum.

The optimal PI control structure is schematized in Fig. 2. The
optimal controller parameters, gains and reset rates, are shown
in Eqs. (38) and (39).

K=
⎡
⎣ · · · K1,2=7.95 × 10−3 L s−1 K−1 · · · K1,4= − 416.15 L s−1 g−1 s−1

K2,1=7.96 × 10−6 L s−1 K−1 · · · K2,3= − 2.63 × 10−5 L s−1 g−1 mol−1 · · ·
K3,1= − 7.96 × 10−6 L s−1 K−1 · · · K3,3=2.38 × 10−5 L s−1 g−1 mol−1 · · ·

⎤
⎦ , (38)

1

�
=

⎡
⎢⎣

· · · 1
�1,2

= 8.75 × 10−6 s−1 · · · 1
�1,4

= 0
1

�2,1
= 0 · · · 1

�2,3
= 8.75 × 10−6 s−1 · · ·

1
�3,1

= 5.26 × 10−7 s−1 · · · 1
�3,3

= 1.01 × 10−6 s−1 · · ·

⎤
⎥⎦ . (39)
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Fig. 3. Mn (—-) and Mn set point (- - -) profiles corresponding to the optimal
design for the A to B grade transition.

Fig. 3 shows the Mn trajectory. It can be seen that the opti-
mally designed control system drives Mn to the target value in
a very short time, with negligible undershoot. As this property
is kept almost constant thereon by the optimal control system,
the amount of off-specification product is minimal. It must be
kept in mind that the reactor residence time is approximately
2.5 h. The optimal profile of the Mn set point for the feedback
controllers is presented in Fig. 3.

Figs. 4 (a) and (b) depict reactor and jacket temperature tra-
jectories, respectively. It is interesting to see that the transient
behavior of these variables shows large swings, particularly at
the beginning of the grade transition. This is indeed the result
of the appropriate control actions taken in order to achieve the
control objectives of minimum off-specification material and
transition time. The response of the control system can be inter-
preted in terms of the time profiles of the polymer Mn and the
Mn set point. The initial 10-min period during which a sharp
increase of 5 ◦C occurs, corresponds to the initial transition pe-
riod in which the Mn set point is at its lowest value (see Fig. 3).
The temperature increase aids in obtaining a fast transition be-
cause Mn lowers as temperature rises. During this period, about
70% of the total change in the polymer Mn is accomplished.
Afterwards, a sudden decrease of 17 ◦C in the next 9 min oc-
curs. This period corresponds to the one in which the Mn set
point is at the highest value (see Fig. 3). This can be interpreted
as the control system acting fast to minimize the undershoot in
the polymer Mn, and therefore the reactor temperature is sud-
denly lowered. This period ends when the undershoot point of
Mn during the grade transition occurs. The jacket temperature
profile obviously resembles that of the reactor temperature. It
should be noted that the maximum reactor and jacket temper-
ature constraints of 110 and 95 ◦C, respectively, are satisfied
along the reaction time. Notice the longer time needed to take
the reactor and jacket temperatures to their steady-state values,
in comparison with the time required for the polymer Mn to
reach its steady-state value. It should be remembered, however,
that the objective function for grade transition consisted only
in minimizing off-specification Mn. This long time recovery of
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Fig. 4. Profiles of (a) the reactor temperature (—-) and the reactor temperature
set point (- - -) - and (b) the jacket temperature (—-) and jacket temperature
set point (- - -) corresponding to the optimal design for the A to B grade
transition.

the reactor temperature and jacket temperatures is the best way
to fulfill this objective.

Monomer and initiator concentration profiles during grade
transition resemble those of the reactor temperature, although
the slopes of the curves are always of the opposite sign since
monomer and initiator consumptions increase with increasing
temperatures. Although this polydispersity was not included in
the design specifications, it presents a suitable behavior during
the transition process. The start and end values of the polymer
polydispersity correspond to the theoretical value of 1.5 for re-
actions involving propagation and termination by combination
at constant temperature. When grade transition starts, the poly-
dispersity increases slightly showing a maximum of less than
1.7, decreasing smoothly afterwards.

5.2. Transition from grade B to A polymer

In this case, the optimal designs for minimal Gt and C do not
coincide. Fig. 5 shows the Pareto set for this transition. Each
point corresponds to a different process and control system
design, which varies from point 1, the design that yields the
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Fig. 5. Pareto set for the multiobjective optimization corresponding to the B
to A grade transition design problem.
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transition.

fastest grade transition, to point 2, the lowest cost design. From
this set, the preferred solution can be selected according to
some additional criteria. It is possible to base this decision on
techniques that quantitatively assess the trade-offs between the
different Pareto set points (Takeda and Ray, 1999; Luyben and
Floudas, 1994), and/or use a qualitative criteria coming from
an engineering knowledge of the process.

Fig. 5 shows that the lowest cost design represents a reduc-
tion of 46% in capital and steady-state operating costs with
respect to the fastest grade transition design. The difference
in grade transition speed of the optimal designs of the Pareto
set is better appreciated in Fig. 6, which shows the optimal
time trajectory of the polymer Mn corresponding to each of
the Pareto set points. It is possible to observe that with point 2
design, grade A specification is reached approximately 10 min
later than with point 1 design, which means an increase of 25%
in transition time. The Mn profiles corresponding to the inter-
mediate designs are shown in Fig. 6 with dotted lines. It should
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Fig. 7. Pairings between manipulated and controlled variables corresponding
to the optimal designs for the B to A grade transition.

be noted that, in all cases, the optimally designed control sys-
tem allows reaching the target Mn with minimal overshoot, and
a strict matching with the desired value of this property after-
wards. Polydispersity profiles showed a similar trajectory than
the one of the A to B transition in all cases. The optimal pair-
ings of the multivariable PI controllers of each control system
design are shown in Fig. 7. In general, these pairings were dif-
ferent for each control system design.

It is important to note that all the optimal designs repre-
sented in Fig. 5 include the smallest reactor and the initiator
AIBN, which coincides with the optimal design of the A to B
transition. The steady states corresponding to the optimal de-
signs of the Pareto set for the B to A transition are presented in
Table 6. Interestingly, in all cases the operating point for poly-
mer grade A is almost the same as in the A to B transition.
However, for the fastest B to A transition design (first row of
Table 6), grade B is produced at a lower temperature than in
the A to B case. This temperature reduction is compensated
with a higher initiator flow rate, which increases the operating
costs (see Table 5). Lower cost optimal designs for the B to
A case (but presenting a slower grade transition) result from a
reduction in grade B operating costs by means of a smaller ini-
tiator flow rate. Although the jacket flow rate is increased at the
same time, its cost is negligible in comparison with that of the
initiator. It is interesting to see how the operating temperature
for grade B production is increased while the initiator flow rate
is reduced in order to obtain the same Mn. As a consequence
of the higher temperature, the monomer conversion in grade B
operating point is higher in the lower cost designs. Although
all conversion levels are acceptable for our design specifica-
tions, the higher conversion is another advantage for the low
cost designs.

Another feature that arises when analyzing the results in
Table 7 is that the polymer with higher Mn (grade A) is
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Table 6
Optimal steady-states designs corresponding to the different points of the Pareto set of the BA transition

C Gt TA TB Tj,A Tj,B Tf Qi,A Qi,B Qj,A Qj,B xA xB
($/ year−1) (◦C) (◦C) (◦C) (◦C) (◦C) (L s−1) (L s−1) (L s−1) (L s−1)

196 313 10.3 × 10−4 98 76 53 40 67 2.56 × 10−3 8.84 × 10−3 0.079 0.109 0.32 0.18
175 000 10.5 × 10−4 100 79 54 41 67 2.51 × 10−3 7.62 × 10−3 0.080 0.111 0.33 0.20
155 000 10.9 × 10−4 100 82 54 41 67 2.51 × 10−3 6.42 × 10−3 0.080 0.115 0.32 0.22
135 000 11.2 × 10−4 100 85 54 42 67 2.51 × 10−3 5.23 × 10−3 0.080 0.121 0.33 0.25
115 000 11.8 × 10−4 100 92 54 43 67 2.51 × 10−3 4.03 × 10−3 0.080 0.131 0.33 0.31
105 746 12.8 × 10−4 100 100 54 45 66 2.51 × 10−3 3.48 × 10−3 0.079 0.138 0.33 0.37
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Fig. 8. Reactor temperature profiles corresponding to the optimal designs for
the B to A grade transition. �— Point 1 (C = 196 313), ◦— C = 175 000,

�— C = 155 000, �— C = 135 000, ×— C = 115 000, — C = 105 746.

produced at a higher temperature. A priori, it would be expected
that if steady-state operating temperature increases molecular
weight decreases due to faster generation of initiator radicals
produced by first order initiator decomposition rate. Model
results shown in Table 6 do not agree with this prediction. This
controversial result is explained by analyzing both operating
temperature and initiator flow rate simultaneously. To be able
to obtain a higher molecular weight by increasing temperature
the reactor must operate at a lower initiator flow rate, as shown
in Table 6. To keep temperature at a desired level at low initia-
tor flow rate, while restricting jacket inlet temperature to be the
same in both stead-states, the jacket fluid flow rate decreases
with respect to the one obtained for grade B production.

Fig. 8 depicts the temperature profiles corresponding to the
dynamic simulations of the optimal designs. It is interesting
to note that all temperature profiles, starting from the differ-
ent steady-state temperatures of grade B production, show a
similar initial steep descent to approximately 68 ◦C, followed
by a comparatively slow rise to the steady-state temperature of
grade A production, which is in all cases around 100 ◦C. The
time needed to reach the minimum temperature varies from
34 min in the fastest transition designs, to 40 min in the slowest
transition design. This value corresponds to the time needed to
perform approximately 95% of the total change in the polymer
Mn. Monomer concentration initially shows a steep increase

followed by a slow decrease to the steady-state value, while the
initiator behaves in the opposite way. It should be noted that
temperature, monomer concentration and initiator concentra-
tion profiles present opposite tendencies to their counterparts
of the A to B transition.

It is important to point out that the transition time needed
for a grade transition is strongly dependent on the direction of
the change in the polymer property. For the particular system
studied in this work, transition from grade B to grade A always
required more time than the opposite transition. Notice from
Figs. 6 and 3, that even the fastest B to A transition in the
optimal Pareto set for this transition (Fig. 6), is more than twice
as slow as the A to B transition (Fig. 3). This kind of behavior
has also been observed in studies on optimal grade transition
for other systems (Chatzidoukas et al., 2003).

5.3. Cyclic transitions between grades A and B

Results shown up to this point showed that when A to B and B
to A transitions are considered separately, the optimal operating
point for grade B production might be different according to
the direction of the transition. However, this is not acceptable
if the plant is meant to perform A to B and back to A sequential
transitions. This is why, in order to obtain an optimal design
capable of performing sequential transitions between grades A
and B, both transitions were considered simultaneously in the
dynamic simulation as explained before. In this way, a single
set of process design variables is obtained (reactor unit, initiator
type, and grade A and B operating points). However, the control
system (feedforward signals, pairings between controlled and
manipulated variables, and controller tuning parameters) can
vary depending on the direction of the transition.

The solution of the multiobjective MIDO yielded a Pareto
set that coincides with that of the B to A transition case (see
Fig. 5) except for a displacement of +3.5×10−4 in the Gt-axis.
Following the notation used in the B to A transition design, in
what follows point 1 design will stand for the Pareto set point
that results in the best grade transition, and point 2 in the one
that presents the lowest cost. The mentioned displacement may
be related to the existence of only one Gt in the Pareto set for
the single A to B transition case (Gt = 3.5 × 10−4), which
coincides with the transition time obtained for all the A to B
transition in the cyclic case. We should now explain the coin-
cidence between the Gt for the single B to A transition and the
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Table 7
Optimal steady-states designs corresponding to the different points of the Pareto set of the ABA transition

C Gt TA TB Tj,A Tj,B Tf Qi,A Qi,B Qj,A Qj,B xA xB

($/ year−1) B to A A to B (◦C) (◦C) (◦C) (◦C) (◦C) (L s−1) (L s−1) (L s−1) (L s−1)

195 457 10.3 × 10−4 3.5 × 10−4 100 76 54 40 67 2.51 × 10−3 8.84 × 10−3 0.080 0.109 0.33 0.18
175 000 10.5 × 10−4 3.5 × 10−4 100 79 54 41 67 2.51 × 10−3 7.62 × 10−3 0.080 0.111 0.33 0.20
155 000 10.9 × 10−4 3.5 × 10−4 100 82 54 41 67 2.51 × 10−3 6.42 × 10−3 0.080 0.115 0.32 0.22
135 000 11.2 × 10−4 3.5 × 10−4 100 85 54 42 67 2.51 × 10−3 5.23 × 10−3 0.080 0.121 0.33 0.25
115 000 11.8 × 10−4 3.5 × 10−4 100 92 54 43 67 2.51 × 10−3 4.03 × 10−3 0.080 0.131 0.33 0.31
105 746 12.8 × 10−4 3.5 × 10−4 100 100 54 45 66 2.51 × 10−3 3.48 × 10−3 0.079 0.138 0.33 0.37
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Fig. 9. Reactor temperature profiles during the A to B transition corresponding
to the optimal designs for the A to B cyclic transitions. —�— Point 1
(C =195 457), —◦— C =175 000, —�— C =155 000, —�— C =135 000,
—×— C = 115 000, —�— C = 105 746.

Gt portion corresponding to the B to A transition in the cyclic
case. Table 7 shows the optimal process design variables cor-
responding to this set. As can be seen, the results almost co-
incide with those of the B to A transition. This indicates that
the more time-consuming transition, from B to A, dominates
the selection of the optimal process design. In other words, in
order to reduce the global transition time for the cyclic transi-
tions, the optimizer selects a design that favors the B to A tran-
sition over the opposite one. This is not an unexpected result,
since as was shown in the previous sections for single transi-
tion operation, the B to A transition took at least as twice as
long as the A to B one. The last row of Table 7 coincides with
the optimal process design for the A to B transition case (see
Table 5); logically, the portion of Gt corresponding to the A to
B transition in the cyclic case (that measures the best transition
between steady states) is the same as in the single AB transi-
tion. As noted before, this portion of Gt corresponding to the A
to B transition is the same for all the different process designs.
That is, there are several design alternatives for this transition,
which appear to be as good as the one encountered when op-
timizing the A to B transition only. This was verified by plot-
ting the Mn profile resulting from the different optimal process
designs. The curves overlapped with that presented in Fig. 3,
except for negligible differences after the undershoot zone. In
order to explain this behavior we turn to the example in Fig. 9.

A to B transition B to A transition

C = 195457 (Point 1)

C = 105746 (Point 2)
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Fig. 10. Pairings between manipulated and controlled variables corresponding
to point 1 and point 2 optimal designs for the cyclic transitions between
grades A and B. Pairings of the other designs of the Pareto set are the same
as those of point 1.

This figure shows the optimal temperature profiles during the A
to B transition between the steady states reported in Table 7. It
can be seen that, starting from the 100 ◦C point that is common
to all designs, the trajectories are almost the same in the first
20 min, and then they follow different paths to their correspond-
ing steady-state temperature for grade B production. The same
applies to the other process variables. The first 20 min com-
prise the time needed to take the polymer Mn to its target value
(see Fig. 3) and yields the most significant contribution to the
value of the objective function Gt, because Mn is kept very near
the target value thereon. In other words, equivalent alternatives
for the grade B operating point exist for the A to B transition
because, after a common initial trajectory where Mn is driven
to the desired value, the optimal control systems can take the
process to the different steady states for grade B production
while keeping Mn at its set point at the same time. In the first
case analyzed, the A to B transition, the optimizer found one
of these almost equivalent designs.

The control structures for the optimal designs of the Pareto
set are shown in Fig. 10. It can be noticed that, for the B to A
transition, the variable pairings in two of the optimal designs in
the cyclic transition case (those corresponding to C = 135 000
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and C = 115 000) did not coincide with the ones obtained in
the B to A (single transition) case, although the process designs
and the values of Gt are almost the same (see Tables 6 and 7).
That is, for the same process designs the optimizer now found,
in some of the solutions, different control systems that allowed
obtaining the same time trajectory for the polymer Mn. For
the other process variables, the trajectories until the grade A
Mn was achieved were the same, although then different routes
might be followed until the same final steady state was reached.

The time needed to solve the MIDO problems for the dif-
ferent points of the Pareto set varied between 3 and 12 h in a
Pentium IV 2.8 GHz CPU, depending on the number of MILP
iterations and the time required for each of the dynamic opti-
mization subproblems. This was also the case for the previous
two cases analyzed.

6. Conclusions

In this work the simultaneous design and control of a so-
lution styrene polymerization process was performed using a
multiobjective mixed-integer dynamic optimization approach.
Design objectives comprised minimization of off-specification
polymer and transition time during grade changeover between
two polystyrene grades. Capital and steady-state operating costs
were also minimized.

The simultaneous approach allowed to obtain designs that
minimize the objective functions and also guarantee controlla-
bility during operation for the considered scenarios. The strong
interaction between process design and control has been con-
templated with this methodology.

Optimal steady-state operating points varied with the direc-
tion of the transition. If the process is meant to perform a single
transition from grade A (the higher molecular weight polymer)
to grade B (the lower molecular weight polymer), there was
not any compromise between objectives and a single optimum,
rather than a Pareto set, was found. For the opposite situation,
a single transition from grade B to grade A, a Pareto set was
obtained. Grade B polymer is produced at lower temperatures
for optimal transition, and at higher temperatures for minimiz-
ing operating costs. The optimal operating point for the other
grade was approximately the same in all cases.

The optimal transition from grade B to grade A requires more
time and originates more off-specification material than the op-
timal transition in the opposite direction. Therefore, when the
system was designed to perform changeovers in the two direc-
tions, transition from B to A dominated and the optimal process
designs from this Pareto set almost coincided with the ones ob-
tained for the single transition from grade B to A. However, this
did not affect transition from A to B, since this grade change is
mostly influenced by grade A operating point, which remained
unchanged.

In all cases, optimal process designs included the smallest
reactor and initiator AIBN, which means that these are the best
choices to minimize costs and to optimize grade transition. Al-
though the first decision is consistent with capital cost reduction
and fast dynamics, the selected initiator was the most expen-
sive of the possible alternatives. Evidently, the decomposition

properties of this initiator allow smaller flow rates resulting in
lower operating costs.

Each one of the optimal process designs was obtained to-
gether with an optimal control system. In all cases, the control
systems allowed a grade transition with minimum undershoot
and off-specification product. Besides, process constraints dur-
ing transition were always satisfied.

In the two cases where a Pareto set was obtained, simple
inspection of the Pareto points based on an engineering knowl-
edge of the process was enough guide for the selection of the
final design. Since transition time is much lower than reactor
residence time for all the optimal points of the Pareto sets, an
increase in this time can be afforded in view of the high reduc-
tion in capital and steady-state costs accompanied with higher
steady-state conversions. Therefore, the lower costs designs of
the Pareto sets turned out to be the best options.

Forthcoming work will address multiple grade transition se-
quences and other polymer grade specifications.

Notation

a parameter of the operating costs functions
Ad,AIBN pre-exponential factor of the decomposition

constant of initiator AIBN
Ad,TBPB pre-exponential factor of the decomposition

constant of initiator TBPB
Ap pre-exponential factor of the propagation con-

stant
Atc pre-exponential factor of the termination by

combination constant
AIBN azobis(isobutyronitrile)
c1 cost parameter
c2 cost parameter
c3 cost parameter
C objective function that comprises capital and

steady-state operating costs
Ccool coolant cost
Cin initiator cost
Cop,A operating costs at grade A steady state
Cop,B operating costs at grade B steady state
CR reactor cost
Cp reacting mixture heat capacity
Cpj coolant heat capacity
d discrete variable (reactor volume)
D set of three discrete variables representing al-

lowed reactor volumes
effic initiator decomposition efficiency
Ed,AIBN activation energy of the decomposition constant

of initiator AIBN
Ed,TBPB activation energy of the decomposition constant

of initiator TBPB
Ep activation energy of the propagation constant
Etc activation energy of the termination by combi-

nation constant
ge set of end-point inequalities
gq set of time invariant inequalities



3376 M. Asteasuain et al. / Chemical Engineering Science 61 (2006) 3362–3378

Gt objective function for grade transition
optimization

h0 set of initial conditions
ha set of algebraic equations
hd set of differential equations
hy set of pure integer equalities
I molar initiator concentration
If 0 nominal value of the initiator concentration in

the feed stream
kdI kinetic constant for initiator decomposition
kdM kinetic constant for monomer thermal decompo-

sition
kp kinetic constant for propagation reaction
ktc kinetic constant for termination reaction
Ki,j controller gain of the PI loop between the ith

manipulated variable and the jth controlled vari-
able

KIb
i,j lower bound for the controller gain Ki,j

Kub
i,j upper bound for the controller gain Ki,j

M molar monomer concentration
M0 zeroth order moment of the polymer chain

length distribution
M1 first order moment of the polymer chain length

distribution
M2 second order moment of the polymer chain

length distribution
Mf 0 nominal value of the monomer concentration in

the feed stream
Mn number average molecular weight
MnA number average molecular weight of grade A

polymer
MnB number average molecular weight of grade B

polymer
MnAB number average molecular weight when per-

forming the transition from grade A to B in the
cyclic transitions case

MnBA number average molecular weight when per-
forming the transition from grade B to A in the
cyclic transitions case

MnTarget target value of the Mn during grade transition
Mw weight average molecular weight
MwAIBN molecular weight of the initiator AIBN
MwM monomer molecular weight
MwTBPB molecular weight of the initiator TBPB
p set of model parameters
Pd polydispersity
Pr polymerization rate
Q total flow rate (sum of the feed streams)
Q0 nominal value of the total flow rate

Qi initiator flow rate

Q∗
i overall control action over the initiator flow rate

Qj coolant flow rate
Q∗

j overall control action over the coolant flow rate
Qm monomer flowrate
Q∗

m overall control action over the monomer flow
rate

Qs solvent flow rate

R1, R2 and R3 options for the reactor unit

t time
tf time horizon
T reactor temperature
Tf 0 nominal value of the feed stream temper-

ature
Tj jacket temperature
TBPB tert-butyl peroxybenzoate
ulb set of lower bounds on the time-varying

optimization variables
uub set of upper bounds on the time-varying

optimization variables
u(t) set of time-varying optimization variables
Ui ith manipulated variable
U∗

i overall control action over the ith manip-
ulated variable

Ui,ff feedforward signal for the ith manipulated
variable

Ui,max upper limit for the ith manipulated vari-
able

Ui,min lower limit for the ith manipulated vari-
able

UA heat-transfer parameter
UA0 nominal value of the parameter UA
V reactor volume
V0 nominal value of the reactor volume
Vj jacket volume
x monomer conversion
xa set of time-varying algebraic variables
x∗
a set of time invariant algebraic variables

xd(t) differential state variables
ẋd (t) set of time derivatives of the differential

state variables
y set of binary variables
yAIBN binary variable associated with the selec-

tion of the initiator AIBN
Yj j th controlled variable
Yj,set set point of the jth controlled variable
yTBPB binary variable associated with the selec-

tion of the initiator TBPB
z set of time invariant optimization variables
zlb setof lower bounds on the time invariant

optimization variables
zub set of upper bounds on the time invariant

optimization variables

Greek letters

�Hr reaction enthalpy
� parameter of the �-constraint method
�max maximum value of parameter �
�min minimum value of parameter �

� model parameter
�0 global radical concentration
� reacting mixture density
�j coolant density
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1/�i,j reset rate of the PI loop between the
ith manipulated variable and the jth con-
trolled variable

Subscripts

f feed conditions
A grade A steady state
B grade B steady state

Superscripts

. dimensionless variable
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