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a b s t r a c t

Over the past half-century, we have become increasingly aware of the ubiquity of DNA damage. Under the
constant exposure to exogenous and endogenous genomic stress, cells must attempt to replicate damaged
DNA. The encounter of replication forks with DNA lesions triggers several cellular responses, including the
activation of translesion DNA synthesis (TLS), which largely depends upon specialized DNA polymerases
with flexible active sites capable of accommodating bulky DNA lesions. A detrimental aspect of TLS is
its intrinsic mutagenic nature, and thus the activity of the TLS polymerases must ideally be restricted to
synthesis on damaged DNA templates. Despite their potential clinical importance in chemotherapy, TLS
inhibitors have been difficult to identify since a direct assay designed to quantify genomic TLS events is
still unavailable. Herein we discuss the methods that have been used to validate TLS inhibitors such as
USP1, p21 and Spartan, highlighting research that has revealed their contribution to the control of DNA
synthesis on damaged and undamaged templates.

© 2015 Elsevier B.V. All rights reserved.

1. The basics of translesion DNA synthesis

To promote damaged-DNA replication, TLS relies on the Y-
family of DNA polymerases (Pol�, Pol�, Pol� and Rev1) and on the
B-family member, Pol�. Either one polymerase, or two TLS poly-
merases in concert, operate to achieve the bypass of most types of
DNA lesions. As depicted in Fig. 1, while TLS across moderate dis-
tortions such as UV-induced cyclobutane pyrimidine dimers (CPDs)
depends exclusively on Pol�, TLS across bulkier adducts including
UV-induced 6-4photoproducts (6-4PPs) comprises at least two spe-
cialized polymerases, in which Pol� carries out an extension step
that follows the lesion bypass step driven by Y-pols [1].

Specialized DNA polymerases have no proofreading activity,
their processivity is low and they are highly mutagenic, with a
few exceptions as in the case of the Pol� when it bypasses CPDs.
Pol� deficiency in humans causes the xeroderma pigmentosum
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variant (XPV), with clinical features that resemble those of defec-
tive nucleotide excision repair (NER) [2]. Loss of TLS capability also
jeopardizes the survival of whole organisms as demonstrated by
the embryonic lethality of Pol� deficiency in mouse models [3].
In addition, the overexpression of some Y-family polymerases has
been detected in cancer cells, suggesting that dysregulated TLS may
contribute to the genesis of human diseases including cancer and
to the resistance to chemotherapy [4]. In general, the extent of DNA
synthesis by TLS must be tightly regulated to achieve the best bal-
ance between cell survival and mutagenesis. In Escherichia coli the
DNA stretches synthesized by TLS were shown to be no longer than
∼60 nucleotides [5], suggesting an exquisite control of both loading
and removal of specialized polymerases at replication forks.

2. How and when

While Y-family DNA pol�, � and � are recruited to Proliferating
Cell Nuclear Antigen (PCNA) through a PCNA interacting protein
(PIP) box, Rev1 utilizes its BRCT domain and/or its PAD domain for
localization. All Y-family pols have one or two ubiquitin binding
domains (UBD), which consolidates their interaction with PCNA
at sites for translesion DNA synthesis, as several genotoxic treat-
ments prompt Rad6/Rad18-dependent PCNA mono-ubiquitination
at Lys164. Another mechanism that facilitates specialized pol local-
ization to damaged DNA is the direct recruitment to Rev1, which
can act as a scaffold protein [1,6]. Conversely, it has been postulated
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Fig. 1. The models for TLS activation. (A) TLS is a post-replicative event: when replication forks encounter DNA lesions a gap is left behind the fork. PCNA-ubi marks the
gap in front of the DNA lesions, which is filled by Y-polymerases at a later time. (B) TLS is a replication-coupled event: when replication forks encounter DNA lesions, the
replisome is modified by e.g. PCNA ubiquitination and Y-polymerases are loaded to elongate DNA across the DNA lesions. Replicative pols are re-loaded after lesion bypass.
(C) TLS is a two-steps process: while few lesions require only one TLS pol, many require two specialized pols. The first one inserts the first nucleotide in front of the DNA
lesion while the second fills the gap.

Fig. 2. The battery of assays used to study TLS. While specific assays such as unscheduled DNA synthesis (UDS) selectively reveal other DNA synthesis processes such as NER,
there is no direct way to quantify TLS-triggered DNA synthesis. Biochemical markers of TLS and biological processes affected by TLS onset are used instead to indirectly infer
modulations in TLS activation.

that the removal of the ubiquitin moiety from PCNA facilitates the
reverse exchange to replicative pols after lesion bypass [7]. PCNA
can also be polyubiquitinated to promote non-TLS events but the
biological relevance of such modification is not within the scope of
this review [1,6].

TLS events can take place at or behind the replication fork
[8] (Fig. 1). The initial characterization of pol� indicated a post-
replicative mode of action [9]. Following the discovery of PCNA
ubiquitination, the replication-coupled mode of TLS dominated
the field until experiments performed in Saccharomyces cerevisiae
demonstrated that TLS events can be postponed to the G2-phase

without affecting cell viability [10,11]. Currently, it is accepted that
both TLS modes aid DNA replication although it is unclear whether
this is an arbitrary choice or if signals arising from the DNA lesion or
its surroundings are variables that affect such a decision. The post-
replicative mode is particularly supported by a paradigm-breaking
model that proposes discontinuity of DNA replication in both DNA
strands following replication stress [8,12]. Interestingly, a novel
specialized polymerase with primase activity, PrimPol could be
essential for the onset of such discontinuous DNA synthesis events
[13,14]. It is therefore possible that discontinuous DNA synthesis
in both strands and post-replicative TLS are frequent events.
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3. Methods for assessing TLS

While the precise quantification of restricted DNA synthesis
events is possible (e.g. unscheduled DNA synthesis (UDS) reveals
NER), so far, it is impossible to identify TLS stretches of only a few
nucleotides within the background of bulk DNA replication of nor-
mal DNA. Nevertheless, TLS efficiency may be inferred indirectly by
monitoring various accepted TLS markers (Fig. 2).

3.1. The recruitment of Y-pols to replication factories and their
interaction with PCNA in the chromatin fraction

DNA replication takes place in defined subnuclear replication
factories, in which a cluster of replication forks is initiated and
elongates nascent DNA [1]. Y-pols are recruited to replication facto-
ries in response to replication stress (triggered by UV, MMS, BPDE,
but not DSB-inducing agents such as ionizing irradiation-IR) in a
manner that depends upon their PIP-box and/or UBD domains [6].
The interaction between chromatin-bound PCNA and specialized
pols is also enriched following DNA damage induction. However,
the upregulation of these markers is not sufficient proof of TLS
occurrence. First, nuclear foci of specialized pols have been visual-
ized outside of S-phase, c.f. [15] and have been associated in some
cases with DNA repair, c.f. [16]. Second, increased UV sensitivity
was reported using Pol� mutants defective in PCNA binding, and
are therefore unable to organize into detectable nuclear foci, e.g.
[17]. Hence, the organization of specialized pols in foci must be
interpreted in the context of other assays to infer the extent of TLS
activation.

3.2. PCNA mono-ubiquitination

DNA damaging agents that initiate accumulation of bulky
adducts and/or cause replication stalling increase the mono-
ubiquitination of PCNA (PCNA-ubi) [2]. While the ubiquitination of
PCNA is undoubtedly biologically relevant, e.g. [18,19], a number
of results suggest that PCNA-ubi is not an unequivocal marker of
TLS activation. First, PCNA-ubi in vertebrates is not always epistatic
with Pol�, Pol�, Pol� and Rev1, e.g. [20]. Second, some TLS events
occur in the absence of PCNA-ubi, e.g. [20], and Pol� recruitment
to damaged-DNA can be independent of its UBD, e.g. [21]. Third,
the function of PCNA-ubi might not overlap completely with TLS
since: (a) it can be upregulated when there is no damage to bypass
(e.g. after hydroxyurea (HU) /aphidicolin (Aph) treatments), e.g.
[22]; (b) it precedes PCNA polyubiquitination which can trigger
TLS-independent events, e.g. [23]; (c) it can take place in cells tran-
siting or arrested in G1, e.g. [24]. Thus, changes in PCNA-ubi must
be also studied in combination with other TLS markers.

3.3. DNA elongation assays

Defects in the expression of TLS polymerases or in the extent
of PCNA ubiquitination have been shown to modulate at least
one of the following DNA replication assays: (a) fiber assay, (b)
alkaline unwinding assay (ADU), (c) alkaline sucrose gradient sed-
imentation assay (ASG). The fiber assay can measure the average
replication speed before and after DNA damage within the same
replication fork [25]. This approach relies on the direct visualiza-
tion of denatured nascent DNA via immunodetection of thymidine
analogs added before and after the DNA damage insult. The length
of each DNA track is then utilized to infer the average rate of nascent
DNA elongation within the time frame of the pulse. While a reduc-
tion in the length of the DNA track synthesized upon DNA damage
is interpreted as a delay in continuous DNA elongation, it is yet
uncertain if re-priming downstream from the DNA lesions might
reduce the replication speed as well. To distinguish between the

replication-coupled and the re-priming TLS models, the fiber assay
must be combined with the ADU or the ASG assay. The ADU con-
sists on a partial unwinding from the ssDNA at the tip of each
fork [26,27]. The protocol involves pulse-labelling with titrated
thymidine; followed by the immediate exposure of the samples
to DNA-damaging agents and incubation with a medium contain-
ing unlabelled thymidine. Sample collection at different times after
chase are subjected to partial unwinding, sonication and separation
of dsDNA from ssDNA fragments with hydroxyapatite columns. The
ratio between [H3]-labelled ssDNA and the total [H3]-labelled DNA
at each chase time is then used to infer the progression of the repli-
cation fork from the labelled area. Both stalled and discontinuous
replication is expected to result in the formation of persistent [H3]-
labelled ssDNA ends. The ASG is the “oldest” assay [9,28] to study
the growth of molecules replicated shortly after DNA insults. Sim-
ilarly to the ADU assays, cells are labelled with titrated thymidine,
but in this case the [H3]-thymidine pulse is delivered after exposure
to the DNA-damaging agent. Samples are then chased for different
times and incubated with a strong alkaline solution to achieve full
denaturation before resolution in a sucrose gradient. A reduction in
the size of [H3]-thymidine labelled DNA is interpreted as evidence
for DNA replication stalling and/or re-priming.

While the utilization of ASG, ADU and fiber assays in isolation
might not suffice to reveal whether TLS events are occurring at
or behind the fork, they have been used in combination to seek
an answer for such a challenging question (e.g. [29]). As detailed
in Supplementary Table 1, these assays revealed a contribution to
nascent DNA elongation of all specialized pols or PCNA-ubi. Hence,
it is expected that every TLS regulator must affect at least one or
more of these assays.

3.4. Mutagenic Signature

A number of assays have been designed to assess TLS-triggered
mutagenesis. (1) The earliest and easiest-to-set-up assay is the
supF assay which utilizes a UV-irradiated shuttle DNA plasmid
to infer mutagenesis, using �-galactosidase activity as a read-out
[30]. (2) The more sophisticated duplex vectors assay combines
�-galactosidase activity and antibiotic resistance to distinguish
between TLS and other replication-associated events [31]. (3) The
gap-filling plasmid assay specifically focuses on post-replicative
TLS, by employing a plasmid that cannot replicate in mammalian
cells [32]. This assay has been adapted to compare TLS with other
replication-associated events [33]. (4) The chromatinic HPRT assay
focuses on the ability of HPRT mutant cells to survive the treatment
with an otherwise toxic purine analogue (6-thioguanine) [34]. DNA
sequencing is then required to link a mutation in the hprt gene with
a TLS defect. (5) The recently described “genomic lesion tolerance
assay” uses the integrase of phage �C31 to “chromatinize” two stag-
gered closely-opposed lesions permitting a distinction between
homologous recombination and accurate or mutagenic TLS [35].

While these approaches have certain limitations [e.g. utiliza-
tion of episomal substrates (SupF, duplex vectors and gap filling
assay), lack of a site specific lesion (SupF and HRPT assay), incapac-
ity to assess accurate TLS events (SupF, HRPT assay), and refractory
response to stress conditions such as checkpoint activation [32]],
they have nonetheless been fundamental for the disclosure of
important mechanistic aspects of TLS as detailed in Supplementary
Table 2.

3.5. Survival rates

While the preponderant role of TLS pols in cell survival has been
described at the beginning of this review, it should be noted that
conclusions regarding a causative role of TLS dysfunction on sur-
vival rates should be approached with caution since specialized pols
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Fig. 3. The regulation and function of TLS inhibitors. (A) In S-phase p21 is at its lowest levels while USP1 and Spartan are at their highest. Notably, they are all downregulated
after UV irradiation. (B) TLS inhibitors prevent the recruitment of Y-pols to non-TLS undamaged templates (1); choreograph the correct and timely activation of TLS at DNA
lesions (2): and promote the switch-back to replicative synthesis (3). So far, the evidence indicates that each inhibitor may have prevalence at each one of these steps.

might contribute to cell survival independently of TLS. For exam-
ple, the significant sensitivity to UV irradiation of Pol� deficient
cells has been attributed to its repair replication role in NER and
not in TLS [16].

4. Negative regulators of TLS

Our current understanding envisions TLS as a locally constrained
event targeted only to locations in damaged DNA. TLS inhibitors
are in turn strongly regulated both by the cell cycle and by TLS
activating signals. The implication of such tight regulation for the
appropriate onset of TLS will be discussed below.

4.1. USP1

The identification of the deubiquitinase of PCNA, USP1/UAF1,
led to the suggestion of a potential negative regulator of TLS
[36]. USP1 reverts both basal and DNA damage-induced mono-
ubiquitination of PCNA at K164 [36,37]. The treatment of cells
with UV irradiation triggers enhanced, yet mechanistically contro-
versial, USP1 proteolysis [36]. However, it is intriguing that other
stimuli that upregulate TLS such as MMS, MMC or HU do not upreg-
ulate USP1 proteolysis [36,37]. A non-degradable USP1 reduced
UV-initiated Pol� focal organization and PCNA interactions [36].
The supF assay revealed spontaneous and UV-induced mutagenesis
in USP1-depleted cells [36], while the downregulation or inacti-
vation of USP1/UAF1 triggered a Pol�-dependent mild increase in
UV sensitivity [38]. Surprisingly, the effect of USP1 modulation in
DNA elongation after UV irradiation has not yet been reported.
Instead, the role of USP1 in undamaged cells has been revealed
in a pioneering study from the group of Tony T. Huang: USP1 pre-
vents accumulation of micronuclei during unstressed replication by
restraining excessive recruitment of Pol� to undamaged DNA syn-
thesis [39]. Since USP1 expression is restricted to S, G2/M-phases by
the E3 ligase APC/C(Cdh1) [40], high USP1 levels in S-phase might
prevent Pol� loading at undamaged DNA replication forks.

Interestingly, USP1 also de-ubiquitinates FANCD2, a key mem-
ber of the Fanconi Anemia (FA) pathway, required for the repair

of DNA interstrand crosslinks (ICLs). The loss of the FA pathway
causes multiple abnormalities leading to cancer, which correlate
with USP1 overexpression in several tumour types [41]. Given the
utmost importance of the FA pathway during DDR, the inability
to separate the contribution of USP1 to FANCD2- and PCNA-
dependent signalling complicates the identification of the direct
contribution of USP1 to TLS signalling.

4.2. p21 waf1/cip1

The cyclin kinase (CDK) inhibitor, p21, is well known because
of its role in the maintenance of cell cycle arrest outside S-phase
[42]. Its ability to consolidate G1 and G2 arrest depends upon its
CDK binding domain and on its major upregulation following sev-
eral different genotoxic stimuli. Thereafter, the low levels of p21
in S-phase, for a long time, have been considered residual. Dur-
ing the last decade, overwhelming evidence from many groups has
demonstrated that genotoxic stimuli such as UV irradiation upreg-
ulate p21 proteolysis to the extent of eliminating such “residual”
levels, e.g. [24]. Since no cellular process is simply “ornamental”,
this indicates that so-called residual levels of p21 might impair at
least one aspect of the cellular response to UV irradiation [42]. To
date, there is good evidence that low levels of p21 are sufficient
to prevent TLS onset. Mechanistically, this has been linked to the
control of PCNA ubiquitination by the CDK binding domain of p21
[24] and later on, to the p21 PIP-box, which binds PCNA with strong
affinity, displacing weaker PIP-boxes in vitro [43]. In cells, sustained
p21/PCNA binding precludes Y-pol focal organization and the inter-
action of PCNA with Pol�, Pol�, Pol � and Rev1 in chromatin after UV
irradiation [42,44,45]. Interestingly, this happens without compro-
mising the interaction of PCNA with the replicative pols, which have
more than one PCNA binding domain [42,44]. Remarkably, endoge-
nous p21 recapitulates the effect of stable p21/PCNA binding in a
manner that inversely correlates with p21 degradation, since both
stable and endogenous p21 constrain DNA elongation at replica-
tion forks after UV irradiation [44,45]. These observations suggest
that p21 is a global inhibitor of Y-pols, and they are consistent with
the defective DNA elongation observed after depletion of two or
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more Y-pols following UV irradiation [46]. When assessing the role
of p21 on TLS-driven mutagenesis, Livneh and co-workers showed
that the PCNA binding domain of p21 reduces the efficiency but
increases the accuracy of TLS events [32]. We therefore propose that
the timely degradation of p21 slows down the onset of TLS events
by promoting the selection of the less mutagenic Y-pol. In sup-
port of this model, the CRL4Cdt2 E3 ligase has been shown to trigger
local degradation of chromatin-bound p21 within PCNA complexes
[47,48], and this depends upon a specific PIP-degron sequence
in p21 [49]. Such choreographic control of TLS might extend to
other PIP-degron proteins such as CDT1, which interferes with the
recruitment of Pol� and Pol� to replication factories [50]. While the
timely removal of p21 from PCNA might promote more accurate
TLS events, a failure to eliminate p21 from the clamp loader could
permanently block TLS thereafter, leading to the cessation of DNA
replication. Consistent with this hypothesis, the expression of a p21
mutant that resists UV-induced degradation triggers 53BP1 focal
organization, micronuclei formation and cell death [45]. Moreover,
when other PIP-degron proteins are not removed from PCNA, the
UV sensitivity of cells increases as well [50]. Taken together, these
findings indicate that p21, through its CDK and PIP-box can affect
all parameters of TLS discussed in this review. It might control TLS
at ongoing replication forks through PCNA-binding while it might
modulate gap-filling by relying on its CDK binding domain. Inde-
pendently of such speculations, the data discussed herein robustly
demonstrate that p21 levels, which might be considered residual
from the perspective of cell cycle arrest, are sufficient to control
TLS, thus revealing an unexpected and important role for low p21
levels during S-phase.

4.3. DVC1/Spartan

Spartan is an evolutionarily-conserved multidomain protein
containing a SprT-like domain of unknown function, a SHP box
that mediates its interaction with the VCP/p97 chaperone, a PIP-
box, and a UBZ domain that binds mono- and polyubiquitinated
substrates [51–53]. The E3 ligase APC/C(Cdh1) restricts Spartan
expression to S phase, G2 and early M-phases [51]. Through its
PCNA and UBZ domains Spartan localizes in nuclear S-phase foci
in response to UV, MMS, HU, MMC and cisplatin but not after
treatment with IR [51–55]. Moreover, Spartan depletion impairs
cell survival after UV, cisplatin, MMS and camptothecin but not
after IR [51–56]. Importantly, Spartan deficiency has been linked
to genome instability, premature ageing and cancer predisposition
both in humans [56] and in mice [57].

There is tantalizing evidence that Spartan is a negative reg-
ulator of TLS [51,54,58]. First, Spartan is downregulated in a
dose-dependent manner after UV irradiation [53]. Second, Spartan
suppresses UV-induced mutagenesis [51,54,58,59]. However, loss
of Spartan diminishes DNA elongation after UV and Aph treatments,
and that would not be expected from a global negative regulator
of TLS [56,57]. Lessel et al. have speculated that excessive Pol�
loading to replicating DNA could be the cause for such slower repli-
cation fork rates. However, the concomitant loss of Spartan and
Pol� could not rescue the short-fiber phenotype [56]. Since it is
expected that the overexpression of a TLS inhibitor phenocopies the
loss of one/multiple specialized pols (see Supplementary Table 1),
evaluating the effect of Spartan over expression in DNA elongation
assays might be informative for this matter.

Conflicting results were reported when analysing the effect of
Spartan on biochemical markers of TLS activation. Some reports
show that Spartan depletion after UV irradiation causes enhanced
and persistent retention of Pol� in the chromatin fraction which is
accompanied by an increase in both the PCNA/Pol� interaction and
in the focal organization of Pol� [51,54,57]. In concordance, over-
expression of Spartan suppressed the interaction between Pol�

and PCNA-ubi after UV [51]. In contrast, others have reported
that Spartan deficiency causes a reduction in UV-induced Pol�
focal organization [53] and that its overexpression enhances spon-
taneous Pol� foci formation (in a manner that depends upon
negative regulation of USP1 by Spartan) [55]. The role of Spartan
in PCNA ubiquitination is also controversial. While some reports
indicate that Spartan enhances PCNA ubiquitination [52,53,55] oth-
ers suggest that PCNA ubiquitination is not significantly affected
by Spartan depletion [51,54,57]. Such conflicting results lead to
equally confusing models for the role of Spartan in TLS. The groups
that postulate Spartan as a positive TLS regulator suggest that:
(a) Spartan establishes a self-perpetuating process involving its
recruitment to PCNA-ubi, which in turn enhances Rad18 chromatin
access to PCNA [53]; (b) Spartan protects PCNA-ubi from USP1 trig-
gered de-ubiquitination [55]; (c) Spartan prevents PCNA-ubi and
RAD18 removal from chromatin during TLS [52]. Those who sug-
gest a negative role of Spartan in TLS propose that: (a) Spartan might
directly interact with, and inhibit the extension step of Rev1/Pol�-
dependent error-prone TLS [58]; (b) Spartan prompts the removal
of Pol� from PCNA-ubi in a manner that facilitates the re-start of
DNA synthesis by replicative polymerases [51,54]. In conclusion,
while Spartan has clearly a central role in TLS regulation, further
work is needed to clarify whether it is a positive or a negative
regulator of TLS (or both?).

5. Concluding remarks and perspectives

While some aspects of the regulation of TLS by USP1, p21 and
Spartan have been revealed, a number of issues require immediate
attention. While it is accepted that the consequences of the inacti-
vation of a single Y-pol must be different from those arising from the
global block of all Y-pols, with the exception of p21 [45], the analysis
of most inhibitors has been restricted to Pol� [36,51,53–57,60,61].
Moreover, the overexpression/stabilization of TLS inhibitors should
be exploited to support their negative role in TLS. In fact, the exten-
sive use of gain-of-function-tools combined with the analysis of all
Y-family pols served to define p21 as a global negative regulator of
TLS in UV damage [45], while similar experiments with USP1 and
Spartan are yet to be performed.

Application of the DNA fiber assay has shown that the functions
of the TLS inhibitors do not totally overlap. After UV-irradiation, p21
degradation increases DNA elongation, thus supporting its role as
a global TLS inhibitor [45], while Spartan dysfunction causes the
opposite effect [56,57]. Intriguingly, the role of USP1 in DNA elon-
gation after UV irradiation has not been yet reported. Moreover,
loss of either negative or positive TLS regulators cause hypersensi-
tivity to DNA damage, which might indicate that an “appropriate”
level of TLS events is required for cell viability, e.g. [53].

Another important issue that requires clarification is the contri-
bution of TLS regulators to replication of undamaged DNA. TLS pols
are certainly required for the synthesis across difficult-to-replicate
DNA structures such as common fragile sites [4], but their participa-
tion in undamaged DNA replication must be restricted to minimize
mutagenesis and other genomic instability parameters [39]. While
USP1 has a well-documented role in the protection of undamaged
DNA replication [39], diminished levels of Spartan during unper-
turbed replication affect the TLS parameter of DNA elongation [56].
This emphasizes the need for research to explore the contribu-
tion of TLS inhibition to the successful execution of the replication
program in the absence of stress.

The information discussed in this review indicates that USP1
may have a more prominent role in the prevention of unleashed
Y-pol loading on undamaged DNA than on the onset of TLS. On
the other hand, p21 has been placed directly at the on-switch
for TLS [42] and more conflicting evidence places Spartan at the



A.P. Bertolin et al. / DNA Repair 32 (2015) 158–164 163

off-switch for TLS [51,54,57] (Fig. 3). In this regard, it is important
to mention that recent reports bring the PCNA-interacting protein
PAF15 and the ubiquitin-like protein ISG15 into play, being both
factors potentially involved in the restoration of replicative DNA
synthesis after TLS finalization [60,61]. PAF15 may also prevent
unleashed loading of Pol� to undamaged DNA [60]. Additionally,
emerging evidence highlights potential cross-regulation between
TLS inhibitors, as USP1 and Spartan have been functionally linked
[55]. Understanding the interconnections between TLS-regulators
should foster the comprehension of the mechanisms that limit
mutagenesis to optimal levels in cells.
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Supplementary Table 1. Phenotypes of TLS polymerases deficiencies in DNA elongation 

assays: Fiber assays; Alkaline Sucrose Gradient sedimentation assay (ASG) and Alkaline 

Unwinding Assay (ADU).  

Fiber Assay 

TLS 
component 

Cell 
line 

Assay 
DNA damaging 

 agent 
DNA elongation phenotypes References 1° 

Track 
2°  

Track 

Rev3 
MEFs 
 

IdU 
20’ 

BrdU  
20’ 

None 
None 

[1] 

UV (20 J/m
2
) 

Rev1 
MEFs IdU  

20’ 
BrdU 
20’/40’/60’ 

None None [2] 

UV (20 and 40 J/m
2
) IdU/BrdU ratio: High 

Polη 
MEFs 
 

CIdU 
20´ 

IdU 
 20’ 

None 

None 

[3] 

UV (13 J/m
2
) 

Polκ 
None 

UV (13 J/m
2
) 

Polι 
None 

UV (13 J/m
2
) 

Polη + Polκ 
or  

Polη + Polι 

None None 

UV (13 J/m
2
) 

CldU/ IdU ratio: High 

Polη + Polκ 
+ Polι 

None None 

UV (13 J/m
2
) CldU/ IdU ratio: High 

Rev1 
DT40 CIdU 

20´ 
IdU 
20’ 

None None [4] 

UV (20 J/m
2
) CldU/IdU ratio: High 

Polη 
None None 

UV (20 J/m
2
) CldU/IdU ratio: High  

Rad18 
None 

None 
UV (20 J/m

2
) 

PCNA
K164R

 
None 

None 
UV (20 J/m

2
) 

Polη 

XP30
RO 

CIdU 
20´ 

IdU  
30’/60’/120’ 

None None [5] 

UV (10 J/m
2
) None (30’and 60’) 

IdU track length: shorter at 
120’ 

Polη 

XP30
RO 

CIdU 
20´ 

IdU 
20’/60’ 

None None  [6]  

UV (20 J/m
2
) 

CldU/IdU ratio: High  
(20’and 60’) 

PrimPol 

DT40 CIdU 
20’ 

IdU 
20’ 

None Replication rate (kb/min):  
slower (by 20%) 

[7] 

UV (20 J/m
2
) CldU/IdU ratio: High  

 

PrimPol 

HeLa/
MEFs 

CIdU 
20’ 

IdU 
20’ 

None Replication rate (kb/min): 
slower  

[8] 

UV (20 J/m
2
) then 30’ 

before 2° track 
%  Fork rescue  (bicolor tracks 
/ bicolor and unicolor tracks): 
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Lower 

PrimPol
Y89D

 

DT40 CIdU 
20’ 

IdU 
20’ 

None Replication rate (kb/min): 
slower (by 50%) 

[9] 

UV (20 J/m
2
) None 

PrimPol 

DT40 CIdU 
20’ 

IdU 
20’ 

None Replication rate (kb/min):  
slower (by 20%) 

[10] 

UV (20 J/m
2
) CldU/IdU ratio: High  

PrimPol 

HeLa IdU 
20’ 

CIdU 
20’ 

None (2h) None [11] 

HU (2h) CldU track length (μm): 
shorter 

 

ASG/ADU 

TLS 
component 

Cell 
line 

Assay Pulse time 
(3H-dT 

incorporation) 

Chase 
time 

DNA 
damaging  

agent 
Phenotypes References 

Rad18 
DT40 ASG 15´ 30’/90’ None None [12] 

UV (8 J/m
2
) Defect 

Rad18 
Mori-

SV 
ASG 30’ 90’ None None [13] 

UV (8 J/m
2
) Defect  

Rev3 DT40 ASG 15’ 30’ None 
None 

[14] 

UV (8 J/m
2
) 

Rev3 MEFs ASG* 120’/240’/ 
360’ 

No None ND [1] 

UV (5 J/m
2
) 

120’ mild defect 
240’/360’ strong defect 

ADU 30’ Up to 
6h 

None None 

UV (10 J/m
2
) Defect 

Rev1 MEFs ASG* 15’/120’/ 
240’ 

No None ND [2] 

UV (10 J/m
2
) 

15’ no defect 
120’ mild defect 
240’ strong defect 

ADU 30’ 0-6h None None 

UV (10 J/m
2
) Defect 

Rev1 
DT40 ASG 20’ 90’ None 

None 
[4] 

UV (4 J/m
2
) 

Polη 
None None 

UV (4 J/m
2
) Mild defect 

Rad18 
None None 

UV (4 J/m
2
) Strong defect 

PCNA
K164R

 
None None 

UV (4 J/m
2
) Strong defect  

Polη 
MEFs ASG 30’ 120’/ 

360’ 
None ND [3] 

UV (5 J/m
2
) Mild defect 

Polη + Polκ 
None ND 

UV (5 J/m
2
) Strong defect 

Polη + Polι 
None ND 

UV (5 J/m
2
) Mild defect 

Polη + Polκ 
+ Polι 

None ND 

UV (5 J/m
2
) Very strong defect 

Polη 
XP30
RO 

ASG 30’ 150’ None ND [15] 

UV (8 J/m
2
) Defect 
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Polη 
XP30
RO 

ASG 25’ 75’ None None [16] 

60’ 150’ UV (12.5 J/m
2
) Defect 

Polη 

XP30
RO 

ASG As in [15] As in 
[15] 

None ND [5] 

UV (12.5 J/m
2
) Defect 

ADU 30’ Up to 
12h 

None None 

UV (5 J/m
2
) Defect 

PrimPol 
DT40 ASG 20’ 90’ None None [7] 

UV (4 J/m
2
) 

Polκ 
MEFs ADU 15’ Up to 

6h 
None None [17] 

UV (5 J/m
2
) 

Polι 
None None 

UV (5 J/m
2
) 

Polη 
None None 

UV (5 J/m
2
) Mild defect at earlier times 

PCNA
K164R

 
None None 

UV (5 J/m
2
) Mild defect at earlier times 

Rev1 
None None 

UV (5 J/m
2
) Strong defect at later times 

Rev3 
None None 

UV (5 J/m
2
) Strong defect at later times 

Polη 
MEFs ADU 15’ Up to 

6h 
None None [3] 

UV (5 J/m
2
) Mild defect 

Polη + Polι 
None 

Mild defect 
UV (5 J/m

2
) 

Polη + Polκ 
None Mild defect 

UV (5 J/m
2
) strong defect 

Polη + Polκ 
+ Polι 

None Mild defect 

UV (5 J/m
2
) Strong defect 

Polη 
MEFs ADU 30’ Up to 

6h 
None None [18] 

UV (10 J/m
2
) Mild defect 

PCNA
K164R

 
None None 

UV (10 J/m
2
) Mild defect 

Polη + 
PCNA

K164R
 

None None 

UV (10 J/m
2
) 

Mild defect (apparently 
stronger  but not statistically 
significant)  

 

ND: Not determined 

*Modified version of ASG with 
14

C incorporation and T4 endo V use 

Note: When stating that a defect is mild, strong/er or very strong we are establishing a comparison within a single 

manuscript and it is not valid when comparing different papers.  

Main conclusions gathered from Table 1: Rev3, Rad18 and PCNA-ubi were associated to 

TLS events “behind the fork” since their depletion or inhibition modulates the ASG or ADU [1, 

4, 12, 13, 17, 18] but not the fiber assay [1, 4]. Other pols are much more puzzling. 

Counterintuitively, the depletion of PrimPol, the only pol with a primase domain, affects the 

fiber assay [7, 9, 11, 19] without affecting ASG [7]. Rev1 seems to work bimodally, being 
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required for the progression of DNA fibers within the first 60 minutes post UV [2, 4] and 

affecting the ADU/ASG only at a later time point [2, 4, 17]. Polη depletion impacts on the ASG 

and ADU assays without having an effect on the fiber assay at UV doses up to 12,5 J/m2, but 

reveals fiber phenotypes at 20 J/m2 [3-6, 15, 16, 18, 20, 21]. 

Supplementary Table 2. Mutagenic phenotypes retrieved after depletion or overexpression of 

specialized polymerases in different mutagenesis assays. Results obtained with duplex vector, 

gap filling and genomic lesion tolerance assay are showed separately 

HPRT/SupF/others 

TLS component 
Mutagenic 

Assay 
Cell line 

DNA damaging 
 agent 

Mutation 
frequency 
(relative to 

control) 

Reference 

Polκ 
deficiency 

SupF 293T MMS Higher [19] 

HPRT Mouse ES 
Benzo[a]pyrene 
(BP) (0,5-10 uM) 

Higher [20] 

ESTR* 
Mice 

(germline) 
None Higher [21] 

Bacteriophage 
λ cII gene* 

Big Blue Mice 
(kidney,liver,lung) 

None Higher [22] 

Polκ  
overexpression 

HRPT Mouse m5S None Higher [23] 

HPRT MRC5/ 8-TRE2 None Higher [24] 

Rev1 
 deficiency 

HPRT NF1604/WR20 
None  

No 
difference [25] 

BP (0,1-0,15 uM) Lower 

HPRT 
7AGM UV (11-15 J/m2) Lower [26] 

GM0024/NF1604 UV (4-10 J/m2) Lower [27] 

SupF 
XP2SASV3 UV (100 J/m2) Lower [28] 

293T UV (1000 J/m2) Lower [29] 

Polι 
deficiency 

SupF MCF-7 None Lower [30] 

SupF 293T 
None 

No 
difference 

[31] UV (200-1000 
J/m2 ) 

HPRT 
Mouse primary 

fibroblast 
UV Lower [32] 

pR2(LacZ)* BL2 UV (3500 J/m2 ) 
No 

difference 
[33] 

Polη 
deficiency 

pR2(LacZ)* BL2 UV (3500 J/m2 ) Higher [33] 

SupF 293T 
None 

No 
difference 

[34] 
UV (500;1000 

J/m2 ) 
Higher 
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* pR2(LacZ) is a mutagenic assay consisting in an episomal shuttling vector. The Bacteriophage λ cII gene 
present in Big Blue transgenic mice use a reporter gene that is chromosomally integrated in the mouse 
genome. Ms6-hm and Hm-2 are two mouse-specific hypervariable single-locus ESTR (Expanded Simple 
Tandem Repeat loci) probes used to prolife mutagenic frequency. 
 

Duplex Vector assay 

Type of 
DNA 

lesion 
Cell line 

% of TLS when 
lesion in 

Mutation 
frequency 

TLS pathway used Mutage-
nic 

nature 

Refe-
rence Lead-

ing 
strand 

Lagging 
strand 

Lead-
ing 

strand 

Lagging 
strand 

Inserter 
Pol 

Extender 
Pol 

CPD 
XPA 41 27.5 2.1 2.8 Polη Accurate 

[51] 
XPV 12.5 10 - - ? Polκ/ζ 

Error 
prone 

6-4PP XPA 37 28 1.4 1.5 Polη/ι ? 
Error 
prone 

[52] 

HPRT 
Primary murine 

fibroblasts 
UV Higher [32] 

HPRT 

Primary murine 
fibroblasts/huma

n fibroblast/ 
XP115LO 

BP 
(150nM) 

Lower [35] 

pR2(LacZ)* XP230RO 
None  

No 
difference 

[36] 
UV (500-2000 

J/m2 ) 
Higher 

LacZ* MEF UV (2,5 J/m2 ) Higher  [37] 

Polη  
overexpression 

HPRT NHF1/ XP115LO None  
No 

difference 
[38] 

Rev3 
deficiency 

pR2(LacZ)* BL2 UV (3500 J/m2 ) Lower [33] 

HPRT MSU-1.2 
None 

No 
difference [39] 

UV (8;11 J/m2 ) Lower  

HPRT MSU-1.2 
UV (8-12 J/m2 ) Lower 

[40] 
BP (0,06-0,1 uM) Lower 

HPRT 
Primary murine 

fibroblasts 
UV (4-10 J/m2 ) Lower  [41] 

SupF 293T UV (1000 J/m2) Lower [42] 

HPRT 
Mouse lung 

adenocarcinoma 
cells 

Cisplatin 
 (15 uM) 

Lower [43] 

Rev7 
deficiency 

HPRT MSU-1.2 
UV(8-12 J/m2) Lower [44] 

BP (0,06-0,12 uM) 
No 

difference 
[45] 
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XPV 

siRNA 
control 

19 16 1.4 1.3 
? Polζ Accurate 

siRNA 
Polι 

- - 0 0 

Thymine 
glycol 

Human  
fibroblasts 

23 19 2.2 2 
Polκ Polζ Accurate 

[53] 
? ? 

Error 
prone 

 

Gap Filling assay 

Type of DNA 
lesion 

Cell line 
% of 
TLS 

bypass 

TLS pathway used 
Mutagenic 

nature 
Comments 

Referen
ce 

Inserter 
Pol 

Extender 
Pol 

BP- guanine 
adduct 

MEF,MRC5, 
XP30RO 

35-50 Polκ? Polκ? Accurate 
Polη Is not 

required for BP-G 
bypass 

[46] 

CPD 

human fibroblasts 
(η

+
/η

-
)

 35/8 

Polη Accurate  

[47] 

SV40-transformed 
human fibroblasts 

(η
+
/η

-
) 

81/31 

BL2 (η
+
/η

-
) 19/7 

6-4PP 

human fibroblasts 
(η

+
/η

-
)

 13/11 

? Error prone 
Polη is not 

required for 
 6-4PP bypass 

SV40- transformed 
human fibroblasts 

(η
+
/η

-
) 

41/28 

BL2 (η
+
/η

-
) 14/7 

BP-guanine 
adduct 

MEFs (p53-) / 
U2OS (p53+) 

28/11 
Polκ Polζ Accurate 

 [48] 

Polη Polζ Error prone 

CPD 75/74 Polη Accurate 

Cisplatin-
intra-GG 
adduct 

21/20 
Polη Polζ Accurate 

Polκ Polζ Error prone 

CPD 
XP30RO 

+ 
siRNA 

Control 23 

Polκ 
or 

Polι 
Polζ Error prone 

Polκ and Polι  
back-up each 
other as the 

inserter TLS-Pol 
in the absence 

of Polη 

[49] 

Polκ 19 

Polι 21 

Polκ + 
Polι 

8 

Rev3 6 

 

 

Genomic Lesion Tolerance assay 

Type of DNA lesion Cell line 
% of TLS bypass % of HR 

bypass  
Reference 

Accurate  Error prone  
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Two-staggered BP-
guanine adduct 

SV40-transformed 
XPA (XP12RO) 

76 6 18 
[50] 

Two-staggered 6-4PP 
adduct 

40 48 11 

Two-staggered 
trimethylene (M3) 

lesions 
24 76 

Single   
6-4PP 

12 38 50 

 

Main conclusions gathered from Table 2 

The supF and HPRT assays showed that Pol and Pol suppress mutagenesis in a damage-

specific manner (UV and MMS/BPDE respectively) while Pol, Polι and Rev1 seem to 

enhance most of the DNA damage-induced mutagenesis [19, 20, 26, 34, 36, 54, 55]. 

Moreover, Pol -but not Pol over-expression- enhances spontaneous mutagenesis and 

micronuclei formation, showing that some TLS pols can truly interfere with replisome activity 

with deleterious consequences [24, 38, 56, 57]. The duplex vector assay on the other hand, 

has revealed a prominent role of TLS in error-free DNA synthesis across 6-4PPs, CDPs and 

thymidine-glycol in both strands in human cells [51-53, 58]. The gap filling assay provided 

evidence for the two-polymerase model, revealing Pol as the main extender [46, 48, 49, 59, 

60]. The genomic lesion tolerance assay showed that TLS is the preferred tolerance pathway 

for 6-4Ps and BP-G [50].  

 

Supplementary Bibliography 

Due to space restrictions we were unable to include many original papers in the main body of 

this manuscript. In particular, many times we cited an example to support a statement. In this 

section we describe the complete list of references corresponding to each statement. 

 

When writing:  

 “First, nuclear foci of specialized pols were reported outside S-phase, e.g. [61]” other 

citations are [62-66]  
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 “and were associated in some cases with DNA repair, e.g. [67]” other citations are [68, 

69]. 

 “increased UV sensitivity was reverted using Pol mutants defective in PCNA binding, 

which are unable to organize into detectable nuclear foci, e.g. [70]” other citations are [15, 33]. 

 “While the ubiquitination of PCNA is undoubtedly biologically relevant e.g. [60, 71]” other 

citations are [4, 60, 72, 73].      

 “PCNA-ubi in vertebrates is not always epistatic with Pol, Pol, Polζ and Rev1, e.g. [4]” 

other citations are [18, 60, 74-76].   

 “some TLS events occur in the absence of PCNA-ubi, e.g. [4]” other citations are [18, 60]. 

 “Polη recruitment to damaged-DNA can be independent of its UBD, e.g. [58]” other 

citations are [77, 78]. 

 “a) it is upregulated when there is no damage to bypass (e.g. after hydroxyurea-

HU/aphidicolin -Aph- treatments), e.g. [79]” other citations are [80]. 

 “b) it precedes PCNA polyubiquitination which can trigger TLS-independent events [81]” 

other citations are [71, 82]. 

 “c) it can take place in cells transiting or arrested in G1, e.g. [83]” other citations are [84, 

85]. 

  “genotoxic stimuli such as UV irradiation upregulate p21 proteolysis to the extent of 

eliminating “residual” levels p21 e.g. [83]” other citations are [86-98]. 

  “the “right” levels of TLS events are the ones required for cell viability, e.g. [99]” other 

citations are [12, 19, 42, 100-108]. 
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