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A B S T R A C T

Interactions of T cell receptors (TCR) to peptides in complex with MHC (p:MHC) are key features that mediate
cellular immune responses. While MHC binding is required for a peptide to be presented to T cells, not all MHC
binders are immunogenic. The interaction of a TCR to the p:MHC complex holds a key, but currently poorly
comprehended, component for our understanding of this variation in the immunogenicity of MHC binding
peptides. Here, we demonstrate that identification of the cognate target of a TCR from a set of p:MHC complexes
to a high degree is achievable using simple force-field energy terms. Building a benchmark of TCR:p:MHC
complexes where epitopes and non-epitopes are modelled using state-of-the-art molecular modelling tools,
scoring p:MHC to a given TCR using force-fields, optimized in a cross-validation setup to evaluate TCR inter
atomic interactions involved with each p:MHC, we demonstrate that this approach can successfully be used to
distinguish between epitopes and non-epitopes. A detailed analysis of the performance of this force-field-based
approach demonstrate that its predictive performance depend on the ability to both accurately predict the
binding of the peptide to the MHC and model the TCR:p:MHC complex structure. In summary, we conclude that
it is possible to identify the TCR cognate target among different candidate peptides by using a force-field based
model, and believe this works could lay the foundation for future work within prediction of TCR:p:MHC in-
teractions.

1. Introduction

Binding to MHC (Major Histocompatibility Complex) is a pre-
requisite for peptide T cell immunogenicity. Given this, large efforts
have been dedicated to the development of methods capable of accu-
rately predict this event (some of the most accurate and publicly
available at the IEDB are described in: Andreatta and Nielsen 2016;
Nielsen and Andreatta 2016; Andreatta et al., 2015; Karosiene et al.,
2013; Kim et al., 2009). The accuracy of the state-of-the-art methods
has proven to be very high (in particularly for MHC class I), and most
projects will in one way or another apply such prediction tools to guide
the process of rational T cell epitope discovery (a few examples include
Braendstrup et al., 2014; Pérez et al., 2008; Paul et al., 2015). However,
not all peptides processed along the MHC pathways and bound by MHC
turn out immunogenic. The main reason for this is the unavailability of
T cells reactive to the given peptide-MHC (p:MHC) complex due to
tolerance. The general rules underlying tolerance are well defined and
deal with negative selection of T cells expressing a T cell receptor (TCR)

with binding specificity towards p:MHC complexes of self-peptides.
However, the details of these rules remain poorly described, and our
understanding of the rules that define which p:MHCs are the targets of a
given TCR remains highly limited.

In the last years, many efforts have been made modelling
TCR:p:MHC systems. These efforts include simulation methods that
have evolved from simulating the peptide in the MHC binding pocket
for 1 nanosecond to simulating the entire TCR:p:MHC complex for more
than 1 microsecond (Kass et al., 2014). Also, as more TCR:p:MHC
complexes have been resolved by crystallography, template-based
modelling techniques have achieved considerable accuracy, either
using a single template or multiple templates (Liu et al., 2011). In other
studies, force fields have been adapted in order to estimate changes in
binding affinities, proving that structure-based methods are useful tools
to design and engineer TCR and pMHC (mainly class I) interactions
modulating both affinity and specificity (Pierce et al., 2014; Laugel
et al., 2005). Also, docking approaches have shown that interactions
between TCRs and pMHC complexes can be modelled when “good”
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scoring functions are used (Riley et al., 2016; Pierce and Weng, 2013).
Focusing on peptide immunogenicity, TCR interactions with pMHC
class I complexes, in particular for HLA-A*02:01, have shown that CDR
loops interactions to unknown epitopes can be predicted using a very
simple rule-based model learning from known complexes of the same
allele (Roomp and Domingues 2011). Also, a particular case (LC13 TCR
and HLA-B*08:01) was characterized using 100 ns molecular dynamics
simulations. Here, however no strong difference was found regarding
the binding behaviour between more and less immunogenic peptides
(Knapp et al., 2014).

Given this background, we seek to answer, given TCR:p:MHC
modelled complexes of different peptides interacting with the same
MHC and TCR molecules, which structural properties can be used in
order to predict the cognate target (i.e. the p:MHC complex) of the TCR.
To address this question, first we built a benchmark set based on solved
TCR:p:MHC of class II and generated homology models for both the
bound epitope and a set of natural MHC-binding non-epitopes. Next, we
used two well-known force fields, FoldX (Guerois et al., 2002) and
Rosetta’s Talaris2013 (Leaver-Fay et al., 2013; O'Meara et al., 2015), to
mimic the molecular interactions and chemical properties between the
TCR and the p:MHC complex. FoldX (Schymkowitz et al., 2005) has in
earlier studies demonstrated high performance predicting the impact of

a mutation in the context of a given biological assembly. Rosetta
(Bradley et al., 2005) has been extensively used in a large range of
applications, from de novo protein design to understanding the folding
process. These two force fields are described as weighted sums of terms
modelling interactions in a given molecular assembly. Here, we in-
vestigate how these force fields could be used to identify the target of a
given TCR. The weights of the two force fields were adjusted in a cross-
validation setup in order to detect correlations between each force field
term and the peptide immunogenicity. This approach allowed us to
define a robust model, that given the sequences of the MHC alpha and
beta subunits, TCR alpha and beta subunits and a set of peptides, could
discriminate between epitopes and non-epitopes, and thus correctly
predict the cognate target for the given TCR.

2. Material and methods

2.1. The TCR:p:MHCII data set

A data set of 43 TCR:p:MHCII was downloaded from the PDB
(Berman et al., 2003). Entries presenting extreme TCR orientations
compared with all other entries in the dataset were excluded (4Y1A,
4Y19, 4C56, 3PL6, 2WBJ and 1YMM) (see Supplementary Fig. 1).

Table 1
Epitopes in TCR:p:MHCII complexes. First column corresponds to the PDB code, underlined entries are excluded from the benchmark (see Section 2.1). Second column is for MHC family
(DR, DP, DQ are human alleles and IE, IA are mouse alleles). TCR is specified in third column and the peptide or protein name is in fourth column. Fifth column corresponds to the Epitope
sequence (cores in bold) and sixth column is for the UniprotID that was used to extract other peptides as Non-Epitopes (* is for cases that have no sequence, so random peptides were
chosen from UniRef50).

PDB ID MHCII TCR Peptide Name Epitope sequence Pept Full Seq

1D9 K IAk D10 ConAlb HRGAIEWEGIESG P02789
1FYT DR1 HA1.7 HA PKYVKQNTLKLAT Q38SR9
1J8H DR4 HA1.7 HA PKYVKQNTLKLAT Q38SR9
1U3H IAu 172.1 MBP1-11 SRGGASQYRPSQ P04370
1YMM DR2 OB.1A12 MBP85-99 ENPVVHFFKNIVTPR P02686
1ZGL DR2a 3A6 MBP89-101 VHFFKNIVTPRTP P02686
2IAM DR1 E8 mutTPI GELIGTLNAAKVPAD P60174
2IAN DR1 E8 TPI GELIGTLNAAKVPAD P60174
2PXY IAu 1934 MBP1-11 SRGGASQYRPSQ P04370
2WBJ DR2 OB.1A12 ENGA FARVHFISALHG A7ZPV4
2Z31 IAu Cl19 MBP1-11 SRGGASQYRPSQ P04370
3C5Z IAb B3K506 p3 K FEAQKAKANKA *
3C60 IAb YAE62 p3 K FEAQKAKANKA *
3C6L IAb 2W20 P3 K FEAQKAKANKA *
3MBE IAg 21.3 HEL AMKRHGLDNYRGYSLGN P00698
3O6F DR4 MS2-3C8 MBP114-126 FSWGAEGQRPGFG P02686
3PL6 DQ1 Hy.1B11 MBP85-99 ENPVVHFFKNIVTPR P02686
3QIB IEk 2B4 MCC88-104 ADLIAYLKQATK P00039
3QIU IEk 226 MCC88-104 ADLIAYLKQATK P00039
3QIW IEk 226 MCC88-104p5E ADLIAYLKQATK P00039
3RDT IAb J809.B5 P3 K FEAQKAKANKA *
3T0E DR4 MS2-3C8 MBP114-126 FSWGAEGQRPGFG P02686
4C56 DR1 AV22/BV19 HA PKYVKQNTLKLAT Q38SR9
4E41 DRA1 G4 mutTPI GELIGTLNAAKVPAD P60174
4GG6 DQ8 SP3.4 Glia-alpha1 SGEGSFQPSQENP X2KVI4
4GRL DQ1 Hy.1B11 pMM DRLLMLFAKDVVSRN P26276
4H1L DR52c Ani2.3 pHIR(Ni2+ ) HIRCNIPKRI *
4MAY DQ1 Hy.1B11 UL15 FRQLVHFVRDFAQLL P04295
4OZF DQ2 JR5.1 Glia-alpha2 PFPQPELPYPQPQ X2KWL1
4OZG DQ2 D2 Glia-alpha2 PFPQPELPYPQPQ X2KWL1
4OZH DQ2 S16 Glia-alpha2 PFPQPELPYPQPQ X2KWL1
4OZI DQ2.5 S2 Glia-alpha1a LQPFPQPELPYPQ X2KWL1
4P23 IAb J809.B5 p3 K FEAQKAKANKA *
4P2Q IEk 5cc7 5c2 ADGLAYFRSSFK *
4P2R IEk 5cc7 5c1 ANGVAFFLTPFKA *
4P46 IAb J809.B5 Y31A p3 K FEAQKAKANKA *
4P4 K DP2 AV22 M2(Be2+ ) FWIDLFETIG *
4P5T IAb 14.C6 p3 K FEAQKAKANKA *
4Y19 DR4 FS18 Insulin GSLQPLALEGSLQKRGIV P01308
4Y1A DR4 FS19 Insulin GSLQPLALEGSLQKRGIV P01308
4Z7U DQ8 S13 Glia-alpha1 SGEGSFQPSQENP X2KVI4
4Z7V DQ8 L3 Glia-alpha1 SGEGSFQPSQENP X2KVI4
4Z7W DQ8 T316 Glia-alpha1 SGEGSFQPSQENP X2KVI4
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Finally, entries found to be single mutants of other cases in the data set
were also excluded (4P23, 3T0E, 2IAM, 3QIW, 4E41 and 4P46) leaving
a final benchmark data set of 31 TCR:p:MHCII complexes.

2.2. Similarity measures between TCR:p:MHCII complexes

To calculate the structural similarity between two TCR:p:MHCII
structures, the two MHC beta-chain subunits are aligned using the
TMalign software (Zhang and Skolnick 2014) and a transformation
matrix is obtained. The corresponding alpha (TCRA) and beta (TCRB)
TCR subunits in the complex are next translated and rotated using this
matrix, and RMSD values (RMSD-TCRA, RMSD-TCRB) for the alpha and
beta chains, respectively, are calculated for corresponding alpha car-
bons according to a pairwise alignment computed using CLUSTALW.
Finally, we define RMSD-TCR as the average between RMSD-TCRA and
RMSD-TCRB.

Similarity at the sequence level is calculated using TCR sequence
identity from a BLASTP local alignment between a pair of structural
complexes. Using identities between TCR alpha chains (TCRA_ID%) and
TCR beta chains (TCRB_ID%), we define TDR_ID% as the average be-
tween TCRA_ID% and TCRB_ID%.

2.3. Benchmark of MHC class II epitopes and non-epitopes

We defined epitopes as the peptides in the TCR:p:MHCII structures
as shown in Table 1. For each epitope, 4 peptides of the same length,
extracted from the epitope source protein sequence, and presenting a
similar predicted binding score as the epitope to the corresponding
MHC, were selected as non-binding epitopes. The binding scores were
obtained using the predicted percentile rank score obtained from
NetMHCIIpan (Version 3.1), and the non-epitopes were selected, with
predicted percentile rank values in the range+/−5% of the percentile
rank of the epitope so that the epitopes fall, on average, in the middle
rank between corresponding non-epitopes. In 2 cases (3qib and 3qiu) no
other peptide in the sequence had a score in the 5% interval, and
therefore the range was extended to+/−17%. In situations where the
epitope had no source protein (non-natural peptides), the non-epitopes
were selected from UniRef50 as described above.

We clustered the complexes using sequence identity between TCRA,
TCRB and peptide to eliminate sequence biases. First, clusters were
formed using exact peptides match (see Supplementary Fig. 2A). Next,
as similarities were found between some TCRs (Supplementary Fig. 2B),
clusters were joined if TCR_ID% was above 90%.

2.4. TCR:p:MHCII modelling pipeline

We developed a pipeline to model TCR:p:MHCII complexes as
shown in Fig. 1A, which takes as input 5 sequences, MHC alpha and
beta subunits, the peptide and TCR alpha and beta subunits. We first
created a template library for homology modelling based on the set of
available TCR:p:MHCII structures described in Subsection 2.3. From
each TCR:p:MHCII structure, the first complex, following the chain
order in the original PDB file, was taken in the cases where more than
one appeared in a given PDB entry. Next, the MHC binding core was
identified for each epitope as the nine consecutive residues after P1,
that was in turn defined as the residue with the largest number of
contacts (residues with less than 8.0 Å between alpha carbons) with the
MHC molecule. Note that epitope cores were defined only to align
target and template peptides. Full-length peptides were used for force
field predictions (see later).

For template selection, a BLASTP search was performed against the
template library (excluding entries in the same cluster as the query),
and templates were sorted according to TCR_ID%. Next, the top tem-
plate was included and, iterating over templates from the sorted list,
additional templates were added if no other templates in the same se-
quence cluster or with similar conformation (RMSD-TCR < 3.0 Å)
were previously included. This procedure was repeated until no more
templates were left.

Once the templates have been selected, alignments between MHC
and TCR chains were computed using CLUSTALW. Target peptides and
template peptides were aligned on the binding core. In the case of non-
epitopes, the cores were predicted using NetMHCIIpan (Version 3.1).
Next, 10 models were built with MODELLER (Sali and Blundell, 1993)
using the multiple template approach on selected templates. For each
model, decoys were produced using a docking protocol based on the
Monte Carlo Minimization implemented within PyRosetta (Chaudhury
et al., 2010). First, the position of the TCR dimer was perturbed by
random translations in 1 Å and rotations in 1°. Second, the distance
between the TCR and p:MHC was adjusted using the SlideIntoContact
procedure. Third, high resolution MCM optimized the complex or-
ientation with respect to the PyRosetta Talaris2013 full-atom scoring
function. This was repeated 20 times for each model producing a total
of 200 decoys for each entry in the benchmark.

2.5. Scoring of TCR:p:MHCII complexes

To score each decoy, two force fields were tested: Talaris2013
(hereafter referred to as PyRosetta) and FoldX. Both force fields are
linear compositions of terms that evaluate several types of properties
related to protein interactions. Interaction energies between TCR and

Fig. 1. Flow diagram of the TCR:p:MHCII modelling
pipeline and the cross-validation. A) The pipeline
input consists in a set of 5 sequences corresponding
to MHC alpha and Beta subunits, the peptide se-
quence and TCR alpha and beta chains, and outputs a
set of percentile values that describe the interaction
energies between TCR and p:MHC using 200 models.
B) The setup validates the pipeline splitting the set of
epitopes in clusters and leaving one cluster out at a
time. It models each peptide excluding the templates
in the same cluster during the modelling step and
also the percentile values when the model is trained.
Finally, each cluster is tested separately avoiding the
effect of overfitting.
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p:MHC were calculated and each energy term was saved separately
after this calculation. In the case of PyRosetta, the energy was calcu-
lated computing the energy of the entire complex and subtracting the
energy of the TCR and p:MHC in isolation. In the case of FoldX, the
energy was calculated using the analyzecomplex method on each com-
plex. For each term, 30th percentile was calculated from the distribu-
tion of 200 decoys, obtaining a single value. This approach is similar to
what has been suggested earlier for interaction energy landscapes
characterizations in similar systems (Yanover and Bradley 2011). Here
however, we calculate the distributions per energy term and next
evaluate the percentile score independently of the overall score. Finally,
for each input the pipeline produces 20 values (6 from PyRosetta and
14 from FoldX) corresponding to the force field terms with a non-zero
values when calculating the interaction energy between TCR and
p:MHC.

2.6. Cross-validation setup

As depicted in Fig. 1B, for the sake of validation, we clustered the
benchmark data as mentioned previously and each entry was modelled
using the previously explained pipeline excluding all templates in the
cluster of the query molecule in order to reduce the effect of re-
dundancy and overfitting.

Leave-one-cluster-out experiments were performed searching for
optimal weights on the different force filed terms using as training set
the benchmark data excluding a given cluster and next evaluating the
predictive performance on the left out cluster. This was performed over
all clusters. In this setup, a model was thus developed leaving out all
data belonging to one cluster, and the model development was per-
formed without ever referring to the left out data for model refinement.
Optimization of the force field weights was performed on the training
data using linear regression models computed to fit the weighted fea-
tures to a binary target value Epitope= 1 and Non-epitope= 0. Models
were built for each force field separately (PyRosetta and FoldX) and
merging all terms together. For the three models, all values were nor-
malized before fitting, subtracting the minimum and dividing by the
max-min difference. AUC values were calculated from predictions over
the complete benchmark data set measuring a global prediction per-
formance. Also, for each epitope and its corresponding non-epitopes, a
per-structure AUC value was calculated. To compare the performance
of different models, a binomial test was used comparing those entries
with better predictions excluding ties.

3. Results

3.1. Benchmark for epitope model training and validation

A total of 31 PDBs with TCR:p:MHCII complexes were included in
the study; 17 human and 14 mouse complexes. The number of struc-
tures is not equally spread across the different species and loci since
there is only one entry for DP, 10 DQ and 6 for DR, respectively. For
mouse, only one entry is included for IAk and IAg, whereas 5 entries are
included for IAb, and 3 and 4 for IAu and IEk respectively. For each of
these cases, 4 non-epitopes were generated as described in material and
methods, resulting in a total number of 155 entries (epitopes and non-
epitopes). 13 clusters were obtained grouping the benchmark by se-
quence identities (Supplementary Table 1). As shown in Supplementary
Table 2, for all cases, non-epitopes are separated on average by only
1.9% from their corresponding epitope in terms of predicted percentile
rank binding value (maximal difference is less than 17%).

3.2. TCR:p:MHCII modeling pipeline

Structures of TCR:p:MHCII complexes were constructed using a
multiple template homology modelling pipeline in addition to a
docking protocol (for details materials and methods). A critical issue

when constructing a modelling pipeline is to access its ability to gen-
erate accurate models. To validate this, we built 10 models for both
multiple and single template approaches and analysed the best model
(in terms of RMSD-TCR) obtained for each epitope with its native
structure. Comparing the non-redundant multiple template approach to
an approach using only single templates revealed that the former pro-
duced more accurate models (binomial p-value < 0.05, Supplementary
Fig. 3A). Also, the non-redundant multiple template approach achieved
better results when comparing against models built using all templates
(binomial p-value < 0.2, Supplementary Fig. 3B). This latter finding
suggests that using all templates is sub-optimal because the underlying
templates is biased in terms of sequence diversity and docking or-
ientations. After the initial model construction, decoys were produced
using the PyRosetta docking protocol. To access if this docking step
increased the ability to generate accurate models, we built 200 models
using MODELLER and 200 models using the PyRosetta docking pro-
tocol, and next compared the lowest RMSD-TCR conformations be-
tween both approaches. As shown in Supplementary Fig. 3C, this
docking procedure resulted in significantly improved model accuracy
compared to the MODELLER procedure (binomial p-value=5.5e–04).
In conclusion, the TCR:p:MHCII modelling pipeline is found to be ro-
bust and contain good models with minimum RMSD-TCR values
(among 200 decoys) to the native structure in the range 2–5 Å. Note,
that we here only have evaluated the ability of the modelling pipeline
to produce ensembles containing one or more accurate models. We
have not evaluated our ability to identify these accurate models within
the ensembles. We do not address this otherwise critical issue here,
since we in the final modelling pipeline use all the models in the en-
semble, and hence at no point include or in other ways use the native
structure to make predictions.

3.3. Global prediction performance

For each peptide (epitope and non-epitope), the TCR:p:MHCII force
field scoring computes 20 interaction terms (6 from PyRosetta and 14
from FoldX). We first assessed the prediction capabilities of PyRosetta
and FoldX to distinguish between epitopes and non-epitopes in terms of
the AUC. For both cases, the original function with default weights
showed random performance (data not shown). Next, we fitted models
performing leave-one-cluster-out (LOCO) validation experiments,
where the weight for each force field term was refitted using data from
all clusters but one, and evaluating performance on the epitopes and
non-epitopes from the left-out clusterv (for details see material and
method). Here, we evaluated the performance either “globally”, mer-
ging predictions from epitopes and non-epitopes from all structures, or
on per-structure level, comparing the rank of the epitope to the 4 non-
epitope peptides in each structure. As shown in Fig. 2, these LOCO
experiments resulted in better than random predictions for both PyR-
osetta (AUC=0.62) and FoldX (AUC=0.68). Performing the LOCO
experiments on the combined set of 6 PyRosetta and 14 FoldX terms,
resulted in a further improve in global performance with an AUC of
0.72. In Supplementary Fig. 4, we display a heatmap of the weights for
each force field term obtained in each LOCO experiments. From this
figure, it is apparent that the different terms consistently have either
positive or negative weights in the different LOCO models, confirming
that force field refitting is highly robust and reproducible. Analysing
each term individually, several were found to have substantial pre-
dictive performance (Supplementary Fig. 5A). In particular, 2 PyRosetta
and 5 FoldX terms where found to have an average predictive perfor-
mance (measured in terms of Pearson correlation) of more than+/
−0.05. However, as expected, no single term outperforms the com-
bined linear model (Supplementary Fig. 5B).

3.4. Pipeline accuracy on epitope rankings

To evaluate predictions at per-structure level, we calculated the
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AUC for each epitope and its corresponding 4 non-epitopes. First of all,
as shown in Fig. 3, the predictive performance of the model is clearly
different from random. 24 cases had AUC above 0.5 and only 5 cases
obtained an AUC less than 0.5, corresponding to a p-value= 0.0005
(binomial test excluding ties). We analysed how the pipeline accuracy
depended on two parameters that can be deduced from its input. First,
MHC binding, which is required for a peptide to be presented to the T
cell. Second, the availability of TCR:p:MHC template structures used to
build the models, which was analysed in terms of maximum TCR beta
sequence identity between the query and all the templates used. Similar
analyses were performed for the MHC alpha, MHC beta and TCR alpha
sequences, in all cases showing lower predictive performance (data not
shown). Of the 15 entries with predicted percentile rank binding to the

MHC of less than 25% and with the maximum sequence identity (over
all templates) to the TCR beta subunit above 75%, 13 (87%) had
AUC > 0.5 and only 2 (13%) had AUC < =0.5 (p-value=0.0074).
For the remaining 16 entries (predicted rank MHC binding above 25%
or TCR beta sequence identity less than 75%), only 68% (Kass et al.,
2014) had AUC > 0.5 and 5 had AUC < =0.5 (p-value=0.21).
These values suggest as expected that the accuracy of the proposed
pipeline is dependent on both the binding strength of the peptide-MHC
interaction and the availability of suitable templates.

3.5. TCR:p:MHC pipeline in a real application

Focusing on the subset of 19 epitopes with predicted binding to the
restrictive MHC (percentile rank < =25%), we turned to construct a
real-life benchmark of the TCR:p:MHCII scoring pipeline. To do this, we
selected from the benchmark the source protein sequence for each
epitope, and predicted for all overlapping peptides of the length of
epitopes MHC binding and TCR:p:MHC interaction. Next, all peptides
were scored using a combined model α*(100-MHCrank/100)+ (1-
α)*TCR:p:MHC, where MHCrank is the percentile rank score reported
by NetMHCIIpan (Version 3.1), and TCR:p:MHC is the interaction score
obtained using the model proposed here. Based on these prediction
scores, an AUC value was calculated taking the known epitope as po-
sitive and all other peptides as negatives. The optimal value of α was
found using a simple grid search in a leave one out experiment (see
Supplementary Fig. 6), and was consistently found to be 0.9. The result
of this benchmark is summarized in Table 2 and shows that the com-
bined model outperform the MHC binding method alone in 12 cases (p-
value 0.075), and the TCR:p:MHC interaction method alone in 14 cases
(p-value 0.03) confirming that also in such a real-life experiment does
the proposed model achieve improved predictive performance values.

4. Discussion

In this work, we have demonstrated that reliable predictions of the
cognate target of a TCR can be achieved using refined version of the
conventional FoldX and Rosetta force fields. We built a benchmark of
TCR:p:MHCII complexes, structures of epitopes and non-epitopes in
complex with MHC and TCR were constructed using homology mod-
elling techniques. Peptide immunogenicity was evaluated calculating

Fig. 2. Global prediction performance. ROC curves for the prediction performance using
different sets of terms to fit linear models. All terms together are depicted in solid line,
PyRosetta terms in dashed line and FoldX terms in dotted line. FPR: False positive pro-
portion, TPR: True positive proportion. The x= y diagonal is included as a reference
corresponding to random predictions.

Fig. 3. Prediction performance refitting all terms together.
Peptide rankings tested on each benchmark entry in-
dividually (epitopes shown in circles, non-epitopes in
crosses). The x-axis gives the entry evaluated and epitope
ranking (AUCs given in parenthesis).
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interaction energies between TCR and each p:MHC complex. Weights
assigned to each force field term were refitted, observing that some
terms were not correlated with peptide immunogenicity. Leave-one-
cluster-out experiments showed that TCR cognate identification can be
predicted at a significant level (p-value < 0.0005). We found a higher
predictive performance of our approach for complexes where we could
accurately predict the peptide binding to the restrictive MHCII element.
Given this, we conclude that prediction of the TCR cognate target on
basis of interaction energies is possible when MHC binding can be
predicted. Likewise, we found that our TCR:p:MHCII scoring pipeline
achieved superior performance in situations were TCR templates with
high sequence identity (TCR-beta > 75%) to the query TCR were
available.

Generally, epitopes are ranked using MHC binding information as
the main prioritization factor. Here, investigated if our proposed
TCR:p:MHC pipeline combined with MHC binding affinity predictions
could result in improved predictions. In a simulated real life applica-
tion, we took as input the MHC class II sequences, the TCR sequence,
and a target protein sequence. Next, all overlapping peptides of length
corresponding to the epitope were sorted according to a score com-
bining predicted MHC binding and TCR recognition aiming to identify
the most immunogenic peptides in the top of the ranking. In this
benchmark, we found a consistent increase in predictive performance of
the combined model compared to each of the two models (MHC
binding, and TCR interaction) individually.

As stipulated for the MHC class II antigen presenting pathway, MHC
binding is required for a given peptide to be presented to the T cell.
Ideally, MHC binding predictors used in addition to TCR cognate
identification methods are required to fully understand peptide im-
munogenic behaviour. However, some of epitopes used in this work
showed extreme low predicted MHC binding potential. At this point, we
do not fully descern the source of this seemingly inconsistency but it
could suggest that we need to learn more about the underlying prin-
ciples that govern MHC binding since these epitopes can not be ex-
plained using state-of-the-art MHC binding predictions.

In our analysis, we have found that, in order to achieve accurate
predictive performance, refined versions of the conventional FoldX and
Rosetta force fields, with optimized relative weights on the different
energy terms, was needed. In the last few years there have been several
works performing such optimisation on different classes of proteins
(Leaver-Fay et al., 2013; O'Meara et al., 2015; Park et al., 2016; Alford
et al., 2017). In most of the cases, and particularly for the force fields

used in this work, such optimisation was performed on both intra- and
extra-cellular proteins, that are subject to completely different en-
vironments. Given the very special nature of TCR:p:MHC interactions,
and the relatively small difference in energy between immunogenic and
non-immunogenic peptides (Knapp et al., 2014; Harndahl et al., 2012),
we believe that it is fundamental to perform such optimisation in a
targeted way, only using TCR:p:MHC complexes.

Another issue to address is the energy relaxation of the structures. In
this work we did not relax structures after the modelling and docking
procedures. Despite of this, we obtained robust linear models and
performance values significantly better than random. We believe that
by sampling the single-term energy distributions over 200 models
provides enough samples to stabilize the distribution of each term so
that relaxation is unneeded. We also tried to adjust the weights using
30th percentiles with fewer than 200 models and we saw a drop in the
accuracy of the predictions. A more profound analysis of the effect of
relaxation and the number of models sampled is suggested to address
these issues and their impact on the predictive performance of the
proposed pipeline. Such analyses could also include other force fields,
beyond FoldX and PyRosetta to investigate if other terms could be in-
cluded to obtain even better predictions.

In conclusion, the work presented demonstrates that prediction of
the cognate TCR target is possible given accurate predicted MHC
binding of the target peptides and high sequence identity of the TCR
beta subunit to the template database. When these conditions are sa-
tisfied, the suggested force-field based model performs significantly
better than random when it comes to identification of the cognate TCR
target. We believe this work lays the foundation for future works within
prediction of TCR:p:MHCII interactions, and expect that refined models
will be developed along the lines outlined here as more structural and
sequence data describing TCR:p:MHCII interactions becomes available.
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