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Abstract

The contraction of surfactant-laden pores at the microscale has implications for

natural and technological processes ranging from the collapse of channels in lipid mem-

branes to the stability of foams in the food processing industry. Despite its prevalence,

our understanding of the mechanisms of pore contraction in the presence of surfactants

remains unclear. These mechanisms have been challenging to study experimentally

given the small length scale near the singularity and simulations capable of accurately

characterizing the pore dynamics may help enhance our understanding of the process.

Here, we use high-fidelity numerical simulations to gain insight into the fluid dynamics

and interfacial phenomena underlying the contraction of viscous pores in the presence

of an insoluble surfactant. The simulations show that surfactants accumulate on the

advancing front of a collapsing pore due to the uneven deformation of the pore inter-

face. Because of this accumulation, even a small amount of surfactant plays a major

role in the way in which a collapsing pore approaches the singularity.
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Introduction

The contraction of surfactant-laden pores at the micron and submicron scale is a critical

phenomenon in nature, as in the collapse of pores in lipid membranes1,2, and central to

technological systems ranging from the processing of foams in the food industry to the

fabrication of nanopore-based sensors for analysis of nucleic acids and proteins3–6. Currently,

there is a good understanding of the fluid dynamics of both expanding7–9 and contracting

pores10–12 for fluids with clean interface. But a recent theoretical and experimental study

by Petit et al. 13 has highlighted the major role that the presence of surface-active species may

play modulating the pore dynamics. Petit et al. 13 observed that opening pores nucleated in a

soap film with strong surface elasticity expand at a velocity that is significantly smaller than

the Taylor-Culick velocity expected from the balance between inertia and the equilibrium

surface tension of the film7,8. This deviation from the theoretical Taylor-Culick velocity was

attributed to local gradients of surface tension resulting from the transport of the surface-

active species on the soap film.

The findings by Petit et al. 13 , as well as other previous works14,15, provide important

insights into the influence of surfactants on the dynamics of opening pores. But the role of

surfactants on the fluid dynamics of contracting pores is still largely unknown, in part due

to the small length scale of the process near the singularity. In particular, how surface-active

species disperse through the deforming pore interface during the contraction of small pores,

and how the resulting changes in the local surface tension affect the velocity of contraction,

remains an open question. Here, we address this question for the case of viscous pores covered

with an small amount of an insoluble surfactant. We characterize the fluid dynamics and

interfacial phenomena underlying the contraction of the pores using high-fidelity simulations

that simultaneously solve the full Navier-Stokes system that governs the free-surface flow

and the convection-diffusion equation that governs the surfactant transport. Results reveal

that, contrary to viscous pores with clean interface, which contract at constant speed12,

surfactant-laden pores contract at progressively decreasing speed. This new behavior, the
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simulations show, results from the continuous accumulation of the surface-active species on

the advancing front of the pore. Because of this accumulation, even a tiny amount of the

surfactant may play a major role in the way in which a collapsing pore approaches the

singularity.

Free-surface Model and Methods

A sufficiently small pore nucleated in a liquid sheet will contract, and eventually collapse,

driven by capillary forces associated with its small radius of curvature7. Here, we consider

the capillary contraction of a small circular pore nucleated in a viscous fluid sheet of thickness

H. The fluid is a Newtonian liquid of constant density ρ and large viscosity µ, uniformly

covered with an insoluble surfactant of concentration γ0 (Fig. 1).

Recently, Savva and Bush 9 investigated the dynamics of opening pores using a one-

dimensional lubrication approximation that exploits the small thickness of the liquid sheet.

This approximation has been shown to accurately predict pore expansion11,12 but it cannot

predict the evolution of closing pores because the thickness-to-radius ratio grows unbounded

as the pore collapses. Therefore, to study the free-surface dynamics of collapsing pores,

we have developed high-fidelity simulations that overcome the limitations of the lubrication

model by solving the full Navier-Stokes governing equations. The model is described below

in dimensionless form using H as lengthscale, γ0 as concentration scale, and V ≡ σ0/µ,

where σ0 is the equilibrium surface tension corresponding to the surfactant concentration γ0,

as velocity scale. The contraction of the pore is analyzed by solving the full axisymmetric

Navier-Stokes equations

Re(∂v/∂t+ v · ∇v) = ∇ ·T, (1)

∇ · v = 0, (2)

where Re ≡ ρV H/µ is the Reynolds number and where the influence of gravity is considered
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negligible. The stress tensor T = −pI + [(∇v) + (∇v)T ], where p is pressure and v the

fluid velocity. The fluids does not cross the free interface, which is ensured by imposing the

kinematic boundary condition along the pore surface

n · (v − vs) = 0, (3)

where n is the unit normal vector to the free surface and vs is the velocity of the points on

the interface.

The driving surface tension σ is coupled to the fluid flow through the traction condition

along the pore interface

T · n = σ(2H)n +∇sσ, (4)

where H in the capillary stress term is the mean surface curvature, and ∇s ≡ (I − nn) · ∇

in the Marangoni stress term is the surface gradient operator16. The time evolution of the

surfactant concentration γ along the pore interface is tracked by the transport equation

∂γ/∂t+ γ(vs · n)(∇s · n) +∇s · (γvs · t)t− Pe−1∇2
sγ = 0, (5)

which accounts for surfactant transport due to convection (third term), diffusion (fourth

term), and surface dilatation (second term)17,18. For realistic values of the surfactant diffu-

sion coefficient D, the Peclet number Pe ≡ HV/D � 1. We use Pe = 103 in our simulations

unless stated; the results indicate that this value is sufficiently large that further increases do

not significantly affect the pore dynamics for the ranges of parameters studied in this work.

Following Hansen et al. 19 , Campana and Saita 20 and Dravid et al. 21 , we assume that the

surface tension and surfactant concentration fields are related using a linear surface equation

of state

σ = 1−Ma(γ − 1) (6)

so that surface activity is represented by a single parameter, the Marangoni number Ma.
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The pore is considered axisymmetric around the z-axis, and symmetry boundary conditions

are applied on the plane of symmetry z = 0.

Following Lu and Corvalan 11 , the set of governing equations was discretized in space

using the finite-element method, along with an arbitrary Lagrangian-Eulerian scheme in

which the location of the free interface is traced using the method of spines introduced

by Kistler and Scriven 22 . The time derivatives were discretized using the finite-difference

method, with an Adam-Bashforth predictor and trapezoidal rule corrector in which the

time steps were adaptively calculated using first-order continuation23. Finally, the non-

linear system was solved simultaneously for velocity, pressure, surfactant concentration and

location of the free interface using a full Newton’s method in which the entries of the Jacobian

were calculated analytically as described in Kistler and Scriven 22 to enhance convergence.

We have repeatedly verified this algorithm by contrasting its predictions against available

analytical solutions and experimental data during the analysis of both viscous and inertial

nanopores11,12, as well as surfactant-laden drops18, fibers24 and filaments21.

Results and Discussion

The contraction of tiny pores nucleated in viscous fluid films has been examined in experi-

ments by Storm et al. 25,26 and Wu et al. 6 motivated by the development of nanopore-based

sensors for sequencing nucleic acids and analyzing epigenetic modifications3. These experi-

ments have revealed that in the absence of surfactants viscous nanopores contract at constant

speed when approaching collapse.

As recently confirmed by computations in Lu et al. 12 , this constant terminal speed results

from an eventual equilibrium between viscous and capillary forces, and thus corresponds to

U = σ0/(2µ) for pores with large viscosity µ and constant surface tension σ0. Extending the

work in Lu et al. 12 , here we present results from high-fidelity simulations of pore contraction

that take into account the effect of surfactants. Particular attention is given to the influence
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of contaminants on the speed of contraction.

Influence of surfactants on the speed of contraction

To gain preliminary insight into how the presence of contaminants affects the pore dynamics,

we show in Figure 2 the computed pore velocity vm as a function of minimum pore radius rm

for two viscous pores with Marangoni numbers Ma = 5× 10−4 (red line) and 1× 10−3 (blue

line). The pores are nucleated in a liquid sheet with small Reynolds number Re = 0.5. As

a benchmark, and to compare our results to those expected for pores with constant surface

tension, the figure also includes the computed pore speed for an otherwise identical pore

with Ma = 0 (black line). The figure follows the contraction of the pores for about three

decades, from the initial dimensionless radius rm = 0.1 to a final radius rm ≈ 3 × 10−4, or

approximately 30 nm for a 100 µm thick fluid sheet.

Despite the small Marangoni numbers, the results show a significant qualitative difference

between the pores with Ma = 0 and those with Ma 6= 0. For the pore with Ma = 0, the

interfacial tension remains constant on the surface of the pore until collapse (Eq. 6). Accord-

ingly, the pore eventually attains a constant terminal speed, as observed in experiments for

pores with constant surface tension during the late stage of contraction6,25. Furthermore, the

terminal speed corresponds to the theoretical viscous-capillary velocity U = σ0/(2µ), which

translates to u = 1/2 in the dimensionless scale of Figure 2 (dashed line). For the pores

with Ma 6= 0, the interfacial tension changes dynamically on the surface of the pores due

to surfactant diffusion, surfactant convection or area dilatation (Eqs. 5 and 6). As a result,

the pores do not attain a constant terminal speed; rather, they contract at continuously de-

creasing speed after the initial transient. By the time the pore with Ma = 1× 10−3 reaches

rm = 3 × 10−4, the speed of contraction is about 20% slower than the viscous-capillary

velocity u based on the equilibrium surface tension.

The interfacial stress balance helps understand the qualitative difference between the

two dynamics and leads, in the next section, to a simple scaling of the decreasing pore
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speed with pore size. Indeed, as discussed in Figure 2, viscous pores with clean interface

contract with constant speed σ0/(2µ) due to the eventual equilibrium between viscous and

capillary stresses. But this equilibrium is affected by the presence of surfactants in two ways.

First, surfactants modify the capillary stress by lowering the dynamic surface tension and,

second, they introduce Marangoni stresses into the stress balance (Eq. 4). However, at low

Marangoni numbers, Marangoni stresses are not sufficient to displace the equilibrium (see

below), and thus the viscous-capillary equilibrium still applies provided that the constant

surface tension σ0 is replaced by the dynamic surface tension. Therefore, for surfactants with

low Marangoni numbers the velocity of contraction can be estimated as σ̂m(t)/(2µ), which

in dimensionless form becomes

vm(t) ≈ σm(t)/2, (7)

where σm = σ̂m/σ0 is the instantaneous surface tension at the tip of the pore. As shown in

Figure 3, the computed pore velocities agree reasonably well with this estimation for pores

with low Marangoni numbers and a wide range of Peclet numbers 10 ≤ Pe ≤ 103.

Evolution of the dynamic surface tension

Analyzing the mechanisms of surfactant transport, and the corresponding evolution of the

surface tension σm(t) is important to understanding the new pore dynamics. To illustrate

these mechanisms, Figure 4 shows the spatial and temporal evolution of the interfacial tension

for the pore of Figure 2 with Ma = 1 × 10−3. Results show a highly localized decrease of

the surface tension within a narrow band on the advancing pore front (Fig. 4a). On this

narrow band, the surface tension exhibits a minimum at the tip of the pore (z = 0), rises

sharply as we move away from the tip, and finally levels out approaching the dimensionless

initial value σ = 1 on the surface of the liquid sheet (Fig. 4b). Interestingly, the results

also show that the interfacial tension at the pore front decreases as the pore contracts. The

contraction speed is thus progressively slowed down due to the continuous weakening of the

driving interfacial tension.
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As may be expected, the local decrease of the surface tension is caused by accumula-

tion of surfactant around the tip of the pore. The appropriate scaling for the surfactant

accumulation is readily estimated. As a pore collapses, the surface area of the pore front

contracts, and this contraction is most severe at the tip where the local surface area decreases

proportional to the pore circumference. As a result, the surfactant concentration γm at the

tip of the pore increases proportional to the inverse pore radius; that is, γm ∼ r−1
m . This

scaling, along with the results in Figure 2, highlights an interesting characteristics of the

pore dynamics — even a modest amount of surfactant is eventually capable of unexpectedly

large effects due to surfactant crowding. Results in Figure 5 show that as the pore of Figure

2 with Ma = 1 × 10−3 contracts, the scaling γm ∼ r−1
m (dashed line) agrees well with the

simulations (black symbols). However, because the surfactant concentration must remain

finite as rm → 0, the scaling is necessarily an intermediate one and must yield to a different

dynamics as the pore moves even closer to the singularity. Moreover, because diffusion mit-

igates the accumulation process, the surfactant concentration γm should also depend on the

Peclet number. Indeed, comparison of the simulations for Peclet numbers Pe = 10 (blue),

100 (red) and 1000 (black) reveals that there is a transition between the dilatation and the

diffusion dominated regimes of surfactant transport. Results in Figure 5 show that as the

Peclet number decreases, diffusion effects eventually becomes comparable to area-dilatation

effects, and ultimately diffusion effects dominate the dynamics (Pe ≈ 10).

The foregoing results suggest that for realistic values of the Peclet number (for which

surfactant transport is dominated by area dilatation) the normalized pore velocity s ≡

(u − vm)/u can be estimated in function of the Marangoni number and instantaneous pore

size as:

(s−Ma)/Ma ∼ r−1
m . (8)

This results from using the surface equation of state to substitute σm in Equation 7, and

then introducing the scaling of γm with the inverse pore radius. Taking into account that

this relationship applies to contaminants with low Marangoni numbers, the scaling can be
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further simplified to

s/Ma ∼ r−1
m . (9)

This provides a simple scaling of the decreasing pore speed with pore size. As illustrated in

Figure 6, the scaling (dashed line) agrees well with results from the full numerical simulations

(symbols) at the later times of contraction.

Influence of interfacial stresses on the interfacial velocity field

A close examination of the flow field developed during the contraction of the pores reveals

that surfactants may also play an important role on the interfacial velocity profiles. In this

subsection, we briefly discuss the separate influence of the capillary and Marangoni stresses

on the interfacial velocity field near collapse.

In the absence of surfactants the maximum interfacial velocity always occurs at the tip

of the pore where the curvature is largest. The reason for this is that when the interfacial

tension is constant the distribution of the capillary forces driving contraction is defined

solely by the local curvature. In the presence of surfactants, however, the distribution of

the capillary forces (n · T · n) = σ(∇ · n) at the interface is defined not only by the local

curvature ∇ ·n but also by the distribution of the local surface tension σ(x; t). To illustrate

the effect of the evolving surface tension, we compare in Figure 7 the interfacial velocity

profiles for the pores of Figure 6 with Ma = 1× 10−4, Ma = 5× 10−4, and Ma = 1× 10−3

at an intermediate time and at the imminence of collapse (minimum pore radii rm = 0.095

and 3 × 10−4 respectively). Results show that because of the progressive decrease of the

surface tension at the tip of the pore there is a qualitative change in the flow pattern when

approaching collapse. The location of the maximum interfacial velocity switches from the

tip of the pore at z = 0 (black lines) to two peaks about the midplane (blue lines).

The rapid contraction of the surface area not only lowers the local surface tension around

the tip of the pore but also creates steep surface tension gradients, particularly at high Peclet

numbers (see Fig. 4). In turn, surface tension gradients induce Marangoni stresses, which

9



act tangential to the interface (Eq. 4). These stresses cannot directly affect the interfacial

shape but could modulate the velocity field near the interface through the tangential stress

condition (n ·T · t) = t ·∇sσ. Figure 8, illustrates the influence of the Marangoni stresses on

the interfacial tangential velocity for the pores with the lowest (Ma = 1× 10−4) and highest

(Ma = 1×10−3) Marangoni numbers in Figure 7. The Marangoni stresses are zero at the tip

of the pore because of symmetry, then grow rapidly as we move away from the tip to reach

a maximum value and finally decrease as we approach the surface of the liquid sheet where

the surfactant concentrations remains essentially constant (Fig. 8a). Despite the different

values of the Marangoni stresses, they have a negligible influence on the tangential interfacial

velocity for the small Marangoni numbers used in this work (Fig. 8b).

Conclusion

In conclusion, results from our numerical study reveal that surfactant-laden pores collapse

at progressively decreasing speed due to surfactant accumulation on the advancing front

of the pore. As a consequence of this accumulation even a small amount of contaminant

can drastically reduce the speed of contraction. These findings provide new mechanistic

insights into the flow physics of surfactant-laden pores at low Marangoni numbers, and

suggest interesting directions for future studies. For example, considering the strong influence

that modest concentrations of surfactants have on the speed of contraction, it would be of

interest to investigate the use of small pores as analytical tools for interfacial rheological

characterization of dilute surfactants.

In addition, although our direct numerical simulations solve the full Navier-Stokes sys-

tem that governs the free-surface flow along with the full convection-diffusion equation that

governs the interfacial surfactant transport, the results are still limited by simplifying con-

stitutive assumptions, including negligible surfactant solubility and linear surface equation

of state. We expect that our results would motivate the further development of simulations
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that incorporate soluble surfactants. Due to the surfactant accumulation at the pore front,

it is conceivable that solubility may play an important role in the pore dynamics. Insoluble

surfactants cannot easily leave the concentrated front region leading to a large drops of the

interfacial tension; but surfactant solubility might mitigate this effect by enabling transfer

of surfactant from the concentrated region to the bulk liquid20. Similarly, although con-

tamination of the pore interface by a surfactant monolayer is a common situation, a more

sophisticated surface equation of state would enable the study of high surfactant concentra-

tions with micelles formation. In these conditions, the surface tension in the concetrated

region may eventually take a constant equilibrium value as the pore contracts, potentially

stabilizing the pore velocity.
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Figures
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Figure 1: Pore sketch. Small circular pore nucleated in a Newtonian liquid sheet with
density ρ, viscosity µ, and thickness H. The initial surface tension σ0 is uniform, and
corresponds to the initial surfactant concentration γ0.
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Figure 2: Effect of surfactant on the contraction of a small viscous pore. Evolution
of the velocity of contraction vm with the minimum pore radius rm for pores with Ma = 0
(black line), Ma = 5×10−4 (red line), and Ma = 1×10−3 (blue line). The pore with Ma = 0
eventually approaches the theoretical viscous-capillary velocity U = σ0/(2µ) (dashed line).
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Figure 3: Effect of the local surface tension on the velocity of contraction. Pore
velocity varies approximately as vm = σm/2 (solid line). The symbols indicate results from
simulations with Ma = 5×10−4 (green), 1×10−3 (blue), 3×10−3 (red) and 5×10−3 (black),
and Peclet numbers Pe = 10 (left triangle), 1×102 (right triangle) and 1×103 (up triangle).
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Figure 4: Spatial evolution of the dynamic surface tension. Distribution of the
instantaneous surface tension σ on the surface of the pore of Figure 2 with Ma = 1× 10−3.
(a) Cross sectional fluid velocity and radial distribution of the surface tension for pore radius
rm = 2.2× 10−3. (b) Axial distribution of the surface tension for pore radii rm = 2.2× 10−3,
6× 10−4, and 3.4× 10−4 (from top to bottom).
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Figure 5: Scaling of surfactant concentration with pore radius. Surfactant concen-
tration at the pore tip eventually follows the scaling γm ∼ r−1

m for moderate and large Peclet
numbers. Here, Ma = 0.001 and Pe = 10 (blue), 100 (red), 1 × 103 (black), and 1 × 104

(black). The results for Pe = 1× 103 and 1× 104 overlap.
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Figure 6: Scaling of pore velocity with pore radius. Scaling of normalized velocity s
with inverse pore radius for pores with Ma = 0.0005 (green), 0.001 (red), 0.003 (blue), and
0.005 (black).
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Figure 8: Marangoni stresses and tangential interfacial flow. (a) Axial variation of
tangential Marangoni stress on the surface of the pores of Figure 7 with Ma = 1 × 10−4

(blue) and 1× 10−3 (black) at pore radius rm = 3× 10−4. (b) The corresponding tangential
interfacial velocities vt overlap.
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