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h i g h l i g h t s

� Liquid-liquid extraction for a high
Peclet number circulating drop is
considered.

� A boundary layer model for solute
mass transfer is applied at early
times.

� A streamline-averaged model for
solute mass transfer is applied at later
times.

� Boundary layer is switched to
streamline-averaged model after one
streamline orbit.

� Solutions are obtained without a need
to solve stiff advection-diffusion
equations.
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Solute mass transfer is considered from the outside to the inside of a circulating drop in the context of
liquid-liquid extraction. Specifically an internal problem is treated with resistance to mass transfer dom-
inated by the liquid inside the drop. The Peclet number of the circulation is large, on the order of tens of
thousands. A model is proposed by which the mass transfer into the drop begins in a boundary layer
regime, but subsequently switches into a so called streamline-averaged regime. Solutions are developed
for each regime, and also for the switch between them. These solutions are far easier to obtain than those
of the full advection-diffusion equations governing this high Peclet number system, which are very stiff.
During the boundary layer regime, the rate at which solutemass within the drop grows with time depends
on Peclet number, with increases in Peclet number implying faster growth. However larger Peclet numbers
also imply that the switch to the streamline-averaged regime happens sooner in time, and with less solute
mass having been transferred to date. In the streamline-averaged regime, solute concentration varies
across streamlines but not along them. In spite of the very large Peclet number, the rate of mass transfer
is controlled diffusively, specifically by the rate of diffusion from streamline-to-streamline: sensitivity
to the Peclet number is thereby lost. Themodel predictions capture, at least qualitatively, findings reported
in literature for the evolution of the solute concentration in the drop obtained via full numerical simulation.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction metals processing (Jyothi et al., 2009; Nishihama et al., 2001), oil
Liquid-liquid extraction is a versatile chemical engineering
separation technique applicable in diverse fields, including
processing (Yahaya et al., 2013), biomolecule processing
(Mazzola et al., 2008; Silva and Franco, 2000) and food processing
(Moreno-Gonzalez and Garcia-Campana, 2017). The separation is
realised (Richardson et al., 2002) via diffusive transfer of a solute
dissolved in one solvent to another immiscible solvent down a
gradient of chemical potential. Usually extraction proceeds by
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Fig. 1. (a) A drop of radius R is moving relative to surrounding liquid at speed U,
which also sets up a circulation pattern inside the drop. Initially there is a high
concentration of solute outside the drop and a low concentration of solute inside,
such that mass is transported into the drop. (b) A boundary layer picture of the
mass transport in which the mass transfer takes place primarily across a near
surface boundary layer (shown shaded) but also with the streamline pattern
causing solute to be transported into the drop interior part way up the drop axis
(again shown shaded). (c) A streamline-averaged picture of mass transport in which
solute concentration is uniform along streamlines, but mass is transferred in the
cross-stream direction from a high concentration region near the drop surface and
axis (shown shaded) to a low concentration region away from the surface and axis.
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dispersing drops of the first solvent (dispersed phase) in the second
one (continuous phase) and mass transfer either occurs into the
drop (in the event that the solute is initially in the continuous
phase) or out of the drop (if the solute is initially in the dispersed
phase).

Although the extraction process actually involves a multitude of
droplets contained within an extraction column (Mohanty, 2000),
so as to understand what is happening at a fundamental level, a
starting point is to consider a single drop (Wegener et al., 2014).
Mass transfer to and/or from individual drops has been a widely
studied topic in chemical engineering (Brodkorb et al., 2003;
Handlos and Baron, 1957; Johns and Beckmann, 1966;
Korchinsky et al., 2009; Kumar and Hartland, 1999; Negri and
Korchinsky, 1986; Negri et al., 1986; Piarah et al., 2001; Ubal
et al., 2011; Waheed et al., 2002), and the field becomes wider still
if one accounts for analogous systems including heat transfer to/
from drops (see e.g. Prakash and Sirignano, 1978; Sadhal et al.,
1997; Sirignano, 2010) as well as mass transfer to/from bubbles
(see e.g. Juncu, 2005, 2011).

In the case of liquid-liquid extraction, regardless of the direction
of mass transfer (whether to or from the drop), it is useful to be
able to predict how long the mass transfer process takes. This
determines the residence time for which drops need to be present
in an extraction column. Since drops will migrate through such a
column at a speed determined (Wegener et al., 2014) by a balance
between buoyancy and viscous drag forces, the residence time
needed for mass transfer determines the required column height.
Estimating the mass transfer time scale accurately is thereby
important. If the estimate of the time scale required to achieve
mass transfer is too low, then one is at risk of designing an extrac-
tion column that is too short, and hence that does not attain the
target amount of mass to be transferred. By contrast, if the esti-
mate of the time scale required to achieve mass transfer is too high,
a column is likely to be over-designed to be taller than it needs to
be, with higher cost implications.

As mentioned above, the driving force for liquid-liquid extrac-
tion is diffusive, i.e. transport down a gradient of chemical poten-
tial. However estimating the mass transfer time scale can be
complicated by convective effects (Uribe-Ramirez and
Korchinsky, 2000a,b; Ruckenstein, 1967). A drop of one solvent
experiences shear stresses as it migrates through another immisci-
ble solvent. These shear stresses set up fluid flow past the drop and
a circulation pattern within the drop itself. Liquid-liquid extraction
is thereby a convective-diffusive process rather than just a purely
diffusive one.

Convection is beneficial to the extraction process (Ubal et al.,
2010; Uribe-Ramirez and Korchinsky, 2000b) and the more com-
plex the flow pattern is, the more beneficial convection tends to
be (Edelmann et al., 2017). In the case, for instance, of transfer
of a solute from the outside of a drop to the inside, the fluid flow
past the drop (see Fig. 1(a)) ensures that the drop surface is con-
tinually exposed to a new source of solute (rather than the solute
concentration immediately outside the drop starting to become
depleted, as would happen in the absence of any fluid flow).
Moreover the circulation pattern inside the drop (again see
Fig. 1(a)) ensures that material which was originally near the
drop surface (and which has therefore acquired solute from the
outside by diffusion) is removed from the drop surface and
replaced by fresh material (of low solute concentration) from
the drop interior: this can keep solute concentration gradients
confined to a sharp boundary layer (Uribe-Ramirez and
Korchinsky, 2000b) near the drop surface (see Fig. 1(b)), hence
speeding up the rate of mass transfer quite substantially,
although that situation does not necessarily last indefinitely (for
reasons to be explained shortly).
Despite the evident benefits to the liquid-liquid extraction pro-
cess, the presence of circulation complicates the computations that
must be performed to determine exactly how liquid-liquid extrac-
tion proceeds. Although convection-diffusion equations are con-
ceptually simple to set up (including being amenable to solution
via commercial software packages) a significant issue in this par-
ticular system is that the circulation is usually rapid compared to
diffusion (i.e. the relevant Peclet number is much larger than unity,
often on the order of tens of thousands Uribe-Ramirez and
Korchinsky, 2000a,b). This means that fluid must circulate around
the drop many times before the extraction process is complete.
Numerical simulations of the process, whilst possible (Edelmann
et al., 2017; Ubal et al., 2011), are computationally very expensive
owing to the need to resolve each individual circulation:
convective-diffusive problems at high Peclet number are, in
numerical terms, exceedingly stiff (Press et al., 1992).
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A way to understand liquid-liquid extraction in circulating
drops has been considered by Ubal et al. (2010) based on ideas
originally proposed by Kronig and Brink (1950) and by Abramzon
and Borde (1980), Brignell (1975), Oliver et al. (1985), and
Prakash and Sirignano (1978). Convection is, by definition, along
streamlines, so that (at least in a system with steady and laminar
fluid flow) the only way to transport material across streamlines
is via diffusion, no matter how fast the flow. Since in high Peclet
number flows, convection along streamlines is much faster than
diffusion across them, it is expected (Ubal et al., 2010) that the
solute concentration field should very rapidly become uniform
along streamlines, but with diffusion-driven concentration varia-
tions from streamline to streamline (see Fig. 1(c)). This then consti-
tutes a streamline-averaged formulation of liquid-liquid
extraction. Even though the mass transport rate into the drop is
ultimately diffusively controlled, a benefit is still derived from con-
vection. In order to fill the entire drop, the distance over which
solute must diffuse is no longer the entire drop radius (as it would
be in a system with no convection whatsoever Korchinsky et al.,
2009; Negri and Korchinsky, 1986; Negri et al., 1986), but rather
the distance from the drop surface to an internal stagnation point
about which all the other streamlines circulate.

The exact location of that stagnation point depends on the exact
flow field in the drop, but an earlier study using a plausible circu-
lation pattern (Uribe-Ramirez and Korchinsky, 2000b) found it to
be roughly one third of the drop radius beneath the surface. Since
the time scale for diffusive processes is sensitive to distance (as can
be established on dimensional grounds), convective-diffusive liq-
uid–liquid extraction should proceed over a substantially shorter
time scale than a comparable process without any convection. This
has been verified by Ubal et al. (2010) using full numerical simula-
tions of the convective-diffusive mass transfer process.

For the reasons pointed out above however (i.e. the Peclet num-
ber is very large Uribe-Ramirez and Korchinsky, 2000a,b and so the
governing equations are stiff), these numerical simulations proved
extremely expensive. It is expected that a streamline-averaged the-
ory will be much more amenable computationally, as it does not
need to resolve the (very short) timescale associated with individ-
ual streamline circulations, but instead can focus exclusively on
the longer diffusive time-scale over which mass transfer actually
occurs. The necessary equations were in fact formulated by Ubal
et al. (2010) but the solution was not implemented in that work,
albeit there are previous implementations in literature for very a
specific streamline layout (Brignell, 1975; Kronig and Brink,
1950; Prakash and Sirignano, 1978). Our purpose here is to revisit
the implementation of the streamline-averaged theory, and to
analyse the predictions it makes.

Solving the streamline-averaged theory is not however without
difficulties. The theory assumes that solute concentration is uni-
form or near uniform along streamlines. This assumption is how-
ever invalid early on in the evolution (Ruckenstein, 1967; Uribe-
Ramirez and Korchinsky, 2000b) for reasons we now explain. Con-
sider for instance the situation as described earlier whereby solute
diffuses into the drop from the outside. Circulating streamlines
inside the drop that pass very near to the drop surface (and which
are therefore exposed to the solute external to the drop) can and do
acquire mass diffusively (Uribe-Ramirez and Korchinsky, 2000b),
but those same streamlines also penetrate very close to the drop
axis, deep inside the drop where solute may not yet have reached.
Until these streamlines undergo one complete circulation then
(with material elements on the streamline having had the opportu-
nity to pass along both the drop surface and the drop axis), it is a
poor approximation to say the solute concentration is uniform
along them. Instead what is required is an early-time theory valid
up until the time of one complete circulation. The early-time the-
ory must keep proper account of the solute mass entering the drop
during this stage, so that the streamline-averaged theory which
follows on from it is taken to start off with the correct amount of
solute mass.

Suitable early-time theories have been proposed by Uribe-
Ramirez and Korchinsky (2000b), Ruckenstein (1967), Levich
et al. (1965), Vorotilin et al. (1965), and have also been discussed
by Ubal et al. (2010). They fall into the general class of boundary
layer theories (Leal, 2007) since at early times only streamlines
passing near the drop surface acquire solute from the outside
(see Fig. 1(b)), those same streamlines subsequently being the ones
that transport this solute along the drop axis (again see Fig. 1(b)).
Our secondary aim in this paper is to match the early-time bound-
ary layer theory with the later time streamline-averaged theory:
exactly how and when to switch between these theories has not
been established previously.

Interestingly the work of Uribe-Ramirez and Korchinsky
(2000b) treated an extension of the boundary layer theory which
assumed that the solute acquired by streamlines as they passed
close to the drop surface could subsequently be well mixed in
the drop interior when carried along the parts of those same
streamlines that passed close to the drop axis. This implied that
when those same streamlines arrived back at the drop surface, they
did so (by assumption) with a solute concentration far lower than
the one with which they had formerly departed from it, having left
behind a substantial amount of mass in the drop interior. Solute
concentration gradients for fluid elements arriving back at the sur-
face were thereby kept artificially large (Uribe-Ramirez and
Korchinsky, 2000b), and the consequent predicted rate of mass
transfer into the drop was likewise far too large.

Full numerical simulation of the (exceedingly stiff, and hence
numerically expensive) convection–diffusion equations revealed
that this assumption of solute mixing between streamlines within
the drop interior was not valid (Ubal et al., 2010). Instead, for a
streamline passing both very near the drop surface and very near
the drop axis, the only material elements on that streamline which
could arrive at the surface with low solute concentrations were
those that had not yet been in close contact with the surface. Such
material elements can however only survive up to one entire orbit
of a streamline, implying that significant non-uniformities in
solute concentrations along streamlines can likewise only survive
that long. A further implication was that the large cross-stream
concentration gradients near the drop surface which are predicted
by the boundary layer theory (and the rapid mass transfer into the
drop that these large gradients imply) cannot last indefinitely, but
rather only up to the time at which one entire streamline orbit is
complete (as indeed the work of Brignell (1975) recognised). The
conclusion of Ubal et al. (2010) then was not that the boundary
layer theory itself was inherently incorrect, merely that it was
inappropriate to apply it for times far beyond a single orbit time.

To reiterate, once an entire streamline orbit is complete, all ele-
ments on the streamline in question must have spent part of their
life near the surface (acquiring solute from the exterior of the drop)
and part of their life near the drop axis (but barely mixing solute
with other streamlines). This means that, not only do gradients
in solute concentration normal to the drop surface (and hence
mass transfer rates into the drop) start to decrease from one orbit
time onwards, the solute concentration on the entire near surface
streamline should be comparatively uniform, being set by the con-
centration immediately outside the drop. This however is the crite-
rion for the previously mentioned streamline-averaged theory
(Ubal et al., 2010) to begin to apply. In other words the upper time
limit for applicability of the early-time boundary layer theory
should coincide with the lower time limit for applicability of the
streamline-averaged theory.

It is plausible then that the entire evolution of the mass transfer
process in a circulating drop can be described by selecting a suit-



P. Grassia, S. Ubal / Chemical Engineering Science 190 (2018) 190–219 193
able time to switch between the two aforementioned theories. This
then is the hypothesis that we investigate here. Moreover, as we
will discuss shortly, one of the features of the streamline-
averaged theory is that it can be set up retaining just very
incomplete information about the streamline pattern, rather than
requiring complete knowledge of all details of the geometry and
kinematics of the flow field in the drop. Thus one of the key ques-
tions we shall consider is whether it is feasible to predict evolution
of concentration fields in the drop using just incomplete informa-
tion about the circulation.

This work is laid out as follows. Section 2 discusses the equa-
tions governing convective-diffusive mass transfer within a drop
during liquid-liquid extraction, and how these reduce to either
boundary layer theories or streamline-averaged theories in rele-
vant limits. Section 3 details the methods used to solve the equa-
tions governing each of the above mentioned theories, as well as
the parameter values selected in each case. After that, Section 4
presents results obtained for each theory and the process of
switching between them. Section 5 presents conclusions.
1 Clearly there are exceptions to this general rule, e.g. the case of a gas bubble in
liquid (Juncu, 2005, 2011), as opposed that of a liquid drop, where the diffusivity
inside the bubble is far greater than that outside making the change in mass fraction
inside the bubble become exceedingly small. Such cases are not however considered
here.
2. Theory and governing equations

This section is laid out as follows. The general equations for
mass transfer into a circulating liquid drop are given in Section 2.1.
A boundary layer theory of the mass transfer process is described
in Section 2.2, building upon material which is already presented
in Ubal et al. (2010). Streamline orbit times are computed in Sec-
tion 2.3: these are needed in order to determine the time to switch
from a boundary layer theory to a streamline-averaged one. As we
will see, defining this time scale which nominally corresponds to
‘‘one streamline orbit time” is far from trivial. The streamline-
averaged theory itself is presented in Section 2.4, again building
on material already presented in Ubal et al. (2010) and even earlier
papers (Brignell, 1975; Kronig and Brink, 1950; Prakash and
Sirignano, 1978). Boundary and initial conditions for solving the
streamline-averaged system however turn out to be non-trivial,
and these are considered in Section 2.5. An overall summary of
the theory is given in Section 2.6.

2.1. Convective-diffusive mass transfer

We consider a solvent drop of radius R, moving through an
immiscible solvent at speed U: see Fig. 1(a). For simplicity, we
envisage that the drop motion is driven by buoyancy forces, and
assume that it is moving vertically upwards (although the theory
presented here is not affected by the nature of the driving force
and/or direction of motion).

The drop is assumed to remain spherical as it moves and, in the
frame of reference of the drop, a spherical polar coordinate system
denoted r0, h, / is defined. Circulation develops in the drop whilst
fluid flows past outside and (still in the drop’s reference frame)
we define a fluid velocity field u0. Although quite complex flow pat-
terns can arise (Edelmann et al., 2017), for simplicity, u0 is assumed
to be steady state and axisymmetric, so that velocity components
u0
r and u0

h depend on r0 and h, but not on /, and moreover u0
/ van-

ishes. The values of u0
r and u0

h can be computed in principle given
R, U, and given the viscosities and densities outside and inside
the drop, but for the present we do not specify exactly what these
velocity fields are, focussing instead on mass transfer.

A solute is dissolved in the external solvent at some mass frac-
tion ~wR whereas the solute is initially at mass fraction w0

0 within
the drop itself. The solute has a diffusivity D within the drop, and
possibly a different diffusivity outside the drop. We suppose that
solute at mass fraction ~wR in the external solvent has the same
chemical potential as solute at mass fraction w0

R in the internal
solvent. We also suppose that w0
R exceeds w0

0 so that the direction
of mass transfer is into the drop (although the case where the
direction of transfer is out of the drop is entirely analogous to what
we present).

We define a drop Peclet number as

Pe ¼ RU=D ð1Þ

noting that in problems of interest this is typically on the order of
tens of thousands (Uribe-Ramirez and Korchinsky, 2000a,b). We
are interested in solving for the time evolution of mass fraction rep-
resented by a field w0 within the drop and ~w outside it. We denote
time by t0, and the gradient operator byr0. We also define a dimen-
sionless time by t ¼ t0D=R2 (i.e. time made dimensionless on a diffu-
sive time scale), a dimensionless coordinate by r ¼ r0=R, a
dimensionless fluid flow field u ¼ u0=U (with components ur and
uh) and a dimensionless gradient operator r ¼ Rr0. In terms of
these dimensionless variables, the governing convection-diffusion
equation inside the drop is

@w0=@t þ Peu � rw0 ¼ r2w0: ð2Þ

The equation we must solve for ~w outside the drop is broadly sim-
ilar, requiring only a minor change to reflect the fact that the diffu-
sivity outside the drop possibly differs from that inside. Although
we could in principle solve a coupled mass transfer problem both
inside and outside the drop, to simplify the system of equations,
we shall suppose that the resistance to diffusive mass transfer is
dominated by the inside of the drop, meaning we solve what is
known as an internal problem, rather than a coupled one. At one
level this can be viewed as equivalent to supposing that the solute
diffusivity inside the drop is substantially lower than that outside.
However even if the two diffusivities are comparable, assuming that
resistance to diffusion is dominated by the inside of the drop is
actually not unreasonable, at least over a significant period of the
drop’s evolution (Ubal et al., 2010). The fluid elements on the out-
side of the drop pass by the drop once only so have only a limited
opportunity (and a limited time) to lose solute mass to the drop.
The fluid elements on the inside however circulate around multiple
times. The implication is that any gradients of mass fraction have
only limited time to develop outside the drop (and hence develop
over a comparatively small distance), but have a much longer time
to develop inside the drop (and hence develop over longer dis-
tances). To compensate for this imbalance in distance scales, the
change in mass fraction outside the drop tends to be rather smaller
than that inside.1 Hence by assumption we only solve an internal
problem – Eq. (2) – where the initial condition at t ¼ 0 is w0 ¼ w0

0

and the boundary condition at r ¼ 1 is w0 ¼ w0
R.

It is convenient to define a ‘‘normalised” or ‘‘rescaled” mass
fraction denoted w as

w ¼ ðw0 �w0
0Þ=ðw0

R �w0
0Þ: ð3Þ

Eq. (2), being linear in w0, applies equally well to w as to w0, but
writing it in terms of w is convenient since w varies across the full
range of 0–1, the initial condition being w ¼ 0 and the boundary
condition being w ¼ 1. In what follows we will loosely refer to w
as a ‘‘mass fraction”, although it must be remembered that the true
mass fraction w0 varies only between w0

0 and w0
R with typically

w0
R �w0

0 being much smaller than unity.
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Eq. (1) is challenging to solve not only because Pe is large
(meaning the equation is stiff (Press et al., 1992)) but also because
u can in general vary in a quite complicated way in space. One of
the strategies for trying to solve Eq. (1) is to look at a boundary
layer theory, which accounts for very different length scales in
the cross-stream and streamwise direction, and is simplified by
only needing to consider the values of u at the drop surface. This
particular theory is discussed in the next section.

2.2. Boundary layer theory

The boundary layer theory for mass transfer from a circulating
drop has been developed by Levich et al. (1965), Ruckenstein
(1967), Uribe-Ramirez and Korchinsky (2000b), and Vorotilin
et al. (1965) but here we follow the development of Ubal et al.
(2010) which included a discussion of how to interpret the bound-
ary layer theory physically: readers familiar with the arguments of
Ubal et al. (2010) may prefer to skip directly to Section 2.3.

It is assumed that (at sufficiently early times) variations in (nor-
malised) mass fraction w are confined near the drop surface, or at
least to streamlines that pass close to the drop surface. A (dimen-
sionless) streamfunction w is also defined such that

ur ¼ ðr2 sin hÞ�1
@w=@h ð4Þ

uh ¼ �ðr sin hÞ�1
@w=@r: ð5Þ

There is a free additive constant in the streamfunction which is set
here so that the streamline comprising the drop surface and drop
axis has w ¼ 0. The sense of the circulation here is such that w is
positive inside the drop. Moreover the drop contains an internal
stagnation point: the streamfunction has a local maximum at this
point.

A (dimensionless) time variable T (referred to a convective time
scale) is defined via

T ¼ t0U=R � Pet: ð6Þ
Clearly, since Pe � 1, if we are interested in order unity values of T
(corresponding to time scales comparable with one streamline orbit
time), this corresponds to times t � 1.

A Lagrangian derivative on the drop surface D=DT is defined as

D=DT ¼ @=@T þ uhjsurf@=@h ð7Þ
where uhjsurf is the velocity field along the drop surface2.

Additionally a so called extent of diffusion function f, which is a
function of polar angle h and time T (but not of radial coordinate r)
is defined such that

Df=DT � @f=@T þ uhjsurf@f=@h ¼ u2
h jsurf sin2 h: ð8Þ

Observe (via Eq. (5)) that Df=DT is the square of the cross-stream
gradient of w at the surface: hence the more closely spaced are
the streamlines, the faster the rate at which f grows following a
fluid element.

Eq. (8) is to be solved with an initial condition f ¼ 0 when
T ¼ 0, and we also impose, at least for the moment, a boundary
condition3 that f ¼ 0 when h ¼ 0. The physical interpretation of f
was explained by Ubal et al. (2010): it represents a ‘‘diffusive
clock” which runs fast when streamlines are close together (mak-
ing it easier to exchange mass between them) and which runs
2 Note that ur vanishes on the drop surface because the drop is assumed to remain
spherical, hence the surface velocity field only needs to be specified for uh .

3 This boundary condition, f ¼ 0 for h ¼ 0, implies that any material newly arriving
at the drop surface from the interior has not previously been on the drop surface, and
so has not previously been able to exchange mass with the exterior of the drop. Since
it turns out that we are only interested in using the boundary layer theory up to the
order of one streamline orbit time, and not for times any longer than that, such a
condition is actually reasonable.
slow when streamlines are far apart (so that mass exchange
becomes more difficult). Streamlines actually tend to move further
apart both due to the kinematics (i.e. as the speed on surface
decreases) and due to the geometry (i.e. as points on the surface
move closer to the axis). In fact these two effects cooperate with
one another because there are stagnation points where the drop
axis intersects the drop surface (respectively a forward stagnation
point and a rear stagnation point), and hence uhjsurf is small when-
ever sin h is small.

In the remainder of this section we explain how to obtain the
extent of diffusion (Section 2.2.1), the solute mass fraction field
(Section 2.2.2), and the total amount of solute within the drop (Sec-
tions 2.2.3 and 2.2.4).

2.2.1. Solving for the extent of diffusion
Eq. (8) can be solved by first identifying a location h0, a function

of h and T, defined as the initial angular location of a material ele-
ment on the drop surface that subsequently happens to reach
angular location h at time T. This is easily defined implicitly

T ¼
Z h

h0

dh=uh

����
surf

: ð9Þ

At very early times, such that T � 1, it is evident that h0 is just
slightly smaller than h. For any given h, as T increases, h0 migrates
back towards zero. Increasing h however at any given T also
increases h0.

Once h0 is defined, the value of f then follows (Ubal et al., 2010)

f ¼
Z h

h0

uh

����
surf

sin2 hdh: ð10Þ
2.2.2. Solving for the solute mass fraction field
The solute mass fraction field can now be given (Ubal et al.,

2010) in terms of the streamfunction w, Peclet number Pe and
extent of diffusion f

w ¼ erfc w
ffiffiffiffiffi
Pe

p ffiffiffiffiffi
4f

p.� �
: ð11Þ

This has the same functional form for w as employed by Uribe-
Ramirez and Korchinsky (2000b), despite the predictions that we
will obtain from it later on being very different from theirs. This
underlines that the main issue with the work of Uribe-Ramirez
and Korchinsky (2000b) was not the formulation of the boundary
layer model itself, but rather the attempt to apply it out to times
far longer than its true domain of applicability.

Note that Eq. (11) includes both variation across streamlines
(the term in w) and along them (angular coordinate h varies along
near surface streamlines, and f varies with h, as well as with T).
Despite this potentially complicated variation of w, it is clear that
solute mass really is distributed in a boundary layer (see e.g.
Fig. 1(b)), since the only streamlines that have significant solute
mass fraction are those with streamfunction w smaller than orderffiffiffiffiffiffiffiffiffiffi
f=Pe

p
, where recall that w vanishes on the drop surface (and so

is small near the drop surface) and that Pe � 1.

2.2.3. Solving for the solute mass in the drop
Eq. (11) can be used to determine the total amount of solute

mass that has entered the drop as follows. We define a coordinate
n to be distance of a point inside the drop from the drop surface,
i.e. n ¼ 1� r. The solute mass M that has entered the drop (or
rather the ‘‘normalised” solute mass, in view of Eq. (3)) is then
obtained via

M ¼ 2p
Z p

0

Z 1

0
w sin h ð1� nÞ2 dhdn: ð12Þ
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Although in principle n can vary between 0 and 1, in practice we are
only interested in values of n very close to the drop surface, since w
decays very rapidly away from the drop surface. This means we can
approximate 1� n by unity. Near the drop surface, Eq. (5) implies
moreover @w=@n � uhjsurf sin h. We can therefore change the integra-
tion variable in Eq. (12) from n to w. We can also shift the upper
limit of the w integration to infinity, owing to the very rapid decay
of w (which effectively vanishes for any w value in excess of orderffiffiffiffiffiffiffiffiffiffi
f=Pe

p
). Hence

M ¼ 2p
Z p

0

Z 1

0
wdhdw=uhjsurf : ð13Þ

Substituting from Eq. (11) and integrating over w gives

M ¼ 2p
Z p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f=ðPepÞ

p
dh=uh

����
surf

: ð14Þ

Although Eq. (14) gives a formal expression for the amount of solute
mass that has entered the drop, it is not always convenient to use.
As fluid elements migrate along the surface of the drop they collect
more and more solute, or equivalently, solute reaches increasing
numbers of streamlines. There is however a rear stagnation point
at the downstream end of the drop, and in the neighbourhood of
this point streamlines change direction, from being aligned along
the drop surface to being aligned along the drop axis.4 Since solute
has reached a certain number of streamlines, specifically those with
streamfunction up to order

ffiffiffiffiffiffiffiffiffiffi
f=Pe

p
, and since the streamlines are

themselves beginning to penetrate very deeply into the drop inte-
rior, it follows that solute itself is penetrating deep into the drop
interior along the axis (see also Fig. 1(b)). Near the rear stagnation
point then, the ‘‘boundary layer” containing the solute is no longer
confined close to the drop surface making it challenging to keep
proper account of the solute mass within it.

There is however an alternative way of computing solute mass
M. This is to split the total solute mass that has entered the drop,
into a part that is considered to be located near the drop surface
and a part that is considered to have left the drop surface so as
to be returned to the interior of the drop. To do this, we select arbi-
trarily a value hr (with p� hr � 1), considered to be an angular
location at which we deemmass effectively to have left the surface
and to be returned to the interior. The near surface solute mass
denoted Msurf follows a formula identical to Eq. (14) but with inte-
gration limits 0 and hr instead of 0 and p, hence

Msurf ¼ 2p
Z hr

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f=ðPepÞ

p
dh=uh

���
surf

: ð15Þ

The solute mass entering or being returned to the interior denoted
Mret meanwhile is obtained by integrating over time the total mass
flux across hr

Mret ¼ 2p
Z T

0

Z n

0
wuh

����
surf ;h¼hr

sin hr ð1� nÞdT dn: ð16Þ

As before, we can change variables from n (distance from the drop
surface) to streamfunction w, and shift the upper integration limit
for w to infinity. If we then substitute from Eq. (11) and perform
the integral, we obtain

Mret ¼ 2p
Z T

0

Z 1

0
w
����
h¼hr

dT dw ¼ 2p
Z T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4fjh¼hr

=ðPepÞ
q

dT: ð17Þ
4 An analogous change in alignment direction of the streamlines also happens of
course near the forward stagnation point, but is not found to be problematic (Ubal
et al., 2010) for computing mass via Eq. (14) because

ffiffiffi
f

p
tends to vanish more quickly

than uhjsurf does near the forward stagnation point at h ¼ 0. It is only the rear
stagnation point h ¼ p that proves problematic for Eq. (14).
We emphasise that the split between near surface mass Msurf

and mass in the interior Mret is artificial, and is dependent on our
choice of hr. By moving hr closer to p we increase Msurf and
decrease Mret by a compensating amount, so that the sum
M � Msurf þMret should be unaffected. Nevertheless computing
Msurf and Mret as separate entities and summing them together,
proves to be simpler than computing the integral (14) directly.
2.2.4. Rate at which solute is crossing the drop surface
Yet another way in which we can keep account of the total

amount of mass within the drop is to keep track of the instanta-
neous rate at which solute is crossing the entire drop surface via
diffusion, and integrating this rate over time.

If we denote this rate of change dM=dT by _M, we deduce

_M ¼ 2p
Pe

Z p

0

@w
@w

����
w¼0

@w
@r

����
r¼1

sin hdh ð18Þ

where the factor 1=Pe comes from the conversion between diffusive
time t and convective time T (see Eq. (6)). By Eq. (11)

@w
@w

����
w¼0

¼ � 2ffiffiffiffi
p

p
ffiffiffiffiffi
Pe
4f

s
ð19Þ

and by Eq. (5)

@w=@rjr¼1 ¼ �uhjsurf sin h ð20Þ

giving finally5

_M ¼ 2p
Z p

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
pPef

p uhjsurf sin2 hdh: ð21Þ

Via this equation we can infer an interesting result. Most of the
solute actually entering the drop tends to enter through those parts
of the surface where f is smallest. Most of the solute actually accu-
mulated within the drop is however located in those parts of the
surface where f is largest (see Eq. (14)). The fact that there is a dis-
connect between the locations where solute enters the drop and the
locations where solute actually accumulates indicates the effect of
strong convection this high Peclet number system: it is relatively
easy for convection to move solute around within the drop.
2.3. Determining streamline orbit times

We have said that the boundary layer solution (as presented in
the previous section) should only persist up to the time corre-
sponding to a single streamline orbit, and beyond that time a
streamline-averaged theory should apply. We must therefore com-
pute the streamline orbit times to determine when to switch from
one theory to the other.

For a general streamline, if s is a variable measuring distance
along that streamline, and us is the fluid speed on the streamline

(so that us ¼ ðu2
r þ u2

hÞ
1=2) then the orbit time Torbit is straightfor-

wardly defined as

Torbit ¼
I

ds=us: ð22Þ

Here however we face a complication. We cannot deal with the
orbit time of the streamline that passes exactly along the drop sur-
face and drop axis, because that streamline contains stagnation
points, and therefore has an infinite orbit time. Remembering that
5 Equivalence between solute mass predicted via this equation and via summing
Msurf and Mret follows by using Eq. (8) to eliminate uhjsurf sin2 h in favour of @f=@T and
@f=@h, and then integrating.
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w � 0 by definition on the drop surface and axis, it is possible to
show that streamlines passing near the surface and/or axis have
an orbit time Torbit satisfying

Torbit 	 A logð1=wÞ þ B ð23Þ

where A and B are constants that can be readily obtained for any
given flow fields ur and uh and where Eq. (23) applies for w � 1
(see Appendix A for details).

As time progresses, more and more mass enters the drop, and so
reaches streamlines with higher and higher streamfunction, and
hence (according to Eq. (23)) with lower and lower orbit times.
Recall from Section 2.2.2 that during the period when we deem
the boundary layer solution to be valid, the solute concentration
varies along as well as across streamlines. Indeed one could con-
sider that, since there are still fluid elements on streamlines in
the drop interior that have not yet been on the surface, those parts
of the streamline effectively have f ¼ 0 and hence (according to Eq.
(11)) w ¼ 0. It is only at the end of the ‘‘boundary layer” phase of
evolution that mass is considered to be reasonably uniformly dis-
tributed along streamlines.

This suggests the following procedure. At any given time T, we
know the total amount of solute mass M that has entered the drop.
Some of this mass is distributed on streamlines arbitrarily close to
the drop surface with arbitrarily long orbit times. Some of this
mass is however distributed on streamlines which are slightly fur-
ther from the surface with somewhat shorter orbit times. We can
estimate a representative orbit time for any given amount of mass
M that has entered by considering that this same amount of mass is
redistributed in a step function distribution with normalised mass
fraction w ¼ 1 between w ¼ 0 (the drop surface and/or axis) and
some value w ¼ wM , and with w ¼ 0 for w > wM . Remembering
how the mass fractions have been normalised via Eq. (3) we are
effectively saying that for streamlines with 0 < w < wM the concen-
tration field has equilibrated with the concentration outside the
drop, whereas for w > wM the concentration is unchanged from
the initial one. There is an unambiguous streamline orbit time
TorbitðwMÞ that is associated with the streamline wM: this provides
an estimate of the representative orbit time when a given amount
of solute mass M has entered the drop, regardless of precisely how
the mass is actually distributed across streamlines.

The implications of this definition of representative streamline
orbit time are considered further in Section 2.3.1, with Section 2.3.2
then expanding the discussion to relate these orbit times back to
volumes that the streamlines in question enclose.
2.3.1. Comparing streamline orbit times with time elapsed
Clearly wM is an increasing function of M: the more solute mass

that has entered the drop, the more streamlines must be filled up
with solute to store that mass. Note moreover that as time elapsed
T increases, M increases, wM increases and hence TorbitðwMÞ
decreases. If TorbitðwMÞ exceeds T (as must happen for exceedingly
small T) then it is clear that material on the streamline wM has
not yet had sufficient time to execute a complete streamline orbit.
Under those circumstances, the basis underlying the estimate
referred to earlier (i.e. that solute mass can be redistributed uni-
formly both along and across streamlines between the drop sur-
face/axis w ¼ 0 and a particular streamline w ¼ wM) is a poor
approximation to the true way that the mass is distributed. As T
grows and TorbitðwMÞ falls however, we eventually reach a point at
which TorbitðwMÞ ¼ T . Fluid has then had just enough time to orbit
the streamline wM , and we can expect therefore that mass is fairly
uniformly distributed along that particular streamline. Our proce-
dure then is, given the M vs T relation obtained via the boundary
layer theory of Section 2.2, to find wM vs T, and hence the value
of TorbitðwMÞ such that TorbitðwMÞ ¼ T. This then signals the time at
which we should switch from a boundary layer theory to a
streamline-averaged one. We denote this time by Tswitch.

We reiterate that the above choice for the switching time Tswitch

should be robust even though a step function distribution w ¼ 1
for 0 < w < wM and w ¼ 0 for w > wM is artificial, and in reality
some solute will have penetrated further than wM (albeit at a com-
paratively low concentration): wM is representative of the average
distance in streamfunction space to which solute has penetrated,
and hence TorbitðwMÞ should likewise represent the average orbit
time on those streamlines with significant solute concentration.
2.3.2. Relating orbit times and volumes enclosed by streamlines
Instead of treating the orbit time Torbit as a function of stream-

function w, we can also treat it as a function of enclosed volume
(which we will denote V). Enclosed volume V is defined here as
the volume contained between the drop surface (streamfunction
equal to zero) and an arbitrary streamline with streamfunction w.
There is a simple relation between enclosed volume, orbit time
and streamfunction (see Appendix B)

V ¼ 2p
Z w

0
Torbit dw: ð24Þ

Given Eq. (23) applicable for streamlines near the drop surface
and/or axis, the volume enclosed (again for near surface and/or
near axis streamlines with w � 1) becomes

V 	 2pA logð1=wÞwþ 2pðAþ BÞw: ð25Þ

Combining Eqs. (23) and (24) gives a direct relation between V and
Torbit

V 	 2pðTorbit � BÞ expð�ðTorbit � BÞ=AÞ þ 2pðAþ BÞ expð�ðTorbit � BÞ=AÞ
¼ 2pðTorbit þ AÞ expð�ðTorbit � BÞ=AÞ: ð26Þ

Notice that V ! 0 implies Torbit ! 1 which is as expected for
streamlines passing arbitrarily close to the drop surface and axis.

The significance of the enclosed volume is as follows. If a mass
M of solute enters the drop and hypothetically were to be redis-
tributed into a region with (normalised) solute fractionw ¼ 1, then
the volume V enclosed by that region would satisfy V ¼ M. As time
T proceeds, the volume V enclosing the solute filled region grows
with time, but the orbit time Torbit for the particular streamline
delineating the edge of that enclosed volume falls. Eventually a
point is reached for which Torbit equals T and that is the point at
which we consider that a streamline-averaged formulation first
becomes appropriate.

Note that according to Section 2.2, the solute massM vs elapsed
time T relation (and hence the V vs T relation, since we are setting
V ¼ M here) depends on Peclet number Pe. This is evident from Eq.
(15) and also from Eq. (17). The larger the Peclet number, the less
mass that enters the drop in a given time T, and the less volume it
fills. Since V and Torbit are linked via Eqs. (23) and (25), this means
that systems with larger Peclet number require more units of time
T to satisfy the criterion Torbit ¼ T , and hence take longer to switch
to a streamline-averaged state. Evidently the switching time Tswitch

must increase as Pe increases.
This is however an artifact of T having been made dimensionless

on a convective time scale. If we convert to a time variable t (made
dimensionless on a diffusive time scale, and related to T via Eq. (6))
the result is reversed: the larger the Peclet number, the more mass
that enters the drop in a given time t, and the sooner the
streamline-averaged state is achieved. The diffusive time scale is
more relevant here, because in the streamline-averaged state, mass
transfer into the drop proceeds via cross-stream diffusion: details
of the streamline-averaged theory are presented in the next
section.
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2.4. Streamline-averaged theory

The streamline-averaged theory was described by Ubal et al.
(2010) but was not implemented in that work, although previous
authors implemented it in the case of a very specific flow field
(Brignell, 1975; Kronig and Brink, 1950; Prakash and Sirignano,
1978). The formulation can however be adapted to other flow
fields as well, and the corresponding derivation of Ubal et al.
(2010) is replicated here, including some additional insights over
and above those offered by Ubal et al. (2010). The discussion that
follows is divided into two parts: Section 2.4.1 considers diffusion
in generalised coordinate systems, whereas Section 2.4.2 derives
the streamline-averaged equation for solute mass transfer, the
key result being Eq. (32) below. Readers already familiar with the
derivation of this particular equation may prefer to skip directly
to Section 2.5.

2.4.1. Convection-diffusion in a generalised coordinate system
We start from the convection–diffusion equation presented in

Section 2.1 but change variables by defining a generalised coordi-
nate system s (distance along a streamline), w (streamfunction)
and / (azimuthal angle), instead of the original r; h;/ spherical
polars. Note that s varies in the domain 0 6 s 6 LorbitðwÞ where
Lorbit is the length of a streamline orbit which depends on stream-
function w. We can however define a coordinate S ¼ s=LorbitðwÞ and
the domain for this is always 0 6 S 6 1 independent of w. We can
then employ coordinates S;w and /.

A complication now arises in that, in general, the coordinates S
and w are not orthogonal to one another. Nevertheless, without loss
of generality we can select one arbitrary streamline and define a
coordinate S such that on that arbitrarily chosen streamline S ¼ S.
Moving away from this particular streamline, we can construct
curves of constantS bymoving in the normal direction fromstream-
line to streamline. Except in the special case when the streamlines
are perfect concentric circles, as we move further and further from
the originally chosen streamline, discrepancies between S and S
begin to develop. Nevertheless the domain of S remains the same
as that of S, i.e. 0 6 S 6 1, and we also know that, along any given
streamline, S is an increasing function of S and vice versa.

By construction, S;w and / form an orthogonal coordinate sys-
tem and the streamline-averaged theory is simplest to formulate
for such a system. Scale factors for the S;w;/ coordinate system
are given in Appendix B. In particular the scale factor for S is
vLorbit where v � ð@S=@SÞw (and is a function of both S and w).
For the particular streamline upon which we set S ¼ S, clearly
v � 1, but away from this streamline all we can say in general is

that v > 0 and
R 1
0 vdS ¼ 1. Meanwhile the scale factor for w is

ðusr sin hÞ�1 (see Appendix B) where us is the fluid speed. The scale
factor for / is r sin h.

With the above mentioned scale factors, Eq. (2) can be rewritten

@w
@t

þ Pe
us

vLorbit
@w
@S ¼ us

vLorbit
@

@w
vLorbitusr2 sin

2 h
@w
@w

� �

þ us

vLorbit
@

@S
1

usvLorbit
@w
@S

� �
ð27Þ

where the system is still taken to be axisymmetric, so has no depen-
dence on /.

2.4.2. Deriving the streamline-averaged equation
The streamline-averaged theory proceeds by assuming that

within Eq. (27) we can replace w (which depends on S;w and t)
by a quantity W given by

W ¼ 1
Torbit

I
wds
us

¼ 1
Torbit

I
wLorbit dS

us
¼ 1

Torbit

I
wvLorbit dS

us
ð28Þ
each element ds of the streamline, being weighted by the time ds=us

to travel along it.
An evolution equation forW is derived as follows. If we multiply

Eq. (27) by vLorbit=us, integrate over S and divide through by Torbit

we obtain

@W
@t

¼ 1
Torbit

I
dS @

@w
vLorbitusr2 sin

2 h
@w
@w

� �
: ð29Þ

Assuming that @w=@w on the right hand side of Eq. (29) can be
replaced by @W=@w (which is independent of S and so can be taken
outside the integral), and swapping the order of integration with
respect to S and differentiation with respect to w leads to

@W
@t

¼ 1
Torbit

@

@w

I
vLorbit dSusr2 sin

2 h

� �
@W
@w

� �

¼ 1
Torbit

@

@w

I
dsusr2 sin

2 h

� �
@W
@w

� �
: ð30Þ

We define an effective diffusivity via

Deff ¼ 1
Torbit

I
ds
us

u2
s r

2 sin2 h: ð31Þ

This is the average along a streamline of the function u2
s r

2 sin2 h
weighted by the time ds=us taken to move along each streamline
segment. Note that the expression u2

s r
2 sin h that we are averaging

is analogous to the term on the right hand side of Eq. (8), except that
Eq. (8) applied only on the drop surface whereas Eq. (30) applies to
streamlines in the interior of the drop.

The physical interpretation is however the same. If the speed of
the flow increases, streamlines move closer together and it is easier
to exchange mass between them. Moreover (in the spherical geom-
etry of the drop) as we move further from the drop axis, streamli-
nes also move closer together, and again it becomes easier to
exchange mass. Thus Deff really does permit an interpretation as
a ‘‘diffusivity” albeit in a generalised streamfunction coordinate,
not in physical space.

Substituting Eq. (31) into Eq. (30) leads to

@W
@t

¼ 1
TorbitðwÞ

@

@w
DeffðwÞTorbitðwÞ @W

@w

� �
ð32Þ

which is the same final equation as Ubal et al. (2010) obtained.
Note that the Torbit term in the above equation cannot generally

be cancelled out. It would only cancel from the equation in the spe-
cial case of a uniform Torbit which implies a solid body rotation
velocity field, which is not typically the case. In fact the Torbit term
has a physical significance in terms of the volume enclosed
between adjacent streamlines. The larger Torbit, the larger the vol-
ume enclosed by adjacent streamlines (see e.g. Eq. (24)). For a
given mismatch in the solute flux entering across one streamline
and leaving across an adjacent one, the impact on the evolution
of the mass fraction is less for a larger volume, and hence less for
a larger Torbit.

Eq. (32) is an evolution equation for mass fraction, where
details of the flow field, i.e. its kinematics and its geometry, are
absorbed solely into the functions DeffðwÞ and TorbitðwÞ, with the
flow field having no other impact on the subsequent evolution.

Clearly computing these functions is of central importance, and
they can be computed immediately once the streamline pattern is
known. The converse is not however true: knowledge of the func-
tions Deff ðwÞ and TorbitðwÞ does not permit us to reconstruct the full
streamline pattern, because Deff ðwÞ and TorbitðwÞ provide only
incomplete (i.e. integrated) information about the streamlines,
and hence do not supply full details of how the streamlines are laid
out in space. Eq. (32) therefore utilizes incomplete information
about the streamline field, but this still appears to be enough to
estimate how solute is distributed in the drop over space and time.
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This equation must be solved subject to appropriate boundary and
initial conditions which are discussed next.

2.5. Boundary and initial conditions for streamline-averaged theory

The boundary condition on the streamline at the drop surface
and drop axis w ¼ 0 is w ¼ 1 (see Section 2.1) and consequently
W ¼ 1, i.e. solute at the drop surface is equilibrated with solute
outside.

The boundary condition at the internal stagnation point is
slightly more complicated to obtain. In physical space we
know that w should be a local minimum at that point, i.e.
rw ¼ 0 there or equivalently rW ¼ 0. The problem however
is that this does not necessarily imply that @W=@w ¼ 0 there.
The reason is that rw ¼ 0 at the stagnation point, and since
rW ¼ @W=@wrw, we can achieve rW ¼ 0 at the stagnation
point without @W=@w needing to vanish. In fact it is possible
to prove (see Appendix C) that at the stagnation point, we
have an evolution equation

@W=@tjstag ¼ �@W=@wjstagrstag sin hstagxstag ð33Þ

wherexstag is the vorticity at this point. Knowing the instantaneous
value of W at the stagnation point, and knowing how W varies spa-
tially between the stagnation point and a nearby streamline, Eq.
(33) permits us to determine how W at the stagnation point subse-
quently evolves over time.

Regarding initial conditions for the streamline-averaged formu-
lation, the complication here is that the streamline-averaged for-
mulation does not apply all the way down to zero time, but
instead only commences at a finite time corresponding to one com-
plete orbit of the near surface streamlines. It must therefore inherit
its W vs w distribution from whatever mass fraction field preceded
the onset of streamline averaging.

Indeed if we knew the exact distribution of the mass fraction w
with respect to both w and s at the critical time corresponding to
the onset of streamline averaging, we could very simply compute
the initial W via Eq. (28). Were we to perform a full numerical sim-
ulation of the convection-diffusion equation, we would indeed
know the mass fraction field w at any given time, and could there-
fore employ Eq. (28) to obtain W.

Such full numerical simulations are however expensive, and we
have already pointed out that it is desirable to use a boundary layer
approach to describe the early-time behaviour. One of the issues
with the boundary layer formulation, is that (as explained in Sec-
tion 2.2) we tend only to describe the mass fraction field near
the drop surface up to an angular location h ¼ hr (with hr < p but
p� hr � 1). Beyond h ¼ hr we tend to say some mass has entered
the interior of the drop, but we do not explicitly specify how it is
distributed. This means that we cannot employ Eq. (28) which
requires knowledge of the mass fraction field along entire stream-
lines. An alternative which does not require such knowledge is
however discussed below.

2.5.1. Proposing an initial condition for W
We note that at the time at which we switch from a boundary

layer formulation to a streamline-averaged one, a known total
amount of mass has entered the drop. We also note that the
boundary layer mass fraction field as given by Eq. (11) strictly
speaking does not have near uniform concentration on streamlines,
not even on those parts of the streamline, i.e. near the drop surface,
where the boundary layer theory manages to predict the concen-
tration field. Instead the ‘‘extent of diffusion” term f in Eq. (11) is
known to vary along the drop surface and hence along the
streamwise direction, implying non-uniformities in w along the
streamwise direction also.
If we wish to replace Eq. (11) by a solute distribution which is
uniform along streamlines, it makes sense to use a distribution
W (as an initial condition for the streamline-averaged model) with
a broadly similar functional form. Hence we propose

W ¼ erfc ðw=w
Þ ð34Þ
where w
 is a value that we must determine (and depends on Peclet
number). We emphasise that this Eq. (34) is only considered to
apply at the instant at which we switch to a streamline-averaged
formulation, and that afterwards the field W vs w will evolve
according to the governing Eq. (32).

As a bare minimum we require that, upon switching to a
streamline-averaged formulation, the mass under the distribution
W in Eq. (34) matches the mass M inherited from the boundary
layer model (see Section 2.2.3). To achieve this, we firstly need a
general expression for the solute mass under the distribution W.
Via Eq. (24) which relates volumes to Torbit and w, the solute mass
M can be obtained by integrating

M ¼ 2p
Z 1

0
WTorbit dw ¼ 2p

Z 1

0
erfc ðw=w
ÞTorbit dw: ð35Þ

The upper limit of the integration has been pushed to infinity here,
reflecting the fact that we typically switch from a boundary layer
formulation to a streamline-averaged one, at times such that the
value of M is still relatively small (ideally M � 1), meaning w
 is
likewise small, and hence much smaller than the full range of w cov-
ering the entire drop: the term erfcðw=w
Þ in the integrand is com-
pletely negligible whenever w=w
 � 1. At the opposite end of the
integration domain, where w ! 0, we observe that Torbit (see Eq.
(23)) in the integrand of Eq. (35) actually diverges, but the diver-
gence is a weak logarithmic one, so the function remains integrable.

We employ Eq. (35) to define the w
 value required to obtain a
certain target mass M inherited from the boundary layer model.
Moreover since M decreases as Pe increases (as is obvious from
Eq. (14)), it follows that w
 is also a decreasing function of Pe.
Observe nevertheless that the rate of change of mass within the
drop depends on the mass flux across the drop surface, and hence
on the spatial gradient of mass fraction at the surface. By changing
the assumed form of the mass fraction field adopting Eq. (34) in
lieu of Eq. (11), we change the mass fraction gradients, thereby
changing the rate of accumulation of mass within the drop. Hence,
Eq. (34) recovers the correct amount of solute mass when we
switch from a boundary layer formulation to a streamline-
averaged formulation, but leads to a discontinuity in the rate of
change of solute mass.

To an extent though, this discontinuity in the rate of change of
mass is actually an effect we want to capture. Remember that the
instant when we switch from the boundary layer theory to the
streamline-averaged theory is supposed to represent the point
when we switch frommaterial being injected onto the drop surface
from the drop axis never having been in contact with the drop sur-
face, to material being injected onto the drop surface from the drop
axis having previously been in contact with that surface. Thus it
represents a transition whereby we see a sudden change from a
very large spatial gradient in solute fraction across near surface
streamlines to a much smaller spatial gradient across them, and
thus a dramatic fall in the rate of accumulation of mass in the drop.
Full numerical simulations do indeed show this effect (Ubal et al.,
2010), albeit the abrupt decrease in rate of mass accumulation is
not instantaneous, but rather is spread over a finite (but exceed-
ingly small) time interval.

Note that an alternative way of distributing the solute mass M
at the instant when we switch to a streamline-averaged formula-
tion would be to assume a step function solute distribution, i.e.
W ¼ 1 for w < wM and W ¼ 0 for w > wM where wM is a parameter
we defined in Section 2.3. We already used this distribution in that
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section as a convenient way to estimate the appropriate time at
which to switch to the streamline-averaged model. We do not
however find this step function to be the most suitable to use as
an initial condition for solving Eq. (34). On one hand, it has instan-
taneously zero mass fraction gradient at the drop surface, and
hence instantaneously zero rate of mass accumulation but, on
the other hand, the mass fraction gradient at the edge of the step
(w ¼ wM) is infinite at the same instant of time. Full numerical sim-
ulations (Ubal et al., 2010) show a sudden decrease in the rate of
mass accumulation around one orbit time of a near surface stream-
line, but do not show the rate of mass accumulation being tem-
porarily arrested altogether.

2.6. Summary of theory/governing equations

To summarize the discussion so far, we propose that during
liquid-liquid extraction with a circulating drop, a boundary layer
theory (see Section 2.2) can describe the early-time behaviour of
the mass transfer into the drop up to a single streamline orbit time,
but not any longer than that: Uribe-Ramirez and Korchinsky
(2000b) extrapolated the boundary layer theory to times far longer
than it actually applies, and hence overpredicted the mass transfer
rate very significantly (Ubal et al., 2010). We identified (see Sec-
tion 2.3) the upper time limit for applicability of the boundary
layer theory by determining how far into the drop the solute con-
centration field extends as a function of elapsed time T, and match-
ing that time to the streamline orbit time Torbit (which itself falls as
the solute concentration extends further and further): there is
therefore a well-defined matching or switching point at which T
and Torbit become equal. This time is denoted Tswitch and it depends
on Peclet number Pe. Beyond this time, a switch to the streamline-
averaged theory is proposed (see Sections 2.4 and 2.5), which
involves diffusive mass transfer in the cross-stream direction.
Despite the streamline-average theory being thereby diffusive in
nature, it still retains some information about the streamline pat-
tern, albeit incomplete information, involving just two parameters
per streamline, the orbit time Torbit mentioned above and an effec-
tive diffusivity Deff . The above then constitutes the mathematical
model that we propose to describe mass transfer during liquid-
liquid extraction. The methodology that we employ to implement
the model is addressed in the next section.

3. Solution methods

Section 2 concerned itself with formulating the model used to
describe mass transfer to a circulating drop during liquid-liquid
extraction. The present section highlights the solution methodol-
ogy that we use to implement the model. Since the theory of
Section 2 involves a number of diverse elements combined
together into a single overall model, the solution methods we
use likewise require us to bring together a number of diverse
techniques. That said, each solution technique that we employ
is actually a fairly standard one: as such, we have chosen to pre-
sent the details of the numerical solution methods within an
appendix (see Appendix D), using the present section merely
to sketch out very briefly the main steps in the methodology
that we follow, namely:

1. The fluid flow field is specified (with the aid of a Galerkin
expansion).

2. The fluid flow field near the drop surface is used to determine
(via numerical integrations) the structure of the solute concen-
tration boundary layer, as well as the solute mass that enters
the drop through the boundary layer.

3. The volume of the drop invaded by solute is examined versus
the time elapsed, and a switching time is identified (via a
Newton-Raphson technique) such that time elapsed matches
the streamline orbit time associated with the volume invaded.

4. Following the switching time, a streamline-averaged approach
is adopted; parameters to be input into the streamline-
averaged model are determined by following the flow field
along individual streamlines (again via numerical integrations).

5. Having computed the parameters to input into the streamline-
averaged model, the model itself is solved (via finite
differences).

Those readers requiring a fuller description of the techniques
employed, along with the parameter values utilised in the model
implementation, should consult Appendix D.
4. Results

This section presents and discusses the predictions of the model
for solute mass transfer in a circulating drop. The structure of this
section mirrors the structure already used in Section 2 to describe
the model itself. In other words, first a boundary layer theory is
considered and then this is subsequently switched to a
streamline-averaged theory. Specifically in what follows Section 4.1
examines data for h0ðh; TÞ which is the initial location of a material
point which currently finds itself at location h at time T. Next Sec-
tion 4.2 examines results for the function fðh; TÞ, the so called ‘‘ex-
tent of diffusion”, in terms of which the boundary layer theory is
expressed. After that Section 4.3 examines solute masses trans-
ferred for the boundary layer theory (which can be obtained via
the predictions for f): together solute adjacent to the surface
MsurfðTÞ and solute that has been returned to the drop interior
MretðTÞ comprise the total solute mass MðTÞ. Section 4.4 then con-
siders streamline orbit times TorbitðwÞ, and also determines the time
Tswitch at which the system switches from a boundary layer beha-
viour to a streamline-averaged one: as we have already explained,
the criterion for finding this so called switching time is that the
solute has invaded a sufficient volume of the drop that the fluid
elements have managed to circulate exactly once around a stream-
line, so that all points on the streamline have passed through the
same set of spatial locations, meaning that their solute concentra-
tions should not be too dissimilar. Following this, the focus of the
discussion changes towards the streamline-averaged theory. Sec-
tion 4.5 considers effective diffusivities Deff ðwÞ which are essential
input into the streamline-averaged theory. Section 4.6 considers
the streamline-averaged results themselves, specifically data for
streamline-averaged solute mass fractions Wðw; tÞ, and also shows
a global overview of the time evolution of the total amount of
solute mass in the drop, spanning both the boundary layer and
streamline-averaged behaviours.
4.1. Results for angular location h0

Before determining the structure of the boundary layer it is nec-
essary to determine the angular location h0 which is a function of h
and T. Specifically h0 given by Eq. (9) is the initial location of a fluid
element that is currently at location h at time T.

Fig. 2 plots h0 vs T for a selection of h values. For any given h, it is
clear that h0 decreases as T increases, reflecting the fact that mate-
rial points must start off closer and closer to the forward stagna-
tion point of the drop if they are to reach location h by time T.
Moreover Fig. 2 shows that the larger the value of h, the longer it
takes for h0 to decrease down to small values (i.e. h0 much smaller
than unity).

According to Eq. (9) it would take an arbitrarily long time for h0
to fall to arbitrarily small values. In reality however it is unneces-
sary to consider arbitrarily small h0. The value of the integral (10)
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Fig. 2. The angle h0 as a function of T for various h values: h0 is the initial location of
the material point which happens to be at location h at time T. The dash-dot line
along the bottom of the figure corresponds to a set value of hi , chosen here to be p

100.

6 We refer to these times as ‘‘very early” as a reminder that we are considering the
early stages of the evolution of the boundary layer, with the boundary layer model
itself being an early-time theory compared to the streamline-averaged model.
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determining the extent of diffusion function f is extremely insensi-
tive to the choice of h0 provided h0 � 1. As is explained more fully
in Appendix D.2, it is possible to define an injection point, denoted
hi, at which fluid elements are considered to be injected from the
interior of the drop onto the drop surface. Eq. (10) is then modified
to Eq. (D.4) which turns out to make it unnecessary to specify h0
values less than hi. Moreover any choice of hi � 1 gives effectively
the same predictions of f: as Appendix D.2.3 explains, Eq. (D.4) is
(like Eq. (10) itself) very insensitive to its lower integration bound,
as long as that lower bound is small.

Returning to consider the data in Fig. 2, the dash-dot line at the
bottom of the figure shows a selected value of hi (chosen as hi ¼ p

100

here). For the flow field assumed here (see Appendix D.1) and for
the largest h value considered (namely h ¼ hr chosen to be
hr ¼ 99p

100 in Appendix D.2), it takes a time T � 18:08 for h0 to fall
to the value hi. Beyond that time, for any h < hr, the corresponding
h0 value becomes less than hi.

This completes our discussion of the function h0. Our primary
interest in this function is not so much for its own sake, but rather
because it enables us to compute the so called extent of diffusion f
(via Eq. (10) or Eq. (D.4)), with f being needed in turn to compute
the amount of solute mass in the drop. Results for the behaviour of
f are considered in the next subsection.

4.2. Results for extent of diffusion f

The extent of diffusion function f (which depends on both h and
T) is a measure of howmuch solute diffusion has taken place across
a boundary layer at the drop surface. As has been described in Sec-
tion 2.2, f behaves analogously to a ‘‘diffusive clock” which runs
fast when near-surface streamlines are close together (rapid diffu-
sion from streamline to streamline) and which runs slow when
near-surface streamlines spread far apart (slow diffusion from
streamline to streamline). As is evident from the solute concentra-
tion field in Eq. (11), solute is confined to those streamlines that

satisfy w 6 O
ffiffiffiffiffiffiffiffiffiffi
f=Pe

p� �
where Pe is the Peclet number. Knowing f

thereby permits us to know the amount of solute within the drop,
and how far that solute has penetrated.

In what follows we will consider plots of f vs h for a selection of
different times T (always assuming that time T is smaller than
Tswitch so that a boundary layer theory, rather than a streamline-
averaged theory, applies). Specifically we will consider values
T ¼ 1, T ¼ 5 and T ¼ 10. Given that later on (see Section 4.4) we
will show that Tswitch tends to be a little larger than 10, these cho-
sen values for T are actually sensible. We will find (see Sections
4.2.1 and 4.2.2) that there exists a very early-time limit in which
the solute mass transfer into the drop is actually independent of
convection even though the definition of f inherently involves con-
vection. Likewise we will find (in Sections 4.2.3–4.2.6) that there
exists a later time limit in which f evolves into a steady state that
depends on h, but not on T. One key result we will demonstrate
(already anticipated in Section 4.1) is that f is very insensitive to
the choice of the injection angle hi.

4.2.1. f vs h at time T ¼ 1
Fig. 3(a) plots f vs h for T ¼ 1. It is evident that at this particular

time, f has a peak close to the equator of the drop, but its value
becomes much smaller approaching either the forward or rear
stagnation point of the drop. This is the general sort of behaviour
that we expect to see in the small time limit. When T is small, such
that a material point has migrated only very little from its initial
position (or equivalently such that h and h0 are close together),
we approximate Eq. (10) or Eq. (D.4) by

f � ðh� h0Þuhjsurf sin2 h: ð36Þ
Since in addition Eq. (9) becomes h� h0 � uhjsurfT in the limit of
‘‘very early” times,6 an approximate formula follows

f � T u2
h jsurf sin2 h: ð37Þ

This approximate formula is also plotted in Fig. 3(a), setting as
before T ¼ 1.

Whilst this shows the same general behaviour as the true f vs h
function, by the time T ¼ 1 there is nonetheless an already notice-
able difference between the true f and the approximate one. The
peak value of the approximate f is higher than that of the true f
and it is also located further upstream. In fact the peak value of
Eq. (37) is located at the point where uhjsurf sin h is maximal, and
given the specific functional form chosen for uhjsurf (see Appendix
D.1.1) this occurs slightly upstream of the equator.

In other words, the peak value of the true f is shifted slightly
downstream relative to the peak value of uhjsurf sin h, which is
unsurprising since Eq. (8) indicates that values of f are convected
along. This also explains why the peak of the true f is less high than
the peak of Eq. (37). Following a material element, the highest rate
of growth of f occurs where uhjsurf sin h is largest, but no single
material element ever feels that highest rate of growth for the
entire time interval 0 6 T 6 1.

If we move some distance upstream from the equator, the true f
tends to be less than the approximate one, because historically f
(following a material element) had rates of growth upstream less
than the instantaneous growth rate at the element’s current loca-
tion. On the other hand, if we move downstream from the equator,
the true f exceeds the approximate one: historically f exhibited
faster growth rates than the instantaneous rate at an element’s
current location.

4.2.2. Spherically symmetric concentration field
Eq. (37) has a very simple physical interpretation. If we substi-

tute Eq. (37) into Eq. (11) and recognize near the surface of the
drop that @w=@r � �uhjsurf sin h, then we deduce a solute concentra-
tion field in the drop

w � erfc ð1� rÞ
ffiffiffiffiffi
Pe

p
=
ffiffiffiffiffiffi
4T

p� �
: ð38Þ

Converting from convective time T to diffusive time t (with
t ¼ T=Pe) implies

w � erfc ð1� rÞ=
ffiffiffiffiffi
4t

p� �
: ð39Þ



Fig. 3. (a) The extent of diffusion f vs angular position h for (a) time T ¼ 1, (b) time
T ¼ 5 and (c) time T ¼ 10. In (a) the prediction is compared against a very early-
time approximation for f (Eq. (37)) which corresponds to a spherically symmetric
solute concentration field as would be found in a rigid drop. In both (b) and (c), the h
domain is divided into material points newly injected onto the surface since time
zero (h0 < hi), and material points continually on the surface throughout the
evolution (h0 > hi). Here h0 is the initial location (found via Eq. (9)) and the injection
point is hi ¼ p

100.
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This then is a spherically symmetric solute concentration field
which (provided t � 1) corresponds to the similarity solution aris-
ing for a so called rigid drop: mass transfer is purely diffusive with-
out any contribution from convection.

That such a ‘‘rigid drop” solution should apply at very early
times is unsurprising (and has already been established by Ubal
et al. (2010)). Solute concentration gradients are initially arbitrarily
sharp, meaning that initially diffusion always dominates convec-
tion no matter how large the Peclet number Pe is. The value of Pe
governs not whether diffusion initially dominates convection, but
rather the length of time for which that situation is allowed to per-
sist. In summary then, for convective time T ¼ 1 (or equivalently
for diffusive time t ¼ 1=Pe), the f profile that we obtain implies a
solute concentration field in the drop that is still qualitatively
similar to the spherically symmetric concentration field that would
arise solely from diffusion, ignoring any effects of convection. This
situation cannot however continue indefinitely as time T increases,
as we see in the next section.

4.2.3. f vs h at time T ¼ 5
A plot of f vs h at time T ¼ 5 is given in Fig. 3(b). As before, the

value of f remains small at the forward and rear stagnation points
of the drop, reaching a peak value at an intermediate h value. By
contrast with Fig. 3(a) however, we see that the peak value is
now shifted well downstream of the equator of the drop: this is
the effect of convection.

Yet another observation is that the height of the peak shown in
Fig. 3(b) is about twice that in Fig. 3(a) although the time T is 5
times higher. This is a strong indication that the concentration
field, has departed strongly from the spherically symmetric ‘‘rigid
drop” case (because otherwise Eq. (37) would predict f being pro-
portional to T).

This is corroborated by the study of Ubal et al. (2010) which
presents data for full numerical simulations of the advection-
diffusion equation. In that study, concentration fields (albeit fields
for Pe ¼ 1000 rather than Pe ¼ 10;000) are plotted at various
times, and whereas the data for T ¼ 2 show only a modest depar-
ture from spherical symmetry, by time T ¼ 5 the deviation from
spherical symmetry is already very strong.

Fig. 3(b) makes a distinction between material points which
have been continuously on the drop surface since time zero (those
for which the original location h0 exceeds the injection point hi)
and material points which have been newly injected from the inte-
rior of the drop (those for which hi exceeds h0 implying that the
material point only entered the surface at location hi for time
T > 0). It is supposed here that material points are injected at the
location hi ¼ p

100. With this choice of hi and at time T ¼ 5, roughly
speaking half of the surface (the rear half) consists of points contin-
uously on the surface since time zero, whilst the other half (the for-
ward half) consists of newly injected points. However the balance
between points continuously on the surface and newly injected
ones changes according to the value of hi. Verification that such
changes have nonetheless only very limited effect upon the value
of f is provided in the next subsection.

4.2.4. Effect of varying hi upon f at T ¼ 5
According to Eq. (D.4) the value of f can depend upon the choice

for hi although only points on the forward part of the drop (i.e. only
points with h0 < hi) are affected. However it is demonstrated in
Appendix D.2.1 that despite f being in principle sensitive to hi, that
sensitivity is actually very weak: if hi changes, then the maximum
change in f at any given h value is on the order of h4i .

To quantify the effect of changing hi, in Fig. 4(a) we examine
(still for time T ¼ 5) a zoomed view of f vs h for two different hi val-
ues ( p

100 and p
10) focussing on the forward part of the drop, h < p

4,
which is where changes in f with changing hi are most apparent.
The differences we see between the f values in these two different
cases within Fig. 4(a) are really very small, with the f values for
hi ¼ p

100 being slightly larger than those for hi ¼ p
10. A further reduc-

tion in the hi value, down to hi ¼ p
1000 say, would lead to a further

increase in f but this would be 4 orders of magnitude smaller than
the difference already seen in Fig. 4(a). In what follows therefore
we select hi ¼ p

100 confident that this choice has no significant
impact on the solute mass transfer that we compute as a result.

4.2.5. Comparing f at T ¼ 5 with steady state fss
We have just verified that f is relatively insensitive to hi, the

effect of hi only manifesting itself via very weak sensitivity of f
to the lower integration bound of Eq. (D.4). Interestingly we can



Fig. 4. (a) The extent of diffusion f vs angular position h plotted over a restricted
domain h < p

4 at time T ¼ 5 and with two different values of hi (hi ¼ p
10 and hi ¼ p

100).
(b) f vs h again for T ¼ 5 but plotted now for a wider domain of h values, and with
hi ¼ p

100. A distinction is now made between material points that are newly injected
since time zero and those that have been continually on the surface. Moreover these
data for T ¼ 5 are compared with a steady state formula fss vs h.
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draw a similar conclusion regarding f being relatively insensitive
to time: this is because the time dependence within Eq. (D.4) only
manifests itself via the term h0 which appears in that same lower
integration bound. It can be shown (see Appendices D.2.2 and
D.2.3) that, as time T increases, f vs h evolves towards a steady
state profile that we denote fss. If, by T ¼ 5, the value of f has
become relatively insensitive to time as we now anticipate, f
should already be relatively close to fss.

In Fig. 4(b) we compare f vs h for T ¼ 5 with the steady state
profile fss. We see that f is actually very close to fss over most of
the surface of the drop (the neighbourhood of the rear stagnation
point being an exception, i.e. convergence of f to fss is not uniform).

In the forward half of the drop, agreement between f and fss is
unsurprising. Restricting consideration to points that have been
newly injected onto the drop surface (i.e. those with h0 < hi), the
lower integration bound in Eq. (D.4) is no longer time dependent,
so steady state is certainly attained. The more significant finding
is in the rear half of the drop, up to and including the h value cor-
responding to the peak value of f. For T ¼ 5, all the f values on this
part of the drop whilst not exactly at steady state, do have h0 values
which, despite being greater than hi, are nevertheless much smaller
than unity. This means that f evolves very slowly as time evolves:
all that happens is that h0 gradually decreases towards hi, but Eq.
(D.4) is barely affected. We analyse how this gradual evolution pro-
ceeds by considering an even later time within the next section.
4.2.6. f vs h at time T ¼ 10
In Fig. 3(c) we show the f vs h profile for T ¼ 10. Qualitatively

this is similar to the T ¼ 5 profile already seen in Fig. 3(b), namely
f is small both at the forward and rear stagnation points of the
drop, and there is a peak value of f at a certain h value (which
owing to convection is pushed far downstream of the drop equa-
tor). The differences seen at T ¼ 10 compared to T ¼ 5, are that
for the longer time, the peak is shifted even further downstream,
and a result there is a very sharp decrease in f from the peak value
down to the rear stagnation point.

As was also done in Fig. 3(b), a distinction is made in Fig. 3(c)
between points that have been continuously on the drop surface
and points newly injected onto the surface since time zero (still
assuming hi ¼ p

100). Whereas in Fig. 3(b) the drop surface was
roughly equally split between the two types of points, here in
Fig. 3(c) it is the newly injected points that cover almost all the sur-
face of the drop.

As discussed in Section 4.2.3, the f values at these ‘‘newly
injected” locations are already at steady state. Only in the relatively
small region to the right of the peak f value, i.e. in the region of the
sharp drop, is any time dependence of f still manifest.

As mentioned earlier, we are typically only interested in solving
for f up as far as a ‘‘return point” hr (at which point solute is con-
sidered to be simply returned to the interior of the drop). Once the
h0 value corresponding to h ¼ hr has fallen to the value hi, it is the
case that f has attained fss globally throughout the domain
hi 6 h 6 hr. Assuming that hi ¼ p

100 and hr ¼ 99p
100 this has not yet hap-

pened by time T ¼ 10 (as was mentioned in Section 4.1, it does not
happen until T ¼ 18:08). Nevertheless it is clear from Fig. 3(c) that
by time T ¼ 10 the fraction of the drop surface over which f is still
varying with time is really very small indeed.

This completes our discussion of the ‘‘extent of diffusion” f as a
function of h and T. The key finding is that there is an early-time
behaviour (f proportional to T) corresponding to a ‘‘rigid drop”
(i.e. a spherically symmetric, purely diffusive mass transfer), but
as time progresses the growth in f is arrested and a steady state
fss is attained. The implications for mass transfer into the drop
are considered in the next section.
4.3. Results for solute mass transferred according to boundary layer
theory

This section considers the solute mass transfer into the drop as
predicted by the boundary layer theory. This can be obtained in
terms of the extent of diffusion f using Eq. (15) (or more correctly
by a slightly modified version thereof, Eq. (D.8) given in Appendix
D.2.6), that gives the solute mass adjacent to the surface of the
drop Msurf , and Eq. (17), which gives the solute mass Mret which
passed through boundary layer but which has been now returned
the interior of the drop. The total solute mass that has entered the
drop M is the sum of Msurf and Mret.

Although we have performed a detailed analysis of how Msurf ,
Mret and M evolve with time, the end result that we find is a rather
surprising one. To a very good approximation, the amount of solute
in the drop predicted by the boundary layer theory can be
determined by identifying an abrupt transition between a very
early-time state (in which mass transfer is dominated by a purely
diffusive boundary layer with no effect whatsoever of convection)
and a later time state (in which a convective boundary layer has
fully developed into a steady state structure, albeit a streamline-
averaged state is not yet attained). It turns out therefore that using
the boundary layer theory to compute how solute mass transfer
rates evolve at intermediate times is not strictly necessary: it is
sufficient to know just the very early-time asymptotic behaviour
of f and its later time asymptotic behaviour. In spite of this, com-
puting the full time evolution of f (as we did in Section 4.2) has
been an essential step in the process, because it is only by doing
so that we demonstrate the dominance of the aforementioned
early- and late-time behaviours.



Fig. 5. (a) The amount of solute mass Pe1=2Msurf accumulated near the drop surface
vs time T, as predicted by boundary layer theory. For comparison, the near surface
mass in the very early-time limit is shown: this early-time formula assumes mass
transfer as per a rigid drop. In the limit of later times the Pe1=2Msurf from boundary
layer theory attains an exact steady state (indicated by �). (b) The solute mass
Pe1=2Mret returned to the interior of the drop vs time T. The return point hr is chosen
as 99p

100 here. After a certain time (indicated by �), Pe1=2Mret is known to attain an
exactly steady rate of growth. To guide the eye, this late-time asymptotic growth
has also been extrapolated back to the T axis.
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The rest of this section is laid out as follows. Section 4.3.1 con-
siders the near surface solute mass Msurf , Section 4.3.2 considers
the solute mass returned to the interior of the drop Mret and Sec-
tion 4.3.3 considers the total mass M � Msurf þMret. Finally Sec-
tion 4.3.4 presents a simple (but remarkably accurate)
expression predicting M as a function of T. Only the simple
expression for M vs T from Section 4.3.4 needs to be carried for-
ward to later results (Section 4.4 onwards). Nonetheless the
results from Sections 4.3.1–4.3.3 explain how and why that sim-
ple expression can come about.

As long as the Peclet number Pe is sufficiently large that a
boundary layer theory actually applies, the thickness of the bound-
ary layer (see e.g. Eqs. (17) and (D.8)) is proportional to Pe�1=2.
Hence by multiplying solute masses by Pe1=2 we can collapse
together data for all different Peclet numbers (assuming Peclet
number is large): the data discussed here are therefore mostly
expressed terms of Pe1=2Msurf , Pe

1=2Mret and Pe1=2M.

4.3.1. Near surface mass in the boundary layer

Fig. 5(a) plots the computed Pe1=2Msurf vs T. We see that Msurf

grows initially very rapidly, but then the rate of growth slows,
and Msurf eventually attains a final steady value.

The very rapid initial growth corresponds to the initial period
during which mass transfer is controlled entirely by diffusion.
We know that solute mass fraction w obeys Eq. (39) and integrat-
ing this over r (in the limit of very small t) and multiplying by the
surface area of the drop (namely 4p) gives the solute mass (Ubal
et al., 2010). Hence

Msurf � 8
ffiffiffiffiffiffi
p t

p
ð40Þ

and moreover (since t ¼ T=Pe)

Pe1=2Msurf � 8
ffiffiffiffiffiffiffi
pT

p
: ð41Þ

This is also plotted in Fig. 5(a). It is seen that this early-time for-
mula starts off agreeing very well with the true Msurf predicted by
Eq. (D.8), although as time proceeds the early-time formula starts
to fall beneath the true Msurf .

This completes, for the present, discussion of the mass adjacent
to the drop surface Msurf . There is however another component
contributing to the solute mass M, i.e. the mass that has been
returned to the drop interiorMret. This is discussed in what follows.

4.3.2. Mass returned to the interior of the drop

Fig. 5(b) plots Pe1=2Mret vs T as computed via Eq. (17). As is clear
from Eq. (17), as long as f evaluated at h ¼ hr is negligible, thenMret

is also negligible: in fact we see from Fig. 5(b) thatMret is negligible
for the first 10 time units or so.

Thereafter Mret then begins to increase, quickly attaining a
nearly steady state rate of increase. Although a true steady state
rate of increase is not achieved in principle until 18.08 time units,
a near steady rate of increase is achieved somewhat before then: in
order for this to occur, it is sufficient to have h0jh¼hr

being signifi-
cantly smaller than unity (see also Fig. 2 remembering that
hr ¼ 99p

100 here). Once that happens fjh¼hr
varies only very little with

time, and this determines how Mret grows via Eq. (17).
As mentioned above, once Mret begins to grow, it quickly attains

a steady growth rate. We denote this by _Mret; ss and it can be readily
estimated as is now explained.

For Mret to be steadily increasing, it follows via Eq. (17) that
fjh¼hr

must be close to the corresponding steady state value
fssjh¼hr

. At steady state, the lower integration bound of Eq. (D.4) is
invariably hi not h0. To approximate fssjh¼hr

we replace the lower
integration bound hi by zero, and the upper integration bound hr
by p, and thus obtain a quantity that we denote fssjh¼p via
fssjh¼p ¼
Z p

0
uhjsurf sin2 hdh: ð42Þ

In our system uhjsurf is described by Eq. (D.2) with parameters a and
b quoted in Appendix D.1.1, and we deduce that

fssjh¼p ¼ 4
3
a: ð43Þ

Notice that fssjh¼p is affected only by a (since the term involving b
cancels).

Employing fssjh¼p in lieu of fjh¼hr
within Eq. (17), the steady state

value attained for the growth rate of Mret, which we denote _Mret;ss,
becomes

_Mret;ss ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

Pep
4a
3

r
: ð44Þ

Note that for the a value (a ¼ 0:590) considered here we find
fssjh¼p � 4a=3 � 0:786. Coincidentally this is remarkably close to
p
4 � 0:785. To a very good approximation then

Pe1=2 _Mret;ss � 2p: ð45Þ

This formula is not of course general: it only works for the flow field
with the particular a value considered here. Nonetheless it will
prove useful in the analysis to follow.

This completes our discussion of Mret, the solute mass that has
been returned to the drop interior. In the next section we combine
this with the solute mass adjacent to the surface Msurf in order to
determine the total solute mass M in the drop.



Fig. 6. (a) The solute mass Pe1=2M in the drop (as predicted by boundary layer
theory) divided into two components, the mass accumulated adjacent to the surface
Pe1=2Msurf and the mass returned to the interior of the drop Pe1=2Mret. These data
correspond to an injection point and a return point respectively hi ¼ p

100 and hr ¼ 99p
100.

Given these hi and hr values, the symbol � indicates the time at which Pe1=2Msurf

achieves a final steady state, and Pe1=2Mret achieves a final steady rate of growth. (b)
Pe1=2M compared with an early-time formula (a square root growth law,
corresponding to a rigid drop) and a late-time formula (a final steady rate of mass
increase). (c) Pe1=2M compared to an approximation in which an abrupt transition
from an early-time square root behaviour to a later time straight line behaviour is
considered to occur at the time for which the slope of the square root matches that
of the straight line. The transition point is denoted �.
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4.3.3. Combined solute mass in the drop

Fig. 6(a) plots Pe1=2M vs T along with its constituent components
Pe1=2Msurf and Pe1=2Mret. Here we make an interesting observation.
Not only doesMret start growing around the same time that growth
in Msurf stops, in addition to this, the growth rates of Mret after this
time and Msurf before this time are matched. The net effect is that
M has a very substantial period of time during which it grows at a
nearly constant rate, and such growth happens from really quite
early on in the time evolution, certainly well before the time
T ¼ 18:08 at which a true steady state is achieved.

That the near steady rate of growth of Msurf prior to Msurf satu-
rating at a final steady value must match the near steady rate of
growth of Mret after Mret has begun to grow, can also be explained
as follows. The sum of the rates of change of Msurf and Mret must
equate to the rate at which solute is diffusing across the drop sur-
face, an expression for which7 has been given in Eq. (21) within
Section 2.2.4.

The rate at which solute is diffusing across the drop surface
tends to be dominated by those parts of the drop in which f
remains relatively small (i.e. those parts of the drop on which
the near surface layer containing solute is comparatively thin).
The plots in e.g. Fig. 3(b) and (c), show that these correspond to
the upstream part of the drop. Moreover as is clear by comparing
Fig. 3(b) with (c), these upstream parts of the drop are also those
in which f reaches steady state first. Thus the sum of the rates of
change of Msurf and Mret must reach steady state, even though
the individual rates of change ofMsurf andMret are not yet at steady
state.

The value of _M initially contributes almost exclusively to the
growth of Msurf , with Mret remaining insignificant (see Fig. 6(a)).
Over time moreover, the distribution of solute mass contributing
to Msurf starts to shift, with the larger f values (which also make
the larger contributions to Msurf according to Eq. (D.8)) managing
to migrate further and further downstream. Eventually the solute
‘‘breaks through” the location h ¼ hr, after whichMsurf stops chang-
ing, whereasMret starts to grow (again see Fig. 6(a)). The exact time
at which this breakthrough occurs is sensitive to the (arbitrary)
choice of hr but the value of _M (both before and after breakthrough)
does not depend on hr, having been already set by processes occur-
ring upstream long before breakthrough occurs.

The above analysis also resolves a paradox which would other-
wise arise when comparing these predictions that include solute
convection to rigid drop predictions without any convection. We
know from Fig. 5(a) that the mass accumulated in the drop with
convection exceeds the rigid drop predictions, implying that (at
least part of) the near surface layer must contain more solute mass,
i.e. be thicker, than the analogous situation for a rigid drop. Nor-
mally however the thicker a layer is, the slower mass diffuses into
it. Hence the convective case cannot have a near surface layer that
is uniformly thicker than the rigid drop case over the entire drop
surface. There must be a region somewhere for which this near
surface layer containing solute remains thin, permitting large con-
centration gradients and rapid mass transfer there. Fig. 7 corrobo-
rates that this is indeed the case. The boundary layer is kept thin at
the forward end of the drop as long as fresh material (which has
not yet been in contact with solute) is brought from the drop inte-
rior to the surface: this maintains the sharp concentration
gradients.

In the section that follows, we use what we know about the
solute mass transport properties of this boundary layer at very
7 We will not present any numerical data computed via Eq. (21) here since there
are technical difficulties in evaluating Eq. (21) when describing f via Eq. (D.4) in place
of Eq. (10) as we do here. Although these difficulties can be overcome, they have no
bearing on the discussion to follow.
early- and at later times to predict the evolution of the total solute
mass in the drop over the entire range of times applicable to the
boundary layer model.

4.3.4. Combining early-time and later time growth for M
In Section 4.3.1 we found that the very early-time growth of the

solute mass M was controlled by diffusive ‘‘rigid drop” boundary
layer behaviour (with M proportional to

ffiffiffi
T

p
). Then in Section 4.3.2

we found that the later time growth of M (albeit still within the
boundary layer regime) corresponded to a steady rate of increase,
but (for reasons that were explained) the system locks into a nearly
steady state surprisingly soon, certainly much sooner than was
originally expected.

Fig. 6(b) shows a plot of M vs T as predicted by the boundary
layer theory, but with the very early-time and late-time asymp-
totic behaviours from that theory superposed upon it. What we



Fig. 7. Mass distribution within the drop when T ¼ 5 as predicted by boundary
layer theory, the mass distribution being defined as

ffiffiffiffiffiffiffiffiffiffiffi
4f=p

p
=uh

��
surf which is the

integrand in the expression for Pe1=2Msurf : see Eq. (D.8). For comparison we also
show the distribution,

ffiffiffiffiffiffiffiffiffiffiffiffi
4T=p

p
sin h, which is what arises when the very early-time

‘‘rigid drop” approximation for f given by Eq. (37) is substituted into the integrand
of Eq. (D.8) (although of course for T ¼ 5 that expression has been extrapolated well
outside its early-time regime of validity). The sin h factor in this ‘‘rigid drop”
expression arises from geometry: the drop has more surface area around its
equator.

Fig. 8. (a) The streamline orbit time Torbit as a function of streamfunction w,
compared with a small w asymptotic approximation (23). The horizontal line
represents the time Torbit;stag required to orbit streamlines in the neighbourhood of
the internal stagnation point wstag. The vertical lines indicate the w value to which
solute has managed to invade the drop at the switching time when the streamline-
averaged formulation begins, respectively for Pe ¼ 100;000 (leftmost vertical line),
50,000, 20,000 and 10,000 (rightmost vertical line). (b) The volume V of the drop
invaded by solute as a function of elapsed time T (as predicted by boundary layer
theory; see Eq. (D.9)) for various Peclet numbers Pe. In addition the volume V
enclosed between the surface of the drop and a streamline with orbit time Torbit . The
intersections between the various curves represent, for each given Pe, the instants
at which sufficient time has elapsed that material has orbited once around the
volume invaded, hence giving the switching time Tswitch from the boundary layer
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notice is that the transition between the early-time and late-time
asymptotic behaviour is very abrupt. There is not any significant
period of time when the system matches neither one nor the other
asymptotic behaviour.

This suggests that to a good approximation, we can assume that
the transition between the early-time and late-time states is
instantaneous. We determine the time at which the transition
occurs by requiring continuity of _M through the transition. Eqs.
(41) and (45) then require that the transition time8 T trans is
Ttrans � 4

p although this is particular to our flow field (which has
a ¼ 0:590). A more general relation (which follows via Eq. (44)) is
Ttrans ¼ 3=ð4aÞ. The solute mass Mtrans at time Ttrans is obtained
directly via Eq. (41) and it turns out that Pe1=2Mtrans � 16 (or more
generally it is 4

ffiffiffiffiffiffiffiffiffiffiffiffi
3p=a

p
). We also define a quantity Mextrap by extrap-

olating the late-time growth of M backwards from ðT trans;MtransÞ until
it intersects the M-axis. The intersection is always half of Mtrans, so
that Pe1=2Mextrap � 8 (or more generally it is 2

ffiffiffiffiffiffiffiffiffiffiffiffi
3p=a

p
).

Fig. 6(c) compares the computed Pe1=2M vs T with an approxi-
mate formula which uses the ‘‘rigid drop” Eq. (41) up to time
T trans, and then uses

M ¼ Mextrap þ _Mret;ss T ð46Þ
thereafter (with the steady _Mret;ss coming from Eq. (44)). Clearly

according to Fig. 6(c) the computed Pe1=2M value and the approxi-
mate formula are virtually indistinguishable on the scale of the
graph. The laborious procedure for computing M (firstly obtaining
f from Eq. (D.4) and thence M via Eqs. (17) and (D.8)) can be
short-cut using this simple explicit M vs T formula.

4.4. Results for streamline orbit time Torbit and switching time Tswitch

In Section 4.3 we computed the amount of solute massM enter-
ing the drop as a function of time T. Another way to represent the
results for the amount of solute transferred is in terms of an equiv-
alent volume that solute has invaded. Because of the way that we
normalise our concentration field via Eq. (3) (zero normalised
concentration initially inside the drop and unit normalised
8 We refer to this time within the evolution of the boundary layer as a ‘‘transition
time”, so as not to confuse it with the ‘‘switching time”, at which the boundary layer
theory is replaced by a streamline-averaged theory, a process which happens later on.
concentration outside), it follows (see Section 2.3.2) that M and V
are actually identical. The specific formula that we employ for V
vs T (which is given as Eq. (D.9) within Appendix D.3) actually cor-
responds to the prediction for M vs T given in Eq. (46) with the
terms in this equation evaluated via the expressions provided in
Section 4.3.4.

As we have explained (see Section 2.3), the criterion for deter-
mining the switching time Tswitch between the boundary layer the-
ory and the streamline-averaged one requires matching the time
elapsed T with a streamline orbit time Torbit. Accordingly data for
Torbit are considered first in Section 4.4.1 with data for the switch-
ing time Tswitch itself then being discussed in Section 4.4.2.
4.4.1. Results for Torbit

Using theory from Section 2.3, data from Appendix D.1 and
methods from Appendix D.3, we have computed and plotted Torbit

vs streamfunction w: see Fig. 8(a).
The results are as we expect. The orbit time is a decreasing

function of w. Indeed small w values give very long orbit times
(since fluid elements are held up near the forward and rear
stagnation points of the drop) and a small w asymptotic expression
theory to the streamline-averaged one. For simplicity in locating these intersections
we use an asymptotic approximation to V vs Torbit (solid curve; Eq. (26)) valid in the
limit of large Torbit (equivalent to the small w formula in (a)). The correction
associated with having finite w (dashed curve adjacent to the solid curve in (b)) is
small.
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(Eq. (23)) also captures the asymptotic behaviour. Meanwhile the
largest w values, those neighbouring the internal stagnation point
w ¼ wstag have the smallest orbit times, approaching a well-
defined limit Torbit;stag (see Appendix D.1.2).

In Fig. 8(b) these same Torbit data are re-expressed as volume V
enclosed (between a given streamline and the drop surface) vs
Torbit. The volume axis in the plot only extends up to V ¼ 1 whereas
the full drop volume is V ¼ 4p

3 : hence Fig. 8(b) focuses just on part
of the drop corresponding to streamlines close to the surface and/
or axis. We plot firstly VorbitðTÞ obtained by a small w asymptotic
formula (Eq. (26)), but also show the finite w correction (Eq.
(24)). Since the focus in Fig. 8(b) is only on part of the drop, the
finite w correction is seen to be small, and is neglected here, as it
is easier to work with an analytical expression such as Eq. (26)
provides.
4.4.2. Results for the switching time Tswitch

Switching between the boundary layer and streamline-
averaged theories should occur at a time Tswitch when the solute
that has entered the drop to date has had the opportunity to orbit
exactly once around the volume that it has invaded: this can be
found via the intersection between Eq. (26) for V vs Torbit and Eq.
(D.9) mentioned earlier for V vs T. This latter equation is plotted
in Fig. 8(b) for selected Pe values between Pe ¼ 10;000 and
Pe ¼ 100;000: recall from Sections 1 and 2.1 that typical Peclet
numbers for this process are on the order of tens of thousands.
All the Tswitch intersection points in Fig. 8(b) are around ten times
longer than the time Ttrans defined in Section 4.3.4. Hence the vol-
ume invaded V vs time elapsed T is definitely in the straight line
region (described by Eq. (D.9)) not the preceding ‘‘rigid drop”
region (Eq. (41)).

The intersection points can be read off and are listed in Table 1.
Moreover to demonstrate that these intersections all occur in the
regime of small w (i.e. w � wstag), the w values from that table are
shown as vertical lines in Fig. 8(a). What we see in Table 1 is that
the volume invaded by soluteV (and the value of the streamfunction
w that manages to enclose this volume) are decreasing functions of
Pe, whereas the time Tswitch to switch into the streamline-averaged
state is a slowly increasing function of Pe, a fact we already antici-
pated in Section 2.3.2. Remember however that time T has been
non-dimensionalised based on a convective time scale, but (again
consulting Section 2.3.2) a fairer comparison between the
behaviours at different Pe values is to use a diffusive time scale
t ¼ T=Pe. When expressed in terms of t, the time to switch out of
the boundary layer regime into the streamline-averaged one is not
only exceedingly small (t � 1) it is also a decreasing function of
Pe, as we expect and as Ubal et al. (2010) in fact found.

One observation is that we cannot confidently extrapolate the
boundary layer theory down to Peclet numbers much smaller
than 10,000. When Pe ¼ 10;000 the boundary layer already
accounts for around 17% of the drop volume by the time when the
streamline-averaged state is attained. For a further reduction in Pe
Table 1
As a function of Peclet number Pe, the switching time Tswitch at which the boundary layer th
which has been invaded by solute at this time (determining V as if the solute invades with
drop volume is 4

3p � 4:188), and the streamline w enclosing this invaded volume (rememb
parameter w
 that appears in the complementary error function (Eq. (34)) which governs
initiated (ensuring that the correct amount of solute is inherited from the earlier boundar

Pe Tswitch V

10,000 10.37 0.7326
20,000 11.18 0.5537
50,000 12.24 0.3801

100,000 13.05 0.2848
down to Pe ¼ 1000 say (a case considered by Ubal et al. (2010)), that
volume percentage would increase further still. Although the
qualitative picture of a boundary layer state giving way to a
streamline-averaged one does seem to be borne out by the numer-
ical simulations of Ubal et al. (2010) even for Pe ¼ 1000, the
quantitative accuracy of the boundary layer theory might be
compromised without a clear separation of scales. This is not a
concern however, since as already mentioned, Peclet numbers are
more likely to be on the order tens of thousands than on the order
of thousands: the boundary layer theory should become more
reliable precisely in the regime in which full numerical
simulations are very stiff.

In summary, it is possible using the theory we have outlined to
estimate when the boundary layer theory must be switched to a
streamline-averaged theory. The switch occurs (at least when
expressed in terms of time t, rather than time T) at an extremely
early time, which becomes earlier still as Peclet number increases.
Determining what happens to the system after the switch, requires
first of all knowing the parameters in the streamline-averaged
equation, specifically the streamline orbit time (which was already
considered above) and the effective diffusivity (which is the topic
of the next section).

4.5. Results for effective diffusivity

Before considering the effective diffusivity itself, it is easier to
compute the product DeffTorbit which corresponds to the integral
on the right hand side of Eq. (31). This has a well-defined limit
as w ! 0. The streamline w ¼ 0 covers the drop surface and axis,
but on the axis sin h vanishes, and on the surface r ¼ 1, we find
DeffTorbit ! fssjh¼p where fssjh¼p is defined by Eqs. (42) and (43).
Thus, for the streamline w ¼ 0 passing along the drop surface, the
value of DeffTorbit (a quantity that is relevant to the streamline-
averaged theory) can be related to fss (a quantity that arises in
the boundary layer theory).

That these two quantities should be related is in fact unsurpris-
ing and has already been mentioned in Section 2.4. Cross-stream
diffusion is responsible both for solute entering the drop at the sur-
face and for solute transferring from streamline to streamline.
Cross-stream diffusion is moreover faster or slower according to
whether streamlines approach one another or separate, with both
fss and DeffTorbit being measures of this.

Although DeffTorbit is finite on the drop surface, at the opposite
end of the w domain, namely at the internal stagnation point
w ! wstag, it vanishes: this is clear from Eq. (31), since both the
integrand and the integration path length within that equation
vanish in the w ! wstag limit. We expect then that DeffTorbit will
be a decreasing function of w and Fig. 9(a) which plots DeffTorbit over
the entire w domain bears out this expectation. The striking obser-
vation from Fig. 9(a) is that DeffTorbit is very nearly a straight line
function of w implying that

DeffTorbit � ð1� w=wstagÞfssjh¼p: ð47Þ
eory is switched for a streamline-averaged one, the characteristic volume V of the drop
the same concentration as it has outside the drop, and remembering also that the full
ering that the internal stagnation point is wstag � 0:0810). The final column gives the
the assumed distribution of solute in the drop when the streamline-averaged state is
y layer regime).

w w


0.009157 0.0173
0.006511 0.0122
0.004144 0.00777
0.002942 0.00549



Fig. 10. (a) Predictions of the streamline-averaged model for (normalised) solute
mass fraction W vs streamfunction w at various times t. The data are formally for
Pe ¼ 10;000, although the Pe value impacts negligibly upon the streamline-
averaged solution itself, governing only the time at which the system first reaches
the streamline-averaged state (which is well before any of the various times for
which W vs w is plotted here). (b) W vs time t predicted by the streamline-averaged
model, with W taken either at the internal stagnation point w ¼ wstag or else as a
volume-average over the drop. These data again are formally for Pe ¼ 10000
although, as before, the Pe value impacts very little on the solution: larger Peclet
numbers would give an earlier switch into the streamline-averaged state, with less
mass (and hence less volume-averaged solute mass fraction) having been
transferred up to that point.

Fig. 9. (a) The product DeffTorbit vs streamfunction w. The function is very nearly a
straight line (shown for comparison). Meanwhile the horizontal line is fssjh¼p as
defined in Eq. (42). (b) Deff vs w. Note that Deff vanishes at both ends of the w interval
(for w ! 0 and for w ! wstag) having a local maximum (see the horizontal line) in
the interior of the interval.
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Combining the Torbit data from Fig. 8(a) with the DeffTorbit data from
Fig. 9(a) provides Deff vs w which is plotted in Fig. 9(b). Observe that
Deff vanishes at both ends of the w interval: at one end of the inter-
val DeffTorbit is finite, but Torbit is infinite, whereas at the other end,
Torbit is finite but DeffTorbit vanishes. It follows then that Deff has a
local maximum in the interior of the interval. However on the
approach to w ! 0, we would have to go to exceedingly tiny w val-
ues in order to attain a small Deff value. This follows from DeffTorbit

being finite, but Torbit having a very weak logarithmic divergence.
This completes our discussion of the functions Torbit, Deff and

their product DeffTorbit. Having evaluated these functions we are
now ready to obtain results from streamline-averaged equations,
which we do in the next section.

4.6. Results for streamline-averaged theory

This section is organised as follows. Sections 4.6.1 and 4.6.2
show results specific to the streamline-averaged theory (specifi-
cally the spatiotemporal behaviour of the streamline-averaged
solute mass fraction W), whilst Sections 4.6.3–4.6.5 give overall
predictions for mass transfer. These overall results incorporate
both the boundary layer and streamline-averaged regimes, but as
we will see, the latter regime dominates most of the evolution.

4.6.1. Streamline-averaged profiles for W
Profiles of W (the streamline-averaged mass fraction) vs

streamfunction w at various times t are presented in Fig. 10(a).
Note that the data in Fig. 10(a) are nominally for Pe ¼ 10;000.
Recall however that Pe does not affect the streamline-averaged
theory itself, merely the time at which the streamline-averaged
state is first achieved. This particular time, and the W vs w profile
relevant to it (and also the amount of solute mass under that pro-
file), are obtained via the theory discussed in Sections 2.3 and 2.5.1.
According to Table 1, for Pe ¼ 10;000, the streamline-averaged
state is achieved at T ¼ 10:37 and hence at t � T=Pe � 0:001. All
the W vs w profiles shown in Fig. 10(a) are for times significantly
later than this, so correspond to a system already in the
streamline-averaged state (and thus insensitive to Pe).

What we see in Fig. 10(a) is that solute (which transfers from
streamline to streamline diffusively) gradually invades more and
more of the drop. What is evident however is that for time
t ¼ 0:002 solute has still not reached as far as the internal stagna-
tion point of the drop w ¼ wstag, and for t ¼ 0:01 solute it is only just
beginning to arrive there. In fact the boundary condition (33) only
permits W to grow with time at w ¼ wstag when non-zero spatial
gradients @W=@w have also arrived there.

As time proceeds, the spatial variations in W decrease, meaning
that the concentration driving force (highest concentration in the
spatial domain less lowest concentration at any given t) also
decays with time. The model of Uribe-Ramirez and Korchinsky
(2000b) also incorporates the decay of concentration driving
forces, but assumes that the entire concentration difference is rea-
lised across a very narrow boundary layer of thickness order Pe�1=2

near the drop surface. Here however we see that the concentration
differences only start to decay once the concentration gradients
manage to spread across the full w domain i.e. across the entire



Fig. 11. (a) Predictions of (normalised) solute mass M in the drop vs time t for
various Peclet numbers Pe, showing how for very small values of t, mass transfer
crosses over from a boundary layer regime to a streamline-averaged regime. A
comparison with the rigid drop prediction is also shown. (b) As per (a), but on a
longer time scale, with a logarithmic axis for t. In this normalised or rescaled
system, the final solute mass (horizontal line) is 4

3p. (c) A comparison between the
boundary layer theory developed in this work denoted ‘BL’ (again for various Peclet
numbers), the streamline-averaged theory, and the previous boundary layer theory
of Uribe-Ramirez and Korchinsky (given by Eq. (49), see Uribe-Ramirez and
Korchinsky (2000b)).
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streamline pattern. By spreading the concentration gradients out in
this fashion, instead of confining them to a thin layer, the decay in
the concentration driving force becomes now much slower.
Nonetheless the concentration driving force does decay, and by
time t ¼ 0:1 we see that the concentration field is approaching uni-
formity, with the concentration driving force being only around
10% of its original value. The smaller spatial gradients in this near
uniform field, again however imply, via boundary condition (33),
smaller temporal rates of change for W near the stagnation point.

4.6.2. Streamline-averaged evolution for W
Additional insights can be obtained by plotting data for W vs t.

We do this in Fig. 10(b) both for the internal stagnation point
w ¼ wstag (the point that is slowest to evolve) and for a volume-
averageW over the entire drop. It is interesting just how dissimilar
the two curves are.

The volume-averaged W starts off from a non-zero value,
owing to the fact that the streamline-averaged theory does not
extend all the way down to zero time, but instead inherits an ini-
tial condition from the boundary layer theory. For our nominal
Peclet number Pe ¼ 10;000 the non-zero starting value for
volume-averaged W is the ratio between the volume considered
to be invaded by solute during the boundary layer period (read
off from Table 1) and the full volume 4p

3

� 	
of the drop. The rate

of change of the volume-averaged W also starts off being rapid,
since the streamline-averaged model inherits a solute concentra-
tion field containing initially sharp gradients from the boundary
layer theory that precedes it. However the growth of volume-
averaged W slows down, first of all as the solute concentration
gradients spread themselves over increasing numbers of stream-
lines, and following that as the concentration driving force (high-
est concentration in the spatial domain less lowest concentration
in the domain) decays.

By contrast W at w ¼ wstag starts off effectively from zero, and
does not even begin to increase until the drop is already half filled
with solute (i.e. volume-averaged W equal to 0.5). Growth of
Wjw¼wstag

, after it starts, is initially slow, then speeds up for a period,

and subsequently slows down again: owing to boundary condition
(33), this temporal behaviour reflects also how the spatial concen-
tration gradient at w ¼ wstag behaves.

4.6.3. Overall predictions for mass transfer spanning different regimes
Our overall aim in developing the streamline-averaged theory

and matching it to the boundary layer theory was to obtain a
means to compute the solute transfer into a circulating drop over
the full time domain of evolution whilst avoiding having to solve
the highly stiff partial differential equations that ordinarily result
in the high Peclet number limit. In order to demonstrate how we
have addressed this aim we plot in Fig. 11 the predictions of our
calculations for total solute mass M in the drop vs time t spanning
both the boundary layer regime and the streamline-averaged one.

Fig. 11(a) shows data only up as far as t ¼ 0:002 (which is long
before the mass transfer process is complete). Nonetheless the
range of times is sufficient to examine the details of switching
between the boundary layer and streamline-averaged states. What
we see is that at very early times the solute mass vs time follows a
rigid drop formula, but this soon gives way to a steady rate of
increase, still within the boundary layer regime. The larger the Pe
value, the sooner the steady rate of increase is attained, and the
steeper the rise during the steady rate period is. As mentioned in
Section 2.5.1 however, the rate of increase of solute mass suddenly
drops when the streamline-averaged state is attained.

Mathematically this is due to the way that we implement the
initial condition for the streamline-averaged equation redistribut-
ing the available solute from a state given by Eq. (11) (which
favours solute being towards the rear part of the drop for any given
streamline) to a state given by Eq. (34) (which treats all points on
any given streamline uniformly). Values of w
 (the parameter
appearing within Eq. (34) that governs the initial streamline-
averaged state) are reported in Table 1: as anticipated in Sec-
tion 2.5.1 they are decreasing functions of Peclet number Pe.

We can use these w
 values to determine how much dM=dt
changes upon switching into the streamline-averaged state. Before
the switch we have dM=dtjbefore ¼ Pe _Mret;ss where the prefactor Pe
comes from writing the derivative in terms of t rather than T,
and where _Mret;ss is given by Eqs. (44) and (45). Immediately after
the switch we appeal to Eq. (18), but with @w=@wjw¼0 given by

�2=ð ffiffiffiffi
p

p
w
Þ (see Eq. (34)) and not by Eq. (19). Hence

dM
dt

����
after

¼ 2p 2ffiffiffiffi
p

p
w


fss

����
h¼p

: ð48Þ



Fig. 12. Predicted Sherwood number Sh vs dimensionless time t, for the boundary
layer system at two different Peclet numbers (Pe ¼ 10;000 and Pe ¼ 100;000)
showing how Sh departs from the rigid drop case and subsequently undergoes a
jump as the system switches into the streamline-averaged state.
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The data for w
 presented in Table 1 turn out to give dM=dtjafter
being around 0.51 times dM=dtjbefore regardless of the value of Pec-
let number.

An instantaneous change in dM=dt as is envisaged here is of
course artificial. Nonetheless (see e.g. Section 2.5.1) the full numer-
ical simulations of Ubal et al. (2010) show an abrupt decrease in
dM=dt over a small but finite period of very limited duration. This
reflects the fact that as soon as fluid elements have circulated once
around the drop, it is no longer possible to bring fresh fluid ele-
ments from the drop interior into contact with the surface, concen-
tration gradients thereby fall and the mass transfer rate must
suffer.

4.6.4. Overall predictions on longer time scales
Fig. 11(b) shows the same data as Fig. 11(a) but on a much

longer time scale. We use a logarithmic time scale here which
stretches out the initial boundary layer phase of evolution in order
to make it visible. The overwhelming majority of the evolution of
the concentration field is spent in the streamline-averaged state,
with the boundary layer regime estimated to account for only
about 1% of the time domain (when Pe ¼ 10;000) or even as little
as 0.1% (in the case of Pe ¼ 100;000). These estimates follow
because Table 1 shows the boundary layer state surviving in very
rough terms on the order of 10 units of T (i.e. 10=Pe units of t)
whereas we know from Fig. 10(a) that the streamline-averaged
state requires on the order of 0.1 time units to complete. Further-
more the solute mass transfer achieved during the boundary layer
phase follows from Eq. (46) or equivalently from Eq. (D.9) (remem-
bering that solute mass M is identical to invaded volume V in our
scalings). The mass given by these equations scales as Pe�1=2 and
so for large Pe is necessarily a small fraction of the total amount
of solute mass transferred during the overall process (which in this
normalised system is 4p

3 corresponding to a unit concentration fill-
ing the volume of the unit sphere). So the streamline-averaged
state (and not the boundary layer state) very definitely dominates
the overall evolution. Another important observation we make
from Fig. 11(b) is that with increasing time, the streamline-
averaged evolution outperforms the rigid drop: as mentioned in
Section 1, it is faster for mass to diffuse across streamlines to reach
an internal stagnation point, than to diffuse the even greater dis-
tance from outside the drop all the way to its centre.

One additional comparison we make is between the streamline-
averaged theory presented here and the predictions of Uribe-
Ramirez and Korchinsky (2000b). Recall (see Sections 1, 2.6 and
4.6.1) that these latter predictions assume that fluid returned from
the boundary layer to the bulk of the drop mixes well with fluid
already there, such that the structure of the boundary layer is pre-
served indefinitely, but the driving force across that boundary layer
decays as more and more mass transfer takes place. The resulting
formula for solute mass M vs time t (which we denote MUribe) is
given by

MUribe ¼ 4p
3

1� exp �3 _Mret;ss

4p
T

 ! !

¼ 4p
3

1� exp �3Pe _Mret;ss

4p
t

 ! !
; ð49Þ

where _Mret;ss is defined by Eq. (44). Predictions from (49) are plotted
in Fig. 11(c), and can be compared with the predictions from
streamline-averaged theory.

Clearly the predictions of Eq. (49) reach steady state much more
rapidly than the streamline-averaged ones do. Mathematically this
is a result of _Mret;ss being an order Pe�1=2 quantity (via Eq. (44)) and

hence Pe _Mret;ss within Eq. (49) being order Pe1=2. Physically this is
saying that, by assuming a thin boundary layer structure is
retained indefinitely, the time scale for achieving transfer of solute
mass is significantly compressed in the predictions of Uribe-
Ramirez and Korchinsky (2000b) compared to what a streamline-
averaged theory would predict.

Finally we note that there is a qualitative similarity between the
streamline-averaged data presented in Fig. 11(b) and/or Fig. 11(c),
and the full numerical simulation data plotted in a similar format
in Ubal et al. (2010). Unfortunately we cannot compare the two
sets of data directly because Ubal et al. (2010) considered a
multi-component diffusion system with coupling between the dif-
fusion of different components, whereas here single component
diffusion is considered. Note also that there is limited overlap
between the ranges of Peclet number considered: Ubal et al.
(2010) only considered Pe up to 10,000, whereas the data pre-
sented here start from Pe ¼ 10;000 upwards: as mentioned in Sec-
tion 4.4, if we push to Peclet numbers smaller than this we lose the
separation of scales upon which the boundary layer model is
based. Quantitative comparison of our model predictions with full
numerical simulations (specifically single-component diffusion
with Pe of 10,000 or greater) remains an important outstanding
item of future work.

4.6.5. Analysis of Sherwood numbers
Yet another way to analyse the data is in terms of Sherwood

numbers. Here we define the Sherwood number Sh to be the ratio
of the rate of change of solute mass dM=dt to the characteristic rate
of change associated with diffusion alone. In our dimensionless
system, we estimate the diffusion only contribution as the concen-
tration driving force (one minus the volume averaged W) multi-
plied by the surface area of the unit sphere 4p. Since the volume
averaged W is the ratio of M and 4p

3 it follows

Sh ¼ dM=dt
4p 1� 3M

4p

� 	 : ð50Þ

This definition for Sh is half of that of Edelmann et al. (2017) since
drop radius (not drop diameter) is chosen as the characteristic
length scale for non-dimensionalising lengths.

Data for Sh vs t are presented in Fig. 12. Examining Sherwood
numbers is actually a very robust test of any model, because Sh
is highly sensitive to model predictions as it involves not just M
but also dM=dt. Fig. 12 shows that the data follow a ‘‘rigid drop”
formula for Sh at very early times. Immediately after the predic-
tions start to depart from the rigid drop, but provided the boundary
layer theory still applies, Sh is roughly constant. We have shown
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this as a horizontal line in Fig. 12, on the grounds that M � 1 in

this time domain and hence Sh � ð4pÞ�1 dM=dt with dM=dt being
constant and equal to Pe _Mret;ss � 2pPe1=2 according to Eq. (45):
clearly Sh is sensitive to Pe during this period of the evolution. Once
the streamline-averaged state is achieved, the Sherwood number
undergoes a discontinuous step change so as to attain the
streamline-average Sh vs t curve. This step change is an artifact
of the model associated with assuming a redistribution of the
solute mass at the instant that the streamline-averaged state is
attained: it is expected that one would actually see a rapid but
not instantaneous decrease in Sh around this time. In the
streamline-averaged state Sh is no longer sensitive to Pe, but
nonetheless the streamline-averaged Sh exceeds the rigid drop
one including in the limit of arbitrarily large time: for the rigid
drop Sh can be shown to asymptote to p2=3 whereas numerically
our streamline-averaged data are found to approach Sh � 8:6.
5. Conclusions

We have presented a technique for predicting the time evolu-
tion of solute mass transfer into a circulating drop in the context
of liquid-liquid extraction. This is a challenging system upon which
to perform full numerical simulations: despite the fact that the full
numerical simulations are conceptually easy to set up, owing to the
Peclet number being exceedingly large (on the order of tens of
thousands), the governing equations are stiff. We therefore sought
to find a technique to solve for the evolution of the solute mass
fraction in the drop which does not require the solution of such
stiff equations.

The model presented here recognises that the drop spends most
of its lifetime in a streamline-averaged state, such that solute con-
centration varies across streamlines but not along them. Mass
transfer in this regime proceeds in the cross-stream direction and
is controlled by diffusion despite the very large Peclet number:
although convection is rapid, by definition it only transports solute
along streamlines, not in a cross-stream direction.

Convection in this regime manifests itself only in the sense that
it can either bring streamlines together or separate them, and
cross-stream diffusion proceeds much faster across more closely
spaced streamlines. Information from the flow field is therefore
incorporated by assigning an effective diffusivity to each stream-
line. This can be thought of as being a time average moving along
the streamline of the inverse square of streamline separation dis-
tance, a measure which is relevant because the rate of diffusion
rises in this fashion if streamline separation distances fall.

The fluid elements in the drop circulate around many times
whereas those outside the drop flow past it once only and (when
Peclet number is large) flow past quickly. The implication is that
mass transfer has sufficient time to develop over much larger
length scales inside the drop than out, suggesting that it is relevant,
as we have done here, to solve an internal problem for which, as an
approximation, the solute concentration on the drop surface is kept
fixed: ordinarily internal problems are considered when the inter-
nal diffusivity is substantially less than the external one, but it is
not even necessary to assume that provided the internal length
scale is substantially greater than the external one. As time pro-
ceeds, the mass transfer in this internal problem extends all the
way from the drop surface and axis to an internal stagnation point
about which the flow pattern in the drop circulates. This is a rather
smaller distance than that from the drop surface to the drop centre,
suggesting that streamline-averaged diffusion proceeds more
quickly than the ‘‘rigid drop” diffusion that would occur in the
absence of any circulation whatsoever: this expectation is indeed
borne out by our numerical data for the streamline-averaged
model.
Although the streamline-averaged state accounts for the over-
whelming majority of the lifetime of the evolution of the drop, it
does not apply right down to the initial state. At relatively early
times, prior to one complete streamline circulation having been
executed, the system cannot be in a streamline-averaged state.
Considering for instance, a circulation streamline that passes both
close to the drop surface and along the drop axis, the solute con-
centration on those fluid elements exposed to the surface must
be very different from the concentration on those elements upon
the same streamline which have spent all their lifetime to date
near the drop axis but deep in the interior. Such a regime needs
to be described by a boundary layer model and, unlike the
streamline-averaged model, it evolves on a (fast) convective time
scale rather than a (slower) diffusive one.

A key variable appearing in the boundary layer description is a
so called ‘‘extent of diffusion” function. Once this function is
known, the amount of solute in the drop can be found very
straightforwardly. It was shown that the extent of diffusion is an
analogue of the aforementioned effective diffusivity, except that
it applies specifically on the drop surface rather than throughout
the entire drop. It behaves like a ‘‘diffusive clock” which is con-
vected along the surface growing quickly when streamlines near
the surface move close together but slowing down as streamlines
move apart. Increases in the value of the extent of diffusion imply
solute penetrating across increasing numbers of streamlines.

Although convection is an integral part of how the extent of dif-
fusion behaves, at very early times, when the boundary layer is
arbitrarily thin, diffusion invariably dominates. The result is that
the boundary layer initially adopts a spherically symmetric config-
uration, just as would happen in a rigid drop without any convec-
tion. As time progresses however, the role of convection starts to
become important, and this causes the extent of diffusion function
(and likewise the distribution of solute mass which follows from it)
to become skewed towards the rear of the drop.

Solute enters the drop through its surface and is carried by the
circulation along a boundary layer towards the rear, and subse-
quently is returned by the circulation into the interior of the drop.
The extent of diffusion (and hence the structure of the boundary
layer) evolves towards a steady state but with the steady state
on the forward part of the drop being approached considerably fas-
ter than at the rear. Since most of the mass transfer across the sur-
face actually happens through the forward end, the boundary layer
model predicts that the rate of growth of solute mass in the drop
attains a near steady state surprisingly quickly. Moreover the
higher the Peclet number, the faster the rate of growth of solute
mass during this period, assuming that the comparison is made
using a diffusive rather than a convective time scale.

Of course this steady state rate of growth predicted by the
boundary layer model cannot proceed indefinitely as the system
switches into a streamline-averaged state at longer times. Intu-
itively the time at which this switch occurs should correspond to
one streamline orbit time for those particular streamlines in the
drop that pass near the drop surface and axis. At that time, large
gradients in solute concentration along such streamlines must
cease, since all fluid elements currently on such a streamline have
already been exposed to close proximity to the surface at some
point during their evolution.

Although this criterion is easy to describe intuitively, it is less
easy to formulate mathematically, because the streamline orbit
time actually diverges as the drop surface is approached, owing
to there being stagnation points at the forward and rear of the
drop. It is necessary therefore to use the boundary layer theory
to track the volume that solute invades as time proceeds, until
the streamline orbit time corresponding to this invaded volume
matches the time elapsed. Using this criterion, predictions for the
switching time between the boundary layer state and the
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streamline-averaged one then indicate that increasing Peclet num-
ber leads to the switch happening earlier both in terms of time
(again with time being measured here on a diffusive scale rather
than a convective one) and in terms of net amount of solute trans-
ferred up to the switch.

At the switching time, an initial condition for the streamline-
averaged equations must be implemented. Our model assumes
that this can be done by redistributing the solute mass inherited
from the preceding boundary layer model. Redistributing solute
in this fashion, leads to an instantaneous change (specifically a step
decrease) in the rate at which solute enters the drop immediately
after that. Although artificial, we view this instantaneous change in
the rate of mass transfer as an idealization of an abrupt decrease in
the mass transfer rate that actually occurs over a small but finite
time (associated, as mentioned earlier, with all the fluid elements
near the surface of the drop having orbited once around already,
and thereby having had prior contact with solute at the surface).

Taken together, the boundary layer theory, the streamline-
averaged theory, and the criterion developed here for switching
between the former theory and the latter, are able to make predic-
tions for the solute contained in the drop for any chosen Peclet
number (assuming Peclet number is large) and for the full time
domain of evolution of the mass transfer. The time to achieve
steady state according to the streamline-averaged theory is sub-
stantially less than what a rigid drop model (without circulation)
would predict. In addition, the time to steady state is substantially
more than the predictions of Uribe-Ramirez and Korchinsky
(2000b) (which are based on assuming a sharp boundary layer con-
tinues to persist even after many streamline orbits have been exe-
cuted). Although the predictions of the model developed here do
seem to reproduce qualitative features of literature data obtained
from full numerical simulations of the (exceedingly stiff)
advection-diffusion equations, we emphasise that we have not
yet subjected the model predictions to a quantitative comparison
against full numerical simulation data. Doing such a comparison
is identified as an exceedingly important item for further work.
Appendix A. Obtaining the asymptotic expression for
streamline orbit time

It was claimed in the main text that streamlines passing close to
the drop surface and/or drop axis have orbit times Torbit that satisfy
Eq. (23), namely Torbit 	 A logð1=wÞ þ B where w is the streamfunc-
tion (which vanishes on the drop surface and axis) and where A
and B are constants. This appendix explains how this relation can
be obtained, and how to go about determining the constants A
and B. This is achieved by first determining how long a fluid mate-
rial element is held up near the forward and rear stagnation points
of the drop, and subsequently adding in the times to displace from
the neighbourhood of one stagnation point to the neighbourhood
of the other.

In order to compute orbit times, we require a surface velocity
field uhjsurf (varying with respect to h, and vanishing at h ¼ 0 and
h ¼ p) and an axis velocity field urjaxis (varying with respect to r,
vanishing at r ¼ 1, and generally with a different functional form
on the upper part of the axis, h ¼ 0, and the lower part of the axis,
h ¼ p). At the stagnation points, r ¼ 1 and either h ¼ 0 (forward) or
h ¼ p (rear), local strain rates can be computed in terms of deriva-
tives of uhjsurf and/or urjaxis, and the local forms of the streamfunc-
tions are then known: they correspond to a uniaxial compression
(and hence a biaxial extension) near the forward stagnation point
and a uniaxial extension (and hence a biaxial compression) near
the rear stagnation point. Using these known forms, it turns out
that locally near the forward stagnation point w reduces to
Ebiaxh

2ð1� rÞ (where Ebiax is the biaxial extension rate, a constant
of order unity in our dimensionless system of equations) and near

the rear stagnation point it reduces to 1
2Euniaxðp� hÞ2ð1� rÞ (where

Euniax is the uniaxial extension rate, again a constant of order unity
in our dimensionless system). It is easy to demonstrate by substi-
tuting these functional forms into Eqs. (4) and (5) that uniaxial
compression or uniaxial extension velocity fields result locally.

We perform an analysis near the forward stagnation point as
follows. We select a streamline inside the drop with a small w value
(w � 1) ensuring that the streamline passes close to the stagnation
point. We choose two points on the streamline, one just upstream
of the forward stagnation point ðrup;fwd; hup;fwdÞ and one just down-
stream of it ðrdown;fwd; hdown;fwdÞ. We aim to determine the time to
migrate between these points.

Moreover we select an rup;fwd value such that

w1=3 � 1� rup;fwd � 1 and we also choose a hdown;fwd value such that

w1=3 � hdown;fwd � 1. The local functional form of the streamlines
implies that h2ð1� rÞ is conserved on the streamline, and owing
to the way in which we have constrained rup;fwd, we can
deduce that hup;fwd � 1� rup;fwd. This means that the point
ðrup;fwd; hup;fwdÞ is far closer to the drop axis than it is to the drop
surface. Analogously the constraint we have placed on hdown;fwd

implies 1� rdown;fwd � hdown;fwd, so that ðrdown;fwd; hdown;fwdÞ is far
closer to the drop surface than it is to the axis. Thus migration
from ðrup;fwd; hup;fwdÞ to ðrdown;fwd; hdown;fwdÞ corresponds in effect to
migrating from the drop axis to the drop surface whilst passing
close to the stagnation point. Using the local form of the stream-
function (w 	 Ebiaxh

2ð1� rÞ) and the velocity fields one derives
from it (i.e. biaxial extension near a stagnation point), it is possible
to determine analytically via elementary calculus the time to move
from ðrup;fwd; hup;fwdÞ to ðrdown;fwd; hdown;fwdÞ for any chosen streamline
w and this is what leads to the logarithmic term in Eq. (23). More-
over the larger the value of Ebiax, the faster the motion, and the
shorter the hold up time near the stagnation point: this manifests
itself in the prefactor multiplying the logarithmic term.

Similar considerations apply to computing the hold up time
near the rear stagnation point, with a w � 1 streamline inside
the drop being chosen, and with suitably chosen upstream and
downstream points ðrup;rear; hup;rearÞ and ðrdown;rear; hdown;rearÞ being
defined, both located near the rear stagnation point, but with the
upstream point chosen to be much closer to the surface than it is
to the axis, and the downstream point chosen to be much closer
to the axis than to the surface. Again a logarithmic term results,
and again there is a prefactor that scales inversely with the strain
rate (Euniax in this case). Hence the total times that fluid elements
on a given streamline are held up near both forward and rear stag-
nation points are well defined. Intuitively, the smaller the value of
w, the closer a streamline passes to either stagnation point (for-
ward or rear), and the longer the fluid is held up near these stagna-
tion points, which is what Eq. (23) predicts.

The total orbit time is obtained adding in the (finite) times
taken to traverse the drop away from the stagnation points i.e.
from h ¼ hdown;fwd to h ¼ hup;rear along the drop surface (Eq. (9) is
applicable here) as well along the drop axis h ¼ p from
r ¼ rdown;rear to the drop centre, and additionally along the drop axis
h ¼ 0 from the drop centre to r ¼ rup;fwd; h ¼ 0: these can be readily
obtained by quadrature if necessary. An expression of the form of
Eq. (23) then results.
Appendix B. Relation between enclosed volume, orbit time and
streamfunction

Eq. (24) in the main text claimed that there was a relation
between volume V enclosed by a set of streamlines, the streamline
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orbit time Torbit and the streamfunction. In this appendix we
explain how this relation comes about.

We consider a generalised coordinate system where s mea-
sures distance along a streamline, w represents the streamfunc-
tion, and / is the azimuthal angle. As in the main text
(Section 2.4), we can replace the coordinate s by a new coor-
dinate S where S ¼ s=LorbitðwÞ where LorbitðwÞ denotes the length
of the streamline orbit: this now gives us a coordinate set S;w
and /. Following the procedure outlined in Section 2.4 we can
also construct an orthogonal coordinate set S, w and / such
that S ¼ S on one selected streamline (but not, in general, on
any others). Nonetheless the relation between S and S can
be readily determined via a geometric construction (see
Section 2.4).

Computing the volume of a fluid element is simple using the
orthogonal S;w and / coordinate set: the volume depends on the
product of three scale factors, one associated with each coordinate.
Remembering that s is a distance variable, and that S ¼ s=Lorbit, it
follows that the scale factor associated with S works out as
vLorbit where v � ð@S=@SÞw. Meanwhile w only varies in the direc-
tion normal to streamlines and (via Eqs. (4) and (5))

jrwj ¼ 1
r2

@w
@h

� �2

þ @w
@r

� �2
 !1=2

¼ r sin h ðu2
r þ u2

h Þ
1=2 ¼ usr sin h

ðB:1Þ
where us denotes the flow speed along a streamline. Hence the scale

factor associated with w is jrwj�1 ¼ ðusr sin hÞ�1. Finally the scale
factor associated with / is r sin h.

The product of all three scale factors is therefore vLorbit=us, so
the enclosed volume is

V ¼ 2p
Z w

0

I
dwdSvLorbit=us ¼ 2p

Z w

0

I
dwds=us ðB:2Þ

the factor 2p coming from integrating over the azimuthal coordi-
nate /. Substituting Torbit ¼

H
ds=us from Eq. (22) into Eq. (B.2), we

obtain Eq. (24).

Appendix C. Boundary condition at the internal stagnation
point

This appendix proves the validity of Eq. (33) that gives the
boundary condition for the streamline-averaged system at the
internal stagnation point.

Consider first of all the situation in physical space. Suppose the
internal stagnation point is at coordinate location rstag and hstag.
Choose a particular streamline orbit close to the internal stagna-
tion point. Suppose that the streamline encloses a small area Aorbit.

By analysing the flow field in the neighbourhood of the internal
stagnation point, which locally is comprised of a strain rate field
and a vorticity field, it is possible to show that the streamline
has an elliptical shape with semi-major and semi-minor axes,
respectively denoted a�, that satisfy

a� ¼ ð1� 2Estag=xstagÞ1=2ð1� 4E2
stag=x

2
stagÞ

�1=4ðAorbit=pÞ1=2 ðC:1Þ
where �Estag are eigenvalues of the strain rate tensor andxstag is the
vorticity, both evaluated at the internal stagnation point. Likewise it
is possible to show that the streamline enclosing an area9 Aorbit

corresponds to a w value
9 Previously we have measured enclosed volume starting from the drop surface and
axis moving into the drop. For the present argument in the neighbourhood of the
internal stagnation point however, we measure enclosed area from the internal
stagnation point moving outwards.
w ¼ wstag � ð1� 4E2
stag=x

2
stagÞ

1=2 Aorbitxstag

4p
rstag sin hstag ðC:2Þ

where wstag is the (maximal) value of the streamfunction at the stag-
nation point itself. That the difference in streamfunction wstag � w is
related to the enclosed area Aorbit is unsurprising since close to the
internal stagnation point the streamfunction must exhibit second
order variation with position, while the enclosed area is also a sec-
ond order quantity with respect to position. Eq. (C.2) in fact follows
from Eq. (24) recognising that as w ! wstag, the value of Torbit attains
a well-defined finite limiting value (the decreases in speed on the
approach to the stagnation point being compensated for by
decreases in the path length around the ellipse) and moreover an
enclosed area Aorbit in the ðr; hÞ plane implies a well-defined
enclosed volume in spherical polar ðr; h;/Þ coordinates.

All the results presented to date in this appendix, follow just
from the geometry of the streamfunction field in the neighbour-
hood of the stagnation point w ¼ wstag. We now need to couple
these results to expressions for mass transfer, in order to develop
a boundary condition for the streamline-averaged mass transfer
theory.

We proceed as follows. We equate the rate of increase of mass
inside the orbit Aorbit to the mass flux across the boundary of Aorbit.
Hence for a streamline-averaged solute mass fraction field W

Aorbit@W=@t ¼ �
I

@W=@nds ðC:3Þ

where n is a distance coordinate measured from the boundary of
orbit Aorbit pointing inwards, with s being a distance coordinate
measured along the orbit. Note that for the problem of interest,
i.e. mass transfer into the drop, W tends to decrease as n increases,
and hence W increases with time, consistent with the notion of
mass diffusing from the drop surface and axis to the internal stag-
nation point. We now write @W=@n as

@W=@n ¼ @W=@w @w=@n: ðC:4Þ

We expect @W=@w to be negative, whereas @w=@n � rstag sin hstag us

(where us is the speed at any point on the streamline). Under the
assumption that @W=@w is uniform across the entire area Aorbit we
deduce

Aorbit
@W
@t

¼ � @W
@w

rstag sin hstag

I
us ds: ðC:5Þ

Stokes theorem however implies that

I
usds ¼ xstagAorbit ðC:6Þ

where recall xstag is the vorticity at the stagnation point. Terms in
Aorbit can thus be cancelled from both sides of Eq. (C.5) and a limit
taken such that Aorbit ! 0. Eq. (33) as given in the main text then
results.

In the above we used physical arguments to derive the bound-
ary condition (33). Previous work (Brignell, 1975; Prakash and
Sirignano, 1978) used mathematical arguments instead. Given that
DeffTorbit vanishes at the internal stagnation point, and assuming
that @2W=@w2 remains finite there, Eq. (32) reduces to

@W=@tjstag ¼ T�1
orbit;stag@ðDeffTorbitÞ=@wjstag @W=@wjstag: ðC:7Þ

By inspection, this is seen to have the same general mathematical
form as Eq. (33) and after some mathematical manipulation can
be shown to reduce to it.



10 At the stagnation point, only two principal strain rates in the ðr; hÞ plane need to
be considered, and they are opposite and equal �Estag. Away from a stagnation point
however, azimuthal strain rates can occur, even though motion itself is confined to
the ðr; hÞ plane: in such cases, principal strain rates in the ðr; hÞ plane cease to be
opposite and equal.

P. Grassia, S. Ubal / Chemical Engineering Science 190 (2018) 190–219 213
Appendix D. Details of solution methods and model parameters

The purpose of this appendix is to give full details of the
solution methods employed in the main text of the paper, as
well as to provide the parameter values that are pertinent to
obtaining solutions of the model. This appendix is structured
as follows. Appendix D.1 specifies the fluid flow field within
the drop. Appendix D.2 revisits the boundary layer theory, intro-
ducing a minor change to the governing equations, which has
barely any effect upon the solutions themselves, but does make
the solutions slightly easier to determine. Appendix D.3 explains
details of identifying the time at which we switch from a bound-
ary layer formulation to a streamline-averaged one. Appendix
D.4 then sets up the streamline-averaged formulation, and
Appendix D.5 describes how it is solved. An overall summary
is given in Appendix D.6.

D.1. Specification of fluid flow field

In order to implement the theories outlined in Section 2, it
is first necessary to specify the drop flow field via a stream-
function. We employ the same streamfunction as was used
by Uribe-Ramirez and Korchinsky (2000b) and Ubal et al.
(2010). This represents a truncated Galerkin expansion of the
flow field produced with Reynolds number Re ¼ 30 assuming
the same viscosity inside and outside the drop, and similar
density inside and outside also (notwithstanding that a small
density difference is ordinarily required to provide a buoyancy
force to drive drop motion in the first place). The streamfunc-
tion is

w ¼ ðe1r2 þ e2r3 þ e3r4Þ sin2 hþ ðe4r2 þ e5r3 þ e6r4Þ sin2 h cos h

ðD:1Þ
where e1 ¼ 0:390, e2 ¼ �0:190, e3 ¼ �0:200, e4 ¼ 0:012, e5 ¼ 0:288
and e6 ¼ �0:300.

Whilst the results of our model are sensitive to the streamfunc-
tion we use, the general procedure we follow is not. It is therefore
possible to replace Eq. (D.1) by any other streamfunction, e.g. the
Hadamard-Rybczynski streamfunction (Batchelor, 1967), that is
applicable for a creeping flow, and repeat the same procedure in
that case (Brignell, 1975; Kronig and Brink, 1950; Prakash and
Sirignano, 1978). A comparison between the streamline layout
for Eq. (D.1) and for Hadamard-Rybczynski streamfunction is pre-
sented in Ubal et al. (2010).

D.1.1. Flow field at the drop surface
The boundary layer theory of Section 2.2 pays particular atten-

tion to the flow on the drop surface, and for the streamfunction
given in Eq. (D.1) this becomes

uhjsurf ¼ a sin hþ b sin h cos h ðD:2Þ
where a ¼ �2e1 � 3e2 � 4e3 and b ¼ �2e4 � 3e5 � 4e6. For the val-
ues of e1 through e6 that are considered here, we find a ¼ 0:590
and b ¼ 0:312.

According to Eqs. (D.1) and (D.2) there are stagnation points
on the drop surface and axis, a forward stagnation point (at
r ¼ 1; h ¼ 0) and a rear stagnation point (at r ¼ 1, h ¼ p). The for-
ward stagnation point turns out to correspond to compression
along the drop axis, i.e. biaxial extension normal to this, with
extension rate Ebiax ¼ ðaþ bÞ. The rear stagnation point corre-
sponds to uniaxial extension with extension rate
Euniax ¼ 2ða� bÞ. Knowing the values of Ebiax and Euniax is impor-
tant as these values affect the amount of time that fluid elements
spend held up near each stagnation point: see Appendix A for
more detail.
D.1.2. Flow field near the internal stagnation point
In addition to the forward and rear stagnation points, there is

an additional internal stagnation point, about which all other
streamlines circulate. This particular stagnation point corre-
sponds to a local maximum of the streamfunction, which we
denote by wstag, and its location ðrstag; hstagÞ can be found by set-
ting ur ¼ 0 and uh ¼ 0 in Eqs. (4) and (5) respectively, and apply-
ing a Newton-Raphson technique (Press et al., 1992). We
actually iterated the Newton-Raphson technique until it con-
verged within round-off error of the computer used, but here
we report results to just 3 significant figures, namely
rstag ¼ 0:698, hstag ¼ 1:38, wstag ¼ 0:0810: again these values are
sensitive to the e1 through e6 values employed in the particular
flow field here. Any other flow field we might choose must how-
ever also have an internal stagnation point somewhere within
the drop: that is a requirement of the topology of the streamline
pattern. We also analysed the vorticity and the principal strain
rates at the computed stagnation point.10 The vorticity xstag

turned out to be xstag ¼ 2:36, and the principal strain rates were
�Estag with Estag ¼ 0:628.

Knowing the vorticity xstag is important since it affects one of
the boundary conditions for the streamline-averaged theory (see
Eq. (33) and also Appendix C). The values of xstag and Estag also
turn out to affect the period of the streamline orbits immediately
adjacent to the stagnation point. As is mentioned in Appendix C,
these orbits are elliptical in shape. As one moves closer to the
stagnation point, the length of the orbits shrink, but the velocity
also falls, with the result that Torbit at the stagnation point
approaches a well-defined limit, which we denote Torbit;stag, and
which satisfies

Torbit;stag ¼ 4p
xstag

1� 4E2
stag

x2
stag

 !�1=2

: ðD:3Þ

We omit the proof of this result here, although we motivate
the result by considering limiting cases as follows. For a fluid
executing circular streamline orbits in solid body rotation with
an angular frequency X, it is simple to demonstrate that vor-
ticity x is 2X, whereas rate of strain vanishes. The period of
the solid body rotation is 2p=X and hence 4p=x which agrees
with what Eq. (D.3) predicts in the limit of vanishing strain
rates. As strain rates grow for fixed vorticity, streamline orbits
become increasingly elongated, and orbit times likewise
increase according to Eq. (D.3): in the limit of a simple shear
flow (for which Estag ! xstag=2), Eq. (D.3) predicts orbit times
will diverge.

The situation we are considering here has 0 < Estag < xstag=2
and hence falls somewhere between the two limiting cases dis-
cussed above. For the Estag and xstag values considered here
(xstag ¼ 2:36 and Estag ¼ 0:628 as given above), we evaluate
Torbit;stag as 6.28. This value is remarkably close to 2p, and hence
has the same orbit time as a solid body rotation with unit angular
frequency would have.

This completes our analysis of the main features of the flow
field for the moment, although we will revisit the flow field later
on in Appendix D.4 when we come to compute the parameters
required by the streamline-averaged theory. Before considering
that however, we discuss how to implement the boundary layer
theory.
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D.2. Implementing the boundary layer theory

The theory we have presented in Section 2, including the
boundary layer theory of Section 2.2, assumes that convection is
dominant (in the sense of having a large Peclet number). Near
the forward and rear stagnation points, the situation is slightly
more complicated since precisely at these stagnation points there
is no flow at all and hence no convection: strictly speaking in the
neighbourhood of such points adjustments to the boundary layer
theory should be made.

We have already described (see Section 2.2) how we handle
the rear stagnation point, namely by specifying an angle hr
(close to p) at which flow is considered to return from the drop
surface into the drop interior. Typically we choose hr ¼ 99p

100,
although we emphasise (again see Section 2.2) that different
choices of hr only affect the balance between the amount of
solute mass considered to be close to the drop surface, and
the amount of mass considered to be already in the drop inte-
rior: changing hr does not affect the total amount of solute
mass determined to be in the drop, which is the quantity of
main interest.

We now handle the forward stagnation point in a similar way,
i.e. considering that fluid newly arriving from the drop interior
(with zero solute mass fraction) was only injected into the bound-
ary layer on the drop surface at a certain small but finite injection
angle hi . Typically we set hi ¼ p

100 although we also considered
choices of hi ¼ p

10 or hi ¼ p
1000. Introducing this parameter hi to the

boundary layer model affects the model’s behaviour in a subtle
way explained in detail below (Appendices D.2.1–D.2.3), the
resulting solution scheme then being described in Appendices
D.2.4–D.2.6.

D.2.1. Role of the injection point hi
Since the boundary theory supposes that material points can

only begin acquiring solute via diffusion once they arrive at the
surface, i.e. once they arrive at angle hi, the ‘‘extent of diffusion”
function f (introduced in Section 2.2) is necessarily identically zero
on the domain 0 < h < hi, and moreover for h > hi, Eq. (10) is
replaced by

f ¼
Z ðhi ;h0Þh

max
uh

����
surf

sin2 hdh ðD:4Þ

where recall from Eq. (9) that h0 is the initial surface location of a
fluid element currently at h at time T.

If h0 exceeds hi then Eq. (D.4) is identical to Eq. (10). However if
h0 is less than hi there is a difference. Because however we choose
hi to be a very small angle (i.e. hi � 1), the difference in question
turns out to be exceedingly small. In the worst case, we consider
a h0 value that is arbitrarily small (tending to zero) and a small
but finite hi. In the limit of small angles, Eq. (D.2) reduces to
uhjsurf � ðaþ bÞh and moreover sin h � h, in which case the differ-
ence between Eqs. (10) and (D.4), would become in this worst caseR hi
0 ðaþ bÞh3 dh ¼ ðaþ bÞh4i =4. For hi ¼ p

100, and for the a and b values
quoted earlier, the difference between Eqs. (10) and (D.4) is then as
little as 2 10�7.

D.2.2. Points continuously on drop surface vs newly injected points
The change from Eq. (10) to Eq. (D.4) whilst minor in quantita-

tive terms does actually imply a change in the way that the solu-
tions for f behave. In order to understand the nature of this
change, we first define a quantity hbji which satisfies

T ¼
Z hbji

hi

dh=uhjsurf : ðD:5Þ
This quantity hbji (which clearly depends on T) corresponds to the
trajectory followed by a fluid element which is injected onto the
surface at location h ¼ hi when time T ¼ 0. Hence hbji separates fluid
elements which have continuously been in the boundary layer at
the drop surface throughout the entire evolution of the system
(namely those points with h > hbji) from other fluid elements which
have been newly injected onto the surface after the evolution
already started (namely those points with h < hbji). Observe that
h > hbji implies h0 > hi, whereas conversely h < hbji implies h0 < hi.

Eq. (D.4) implies that, for any given h, the value of f only evolves
with time when h > hbji, since the time dependence of f (at any
given h) manifests itself through the time evolution of the lower
limit of integration in that equation. For h < hbji, the lower limit
of integration in Eq. (D.4) remains fixed at hi, and hence the func-
tion f achieves a steady state, which does however still depend on
h: we denote this fssðhÞ, and discuss its implications in the next
section.

D.2.3. Steady state solution for extent of diffusion
Knowing that a steady state solution fssðhÞ will be attained,

makes it slightly easier to compute solutions to Eq. (D.4) compared
to Eq. (10), since one can stop the computations as soon as the
steady state is achieved. Eq. (10) by contrast does not attain a
steady state at any finite time: for any chosen h, the lower integra-
tion limit of Eq. (10), namely h0, continues decreasing with time
even out to arbitrarily long times. Despite this subtle difference
in behaviour, we reiterate that the difference between Eqs. (10)
and (D.4) remains small. In a worst case, we could have vanishingly
small h0 as a lower integration limit in Eq. (10) and the difference
from Eq. (D.4) would be only ðaþ bÞh4i =4 which is negligibly small
since we choose hi � 1.

D.2.4. Solution scheme for hbji
The boundary layer theory outlined in Section 2.2 gives a solute

mass fraction field expressed in terms of analytical formulae. How-
ever numerical computations remain necessary to obtain the val-
ues that are to be substituted into those analytical formulae. The
first step in our numerical scheme was to compute hbji. In view
of the known flow field on the drop surface (given by Eq. (D.2)),
we found hbji simply by solving the equation

dhbji=dT ¼ uhjsurfðhbjiÞ ¼ a sin hbji þ b sin hbji cos hbji ðD:6Þ
subject to an initial condition hbjijT¼0 ¼ hi. This was achieved via a
4th order Runge-Kutta technique with a time step dT ¼ 0:01 and
as mentioned previously we considered three different hi values,
p

1000,
p

100 and
p
10.

The level of truncation error for the Runge-Kutta scheme could
be checked against an analytical solution: Eq. (D.6) admits an ana-
lytical solution in implicit form (T as a function of hbji). When we
computed hbji vs T via the Runge-Kutta scheme, and then substi-
tuted the hbji that was obtained back into the implicit formula,
we recovered the original T value through to 7 significant figures.

D.2.5. Solution scheme for f
After determining hbji vs T, we selected a set of times at which to

examine the f vs T profiles in detail. These times were T ¼ 1, T ¼ 5
and T ¼ 10. As a point of reference for hi ¼ p

100 and hr ¼ 99p
100, the

value of hbji began to exceed hr at time 18.08, the same time value
quoted in Sections 4.1, 4.2.6, 4.3.2 and 4.3.3: for times T in excess of
this, f has already achieved its final steady state value fssðhÞ for
these particular hi and hr values.

For each of the above mentioned times T, we divided the surface
of the drop into 100 equispaced intervals between hi and hbjiðTÞ as
well as 100 equispaced intervals between hbjiðTÞ and hr. For each of
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the 100 equispaced h values in the domain h > hbjiðTÞ, we deter-
mined the corresponding h0, by integrating the equation

dh=dT ¼ uhjsurfðhÞ ¼ a sin hþ b sin h cos h ðD:7Þ
backwards in time, starting from the selected h value at time T and
continuing down to time zero. This was again achieved via a 4th
order Runge-Kutta method analogous to the one described above,
and gave the h0 value corresponding to each selected h and T.

Values of f could now be obtained via Eq. (D.4), integrating
either from h0 to h (for each of the h values greater than hbji), or
integrating from hi to h (for each of the h values less than hbji).
For each of these integrations we used a Simpson’s rule dividing
the corresponding integration domain into 1000 equispaced
intervals.

D.2.6. Solution scheme for solute masses Msurf , Mret and M
Once the f values were obtained as described above, it was nec-

essary to compute the solute masses M that have entered the drop
(via summing Eq. (15) for solute mass located near the drop surface
Msurf and Eq. (17) for solute mass returned to the drop interior
Mret). The modifications to the solution introduced in Appendix
D.2 imply that f is identically zero on the domain 0 < h < hi, and
hence Msurf becomes

Msurf ¼ 2p
Z hr

hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f=ðPepÞ

p
dh=uhjsurf : ðD:8Þ

Since we have computed f values on 100 equispaced intervals both
between hi and hbji and between hbji and hr, the value of Msurf in Eq.
(D.8) can be computed via Simpson’s rule. The mass returned to the
interior of the drop, denoted Mret could be determined by applying
Simpson’s rule to Eq. (17), but integrating now over time, rather
than over position. A time step dT ¼ 0:02 was used for the
integration.

According to Eqs. (17) and (D.8), the values of Msurf and Mret

(and hence also ofM � Msurf þMret) are sensitive to Peclet number.
It is therefore necessary to specify a Peclet number in order to com-
puteM. Remembering that we have stated that typical Peclet num-
bers for this process are on the order of tens of thousands, we chose
Pe ¼ 10;000 as a ‘‘base case”. The variation of Msurf and Mret (and
hence of M) with Peclet number is very straightforward: the mass
transferred at any given T value is proportional to Pe�1=2. Hence it is
only necessary to compute M vs T for a single ‘‘base case” Peclet
number, and values for any other Peclet number are obtained by
rescaling, assuming that the Peclet number remains large enough
that a boundary layer approximation (from which Eqs. (17) and
(D.8) are derived) applies. To ensure that this would be the case,
we considered values from the ‘‘base case” Pe ¼ 10;000 upwards
(up to Pe ¼ 100;000).

In addition to being sensitive to Peclet number, the boundary
layer theory can also be sensitive to the flow field in the drop,
and we have assumed a very particular flow field with a very par-
ticular streamline layout in Appendix D.1. Changing the flow field
in the drop without changing the streamline topology would
change the predictions of the boundary layer theory quantitatively,
but not the general approach to computing the amount of solute
transferred via Eqs. (17) and (D.8).

A change in streamline topology (as can happen when the wake
separates from the drop as Reynolds number increases Juncu,
1999; Yan et al., 2002) would require a modification to the
approach to computing the solute mass transfer. The streamline
pattern now consists of a main vortex filling most of the drop
(Juncu, 1999; Yan et al., 2002) with a much weaker counter-
rotating vortex in the neighbourhood of the rear of the drop. Whilst
solute mass transfer in the weak counter-rotating vortex is
expected to be dominated by diffusion, a convective boundary
layer remains relevant to mass transfer in the main vortex. To com-
pute the solute mass transfer in the main vortex, hr in Eqs. (17) and
(D.8) must be placed adjacent to that separation point, not at the
rear of the drop. In the interests of simplicity however we have
ignored these more complicated streamline topologies, restricting
consideration to cases that do not exhibit any wake separation,
but that have instead a single vortex filling the entire volume of
the drop.

This completes our discussion of how the solution of the bound-
ary layer equations was implemented. The following subsection
deals with determining the time at which the systems switches
from a boundary layer formulation to a streamline-averaged one.

D.3. Switching time from boundary layer to streamline-averaged
formulation

The solute mass M that has entered the drop at any time T (as
determined above) can be related to the volume V that this solute
mass invades: in fact as was already mentioned in Section 2.3.2 the
solute concentrations have been normalised so as to ensure that
V ¼ M. As was discussed (see Sections 4.3 and 4.4), apart from an
initial transient, the numerical V vs T relation approximated very
well to a straight line

V � ðaþ bTÞ=
ffiffiffiffiffi
Pe

p
ðD:9Þ

where a and b are empirical coefficients which turn out to be
a � 7:99 and b � 6:28.

According to the theory in Section 2.3, this must be matched to
a relation for the volume V enclosed by streamlines expressed as a
function of the streamline orbit times Torbit: see Eq. (26). The
parameters A and B appearing in Eq. (26) are inherited from the
relation for Torbit vs w (Eq. (23)) which ultimately can be related
to the flow field, and hence in our particular case to the parameters
e1 through e6 in Eq. (D.1).

The procedure for obtaining A and B is outlined in Appendix A
and consists of analytic approximations to find hold up times near
the forward and rear stagnation points, coupled to quadratures to
compute traverse times along the remainder of the drop surface
and axis. Specifically we employed analytic approximations near
the forward stagnation point for r > 0:99 and h < p

100, and likewise
near the rear stagnation point for r > 0:99 and p� h < p

100. Outside
these domains, quadratures were performed (via Simpson’s rule)
using 4000 points on the drop surface and 2000 points on the drop
axis. The end result was that A ¼ 2:35 and B ¼ �0:663.

At first sight it is counterintuitive that B is negative, since we
expect the logarithmic term (which arises from hold up near the
forward and rear stagnation points) to be added to the positive tra-
verse times computed by quadratures. The negative B value is
however an artifact of the way the expression in Eq. (23) has been
written. Remember (see Appendix D.1.2) that w is never any larger
than wstag and in fact near the drop surface and axis w is much
smaller than wstag. We can write Eq. (23) in the form

Torbit 	 A logðwstag=wÞ þ B0 ðD:10Þ

where B0 ¼ A logð1=wstagÞ þ B. Recalling from Appendix D.1.2 that
wstag ¼ 0:0810, and using the A and B values reported above, we find
B0 ¼ 5:24. Eq. (D.10) only applies for w � wstag, meaning there is no
need for B0 to equal limw!wstagTorbit which we already know from
Appendix D.1.2 is Torbit;stag � 6:28.

Having obtained A and B (or equivalently A and B0) we now have
to seek a value of V such that the T value given by Eq. (D.9) inter-
sects the Torbit value given by Eq. (26). The intersection point is the
switching time Tswitch that we seek. That there is a unique intersec-
tion point (for any given Pe) can be seen from the fact that Eq. (D.9)



11 The factor f u here refers not to changing the drop speed (since that is determined
by Peclet number), but rather to changing the speed of the internal drop circulation
relative to the drop speed. Such a change could be achieved by manipulating the
viscosity ratio between internal and external liquids.
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gives V as an increasing function of T, whereas Eq. (26) gives V as a
decreasing function of Torbit. In our computations, the approximate
location of the intersection point was read off graphically (for any
given Pe) from plots of V vs T and V vs Torbit, subsequently Newton-
Raphson iteration was used to find a simultaneous solution of Eqs.
(26) and (D.9) to within round-off error of the computer used.

D.4. Setting up the streamline-averaged formulation

As was described in Section 2.4, the streamline-averaged for-
mulation leads to a diffusion equation in streamfunction space
(Eq. (32)), which in turn involves some coefficients, i.e. orbit times
Torbit and effective diffusivity Deff which depend on streamfunction
w, and which are themselves defined in terms of integrals along
streamlines (see Eqs. (22) and (31)). Before we can solve Eq. (32)
itself, first it is necessary to evaluate these coefficients via quadra-
ture along streamlines. However even before we can do that, we
must compute where each streamline is located in the drop: this
is done in Appendix D.4.1, the technique for obtaining Torbit and
Deff is described next in Appendix D.4.2, and then Appendix D.4.3
discusses the streamline-averaged initial conditions.

D.4.1. Computing the locations of streamlines
The way that we computed the location of the streamlines is as

follows. Knowing that the domain of w values in the drop was 0
through wstag, we selected 1024 target w values (denoted wtarget)
in increments of wstag=1024. For each value of wtarget, we considered
the formula for the streamfunction (given by Eq. (D.1)) along the
direction h ¼ hstag. For this streamfunction, there are necessarily
two values of r at which w ¼ wtarget, an upper value rtarget;upper satis-
fying rtarget;upper > rstag, and a lower value rtarget;lower satisfying
rtarget;lower < rstag. For any given wtarget, both rtarget;upper and rtarget;lower

were found via the Newton-Raphson technique. For
w � wstag; rtarget;upper turns out to be close to the drop surface,
whereas rtarget;lower is close to the drop centre. However as w
increases towards wstag, both rtarget;upper and rtarget;lower migrate
towards rstag.

Nominally the points ðrtarget;upper; hstagÞ and ðrtarget;lower; hstagÞ that
we compute should be on the same streamline. Since however
the values of rtarget;upper, rtarget;lower and hstag were only recorded to
a finite precision (typically to 6 decimal places), when we substi-
tuted those values back into Eq. (D.1) and evaluated w at both
ðrtarget;upper; hstagÞ and ðrtarget;lower; hstagÞ, a very slight difference in
the resulting w values was obtained, typically in the 6th significant
figure. This tiny difference is however insignificant taking into
account that with 1024 streamlines being computed, the relative
difference in w between one streamline and an adjacent one tends
to be approximately 3 orders of magnitude larger than that, i.e. in
the 3rd significant figure.

The points ðrtarget;upper; hstagÞ and ðrtarget;lower; hstagÞ are just two iso-
lated points on a streamline, and the remaining points on that
streamline were obtained by integrating

dr=dt ¼ ur ðD:11Þ
dh=dt ¼ uh=r ðD:12Þ
where ur and uh are given by Eqs. (4) and (5). This integration was
done via Heun’s method with a time step of 0.001 and subsequently
repeated with a time step of 5 10�4 to check sensitivity to time
step.

Eqs. (D.11) and (D.12) correspond to following streamlines, like
those sketched in Fig. 1(a), in a clockwise sense. If we follow a
streamline starting from ðrtarget;upper; hstagÞ, the h value on the
streamline increases above hstag and then starts to decrease, falling
back towards hstag once the streamline reaches the neighbourhood
of ðrtarget;lower; hstagÞ. As soon as h falls below hstag, we stop the Heun’s
method integration, interpolating the final integration interval to
retain data only as far as hstag. The resulting r value should ideally
be close to rtarget;lower. In a similar fashion we can use Heun’s
method to follow the streamline starting from ðrtarget;lower; hstagÞ.
As before the streamline is being followed in a clockwise fashion,
but now the value of h should initially decrease, and then increase
back towards hstag. Again the final integration interval is interpo-
lated to retain data only up to hstag, and the final r value should
be in the neighbourhood of rtarget;upper.

Heun’s method involves a truncation error, which is equivalent
to saying that the numerical points that we compute gradually
drift away from the streamline upon which they should be placed.
We quantify this truncation error by computing the w values at the
end point of each integration, comparing them with the w values at
the starting point. For integration time step 0.001 and 5 10�4,
this deviation in w between start and end points was respectively
13% and 3% of the difference in w between ðrtarget;upper; hstagÞ and
ðrtarget;lower; hstagÞ: remember that the latter difference was itself
very tiny (in the 6th significant figure) and arose due to
rtarget;upper; rtarget;lower and hstag only being recorded to finite 6 decimal
place precision. In effect this means that it is unnecessary to use
smaller time steps than those we have already used in our Heun
method integration: the error accumulated during that integration
along the streamline is already less than that involved in identify-
ing the locations of rtarget;upper, rtarget;lower and hstag in the first place.

D.4.2. Computing streamline orbit time and effective diffusivity
Having computed the locus swept out by each of 1024 stream-

lines, we can now proceed to compute Torbit and Deff via Eqs. (22)
and (31). This is done via quadrature (using the trapezoidal rule),
using the streamline loci we have already determined.

Note in particular that Torbit in general does not follow Eq. (23)
since that equation only applies to w � wstag, whereas here we con-
sider the full range of w values up to wstag. We also observe (see Sec-
tion 4.5) that Deff vanishes at either end of the w domain, both as
w ! 0 and w ! wstag. It follows that somewhere, for one of the
streamlines with 0 < w < wstag, Deff must attain a maximum. We
denote this local maximum by Deff ;max, and its value turns out to
be 0.0678 (to 3 figures) and moreover it corresponds to streamline
number 192 out of the 1024 that we calculated (counting stream-
lines from the drop surface/axis towards the internal stagnation
point). Determining the value of Deff ;max, turns out to be relevant
to formulating the numerical algorithm for solving the
streamline-averaged Eq. (32). We will explain more about this in
Appendix D.5.

It is worth recalling that we obtained our formulae for Torbit and
Deff (and hence also Deff ;max) for a very particular flow field given in
Appendix D.1. Were we to change the flow field inside the drop, the
values of Torbit and Deff would be sensitive to how the streamlines
are laid out in space and also to the speed of the internal flow. If,
for a fixed streamline pattern, we changed the speed of the flow
inside the drop, multiplying all flow speeds us by some uniform
factor11 f u, Eqs. (22) and (31) indicate that Torbit would scale inver-
sely with f u, whereas Deff would scale proportional to the square
of f u, whilst w and wstag would be proportional to f u. The time evolu-
tion of the mass fraction in the drop given by Eq. (32) over the solu-
tion domain 0 6 w 6 wstag would however remain unaffected. We
conclude that despite Torbit and Deff being sensitive to flow speed,
the streamline-averaged theory itself is not sensitive to that,
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depending on the flow field only to the extent that the spatial layout
of the streamlines is affected by that field. We selected a very partic-
ular flow field in Appendix D.1 but the spatial layout of the stream-
lines is qualitatively similar (Ubal et al., 2010) to that of other flow
fields e.g. Hadamard-Rybczynski flow. Hence the results we present
for the streamline-averaged theory should likewise be qualitatively
similar to what is obtained for a Hadamard-Rybczynski flow
(Brignell, 1975; Kronig and Brink, 1950; Prakash and Sirignano,
1978).
D.4.3. Determining initial condition for the streamline-averaged
formulation

A challenge associated with setting up the streamline-
averaged formulation is identifying a suitable distribution for
the solute mass within the drop to use as an initial condition
within that formulation. Mass must be redistributed from a
boundary layer mass fraction field (Eq. (11)), which envisages
non-uniform mass fraction along streamlines with the mass frac-
tion being larger wherever the extent of diffusion f is larger, to a
streamline-averaged field (Eq. (34)) with uniform mass fraction
along streamlines.

Since we have already identified the switching time at which
this is to happen (see Appendix D.3), and hence the correspond-
ing total solute mass M in the drop at this time, our task is to
integrate the right hand side of Eq. (35) by quadrature and, by
adjusting the parameter w
 within this equation, match it to the
known M value on the left hand side. We know that the max-
imum value of w in the drop is wstag, and we can shift the
upper limit of the integral in Eq. (35) to the value wstag, which
makes negligible error since we anticipate w
 � wstag, implying
that the integrand is already negligible when w � wstag. Likewise
within the integrand of Eq. (35), we can approximate Torbit by
Eq. (23), which applies for w � wstag. Performing quadrature on
Eq. (35) remains complicated by Torbit diverging as w ! 0,
although the function remains integrable. For any chosen w

value, we integrated analytically over the domain
0 6 w 6 0:001w
 approximating W ¼ erfc ðw=w
Þ from Eq. (34)
by W � 1� 2ffiffiffi

p
p w=w
 in this domain. Over the rest of the integra-

tion domain we used an adaptive quadrature routine (known as
quad_qags) built into the computer algebra package ‘‘maxima”.
Having thereby computed the right hand side of Eq. (35) for
any chosen w
, we recomputed it for values of w
 that were
larger or smaller by 0.1%. This permitted us to compute numer-
ically the derivative of the right hand side of Eq. (35) with
respect to w
, and apply Newton-Raphson iteration to find the
target value of w
 satisfying Eq. (35).

The value of w
 that we obtained was sensitive to Peclet num-
ber, since the value of M at which we begin to use the
streamline-averaged theory is also sensitive to Peclet number:
higher Peclet numbers imply switching at smaller M values and
hence smaller w
, as was already anticipated in Section 2.5.1. On
the other hand, according to Section 2.3.2, higher Peclet number
also implies switching to the streamline-averaged state at earlier
times (at least when time is measured on a diffusive scale), so
higher Peclet number systems spend more time in the
streamline-averaged state, thereby compensating for having
entered that state with less solute. Moreover the governing Eq.
(32) for the streamline-averaged theory has no Peclet number
dependence whatsoever, so any slight sensitivity that the initial
condition might exhibit to Pe is rapidly lost as the system evolves
over time.

This completes the setting up of the streamline-averaged for-
mulation. The solution technique used to solve the streamline-
averaged equations is described in the next section.
D.5. Solving the streamline-averaged equations

We solved the streamline-averaged equations using a finite dif-
ference Crank-Nicolson method (Press et al., 1992). We used 2N

intervals in streamfunction space, where N is an integer that we
select. Since we have already computed Torbit and Deff values for
1024 streamlines in total, we could choose N up to 10. Choosing
smaller values of N corresponds to using a coarser grid: e.g.
N ¼ 9 retains every 2nd streamline out of the original 1024 that
we computed, N ¼ 8 retains every 4th streamline, etc.

The increment in w from streamline to streamline that we
denote dw now equals wstag=2

N . The time step dt for the Crank-

Nicolson method was chosen such that dt ¼ dw2=ð4Deff ;maxÞ, which
is sufficient to ensure stability of the Crank-Nicolson scheme.
Clearly determining Deff ;max in advance as we have done in Appen-
dix D.4.2 is important because Deff ;max affects the time step for the
numerical scheme.

Streamlines are labelled from i ¼ 0 to i ¼ 2N with i ¼ 0 giving the
drop surfaceandaxis, and i ¼ 2N giving the internal stagnationpoint.
Finite differencing Eq. (32) in space gives us the rate of change of
solids fraction W on streamline i for all i values in the domain
1 6 i 6 2N � 1 in terms of the values of W (on streamline i and also
on the nearest neighbour streamlines i� 1), as well as in terms of
the values of DeffTorbit (again on streamline i and the nearest neigh-
bour streamlines i� 1), and the value of streamline orbit time Torbit

(on streamline i, but importantly not on streamlines i� 1).
The fact that Torbit is required only on streamline i but not on its

neighbours, means in the case i ¼ 1 that the finite difference neatly
avoids the singular behaviour of Torbit in the limit as w ! 0, the pro-
duct DeffTorbit being non-singular in this limit. Of course for i ¼ 0 a
boundary condition applies W ¼ 1 for all times. At the other
boundary, for which w ! wstag and hence i ¼ 2N , the rate of evolu-
tion of W is given by Eq. (33). We approximate this equation via
finite difference, although the spatial derivative at this boundary
is necessarily one-sided involving streamline i ¼ 2N and
i ¼ 2N � 1, rather than a central difference which is used for all
other streamlines in a Crank-Nicolson scheme.

Having now specified the spatial finite difference representa-
tion of the governing differential equation and of the boundary
conditions, we can proceed to solve the equations using finite dif-
ferences in time, starting from the initial condition given by Eq.
(34): this is discussed further in Appendix D.5.1 below.
D.5.1. Choosing the finite difference step size for Crank-Nicolson
We implemented the Crank-Nicolson algorithm via a computer

program in C.
The run time of the program is very sensitive to the parameter

N, there being 2N streamlines, and hence order 2N operations per
time step. However according to the formula given earlier for dt,
the size of the time step scales like 1=22N , hence the computations
required to reach any target final time grow like 23N . To achieve
good computational speed we need to choose N as small as possi-
ble, but without compromising computational accuracy. We per-
formed calculations with different values of N, including N ¼ 5
(corresponding to 32 streamlines), N ¼ 6 (corresponding to 64
streamlines), and N ¼ 7 (corresponding to 128 streamlines).

For the ‘‘base case” Pe value we consider here (Pe ¼ 10;000) we
compared for different N values the predicted time evolution of W
at the internal stagnation point. We only found discrepancies
between the predictions for N ¼ 6 (64 streamlines) and those for
higher values of N only in the 4th (or higher) significant figure.
Hence we adopted this value N ¼ 6 in all our subsequent
calculations.
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D.6. Summary of solution methods and model parameters

We summarise the discussion of Appendices D.1–D5 as follows.
The model that we have solved here comprises an early-time

boundary layer theory combined with a streamline-averaged the-
ory at later time. The model predictions depend upon the flow field
assumed and potentially also upon the Peclet number chosen. We
employed a truncated Galerkin expansion for the flow field for-
merly used by Uribe-Ramirez and Korchinsky (2000b) and Ubal
et al. (2010), although other choices are available (e.g. a
Hadamard-Rybczynski flow, as mentioned in Appendix D.1). We
chose a base case Peclet number of Pe ¼ 10;000 (a value which is
typical for liquid-liquid extraction applications, see Sections 1
and 2.1). However (see Appendix D.2.6) we also considered larger
Peclet numbers up to Pe ¼ 100;000 to investigate the sensitivity to
this parameter.

Despite the fact that it is necessary to choose such parameter
values in order to compute with the model, the predictions that
result can be rather insensitive to the choices made. This is partic-
ularly true of the streamline-averaged theory (see Appendix D.4
and D.5), which is actually sensitive to how the streamlines are laid
out in space rather than to the overall speed of the flow field. More-
over the Peclet number does not appear as an explicit parameter
anywhere within the governing equations of the streamline-
averaged theory, and merely affects the time at which we switch
to computing with this particular theory and the initial condition
applied at this time (specifically the parameter w
 in Eq. (34)
depends on Peclet number).

Computing with the model required us to implement a number
of numerical techniques but the techniques are all fairly standard
ones.

To implement the boundary layer theory (see Appendix D.2)
we first needed to compute a quantity h0 which is an angular
location on the drop surface representing the initial location
of a material point that reaches location h by time T. In addi-
tion to computing h0, it was necessary to select the value of
a parameter hi (the so called ‘‘injection point”) which needs
to be close to the forward stagnation point of the drop, and
which we chose arbitrarily to be p

100 (although other choices
e.g. p

10 or p
1000 are also possible). Despite this apparent arbitrari-

ness in the choice of hi there was no arbitrariness in the solute
mass fraction field which resulted: this could be expressed (see
Eq. (11)) in terms of an ‘‘extent of diffusion” function f. For any
given time T and any given angular location h, this function f
could be computed via quadrature (see Eq. (D.4)), the lower
limit of the quadrature interval being maxðhi; h0Þ and hence
depending upon whether h0 is greater or less than hi. However,
for situations in which a change in the value of hi did indeed
alter the lower bound of the interval, the value of the integrand
in the neighbourhood of the lower bound was very small.
Hence small shifts in hi do not materially affect f. Moreover
once f was determined, the amount of mass M entering the
drop as a function of time T could be obtained via quadrature
(see Appendix D.2.6).

This mass M was then related to a volume V that this mass
would fill, were it to be distributed at a specified concentration
throughout those streamlines closest to the drop surface and axis
(see Section 2.3 and Appendix D.3). Thus a relation between vol-
ume V filled by solute and elapsed time T was established.

Streamline orbit times Torbit for streamlines close to the drop
surface and axis were also computed, a relation being found
between Torbit and the volume V that these streamlines enclosed.
Since the flow is held up for arbitrarily long times near the forward
and rear stagnation points of the drop, computing Torbit required
analytic approximations near these stagnation points, and
quadrature outside these neighbourhoods.
The boundary layer theory was switched to a streamline-
averaged theory once the solute that had entered the drop was
deemed to have executed one full streamline circulation: this
required that the time elapsed Tmatched the streamline orbit time
Torbit corresponding to the particular volume V within the drop
which the solute was deemed to fill. The switching time that satis-
fied T ¼ Torbit along with the corresponding volume V filled by
solute (and hence the associated solute mass M) were determined
by a Newton-Raphson technique. The switch between the bound-
ary layer theory and the streamline-averaged theory was thereby
taken to occur at a well-defined time and a well-defined amount
of solute transferred, these values being dependent however upon
the flow field assumed and upon the Peclet number.

The streamline-averaged equation was solved by a Crank-
Nicolson finite difference technique. Coefficients in the
streamline-averaged model Torbit and Deff for a selection of stream-
lines throughout the entire drop were computed by quadrature
along streamlines, the locations of the streamlines themselves hav-
ing first been obtained via Heun’s method (see Appendix D.4). The
initial condition for the streamline-averaged model assumed that
the solute mass M in the drop could be redistributed across
streamlines according to a complementary error function (see Eq.
(34)): the distribution involved a parameter w
 which was fixed
via a Newton-Raphson technique.

As is seen from the summary above, the numerical techniques
employed were all standard ones, i.e. quadratures, Runge-Kutta,
Heun’s method, Newton-Raphson and Crank-Nicolson. Any com-
plexity arises not from the numerical techniques themselves but
rather from the fact that implementing the model requires assem-
bling all the various techniques together. Results from the imple-
mentation of the model are described in the main text.
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