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a b s t r a c t

The effects of the addition of wild legumes (Lathyrus) from the South of Spain on the physical and nutri-
tional properties of extruded products based on whole corn and brown rice were studied. Samples were
obtained with a Brabender single screw extruder. The physical characterisation of the expanded products
was performed by the measurement of density, expansion, solubility and specific mechanical energy con-
sumption (SMEC). Chemical composition, amino acids content, protein digestibility, total polyphenol con-
tent and potential availability of iron and zinc were determined.

Results showed that expansion, solubility and SMEC were higher for rice blends than for corn blends,
while density followed an inverse trend. Addition of legumes produces a decrease of expansion and an
increase in solubility in both rice-containing and corn-containing samples. With only 15% of legume
replacement, a significant increase in protein content and quality, fibre, and mineral content was
obtained. Protein digestibility was in the range of 82–84% and mineral availability in the 6.4–12.1% range
for iron and 10–18.6% for zinc. The performance of each mixture during extrusion and the physical prop-
erties of the extruded products were considered to be in the range of those expected for snack type
products.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The utilisation of whole grains in food formulations is nowadays
much recommended (Marquart, Wiemer, Jones, & Jacob, 2003). The
beneficial effects of including whole grains in the diet have been
demonstrated by several authors (Kelly, Summerbell, Brynes,
Whittaker, & Frost, 2007; Venn & Mann, 2004). Whole grains are
rich in nutritive, functional and phytochemical compounds (Slavin,
2003).

Moreover, extrusion cooking of starchy materials has become a
very common technique to obtain a wide range of products, such
as snacks, breakfast cereals, etc. (Bouzaza, Arhaliass, & Bouvier,
1996; Pansawat et al., 2008). The advantages of this cooking pro-
cess are based mainly on the fact that it is an HTST process, which
minimises the degradation of food nutrients by heat while improv-
ing digestibility by gelatinising starch, denaturing protein and
deactivating undesirable compounds, such as enzymes and non-

nutritional factors (Alonso, Aguirre, & Marzo, 2000; Shimelis &
Rakshit, 2007).

Since maize (Zea mays) and rice (Oryza sativa) grits are widely
used to formulate expanded products (Chaiyakul, Jangchud, Jangc-
hud, Wuttijumnong, & Winger, 2009; Pérez-Navarrete, González,
Chel-Guerrero, & Betancur-Ancona, 2006), there is a need to im-
prove the nutritional value of this kind of food, particularly be-
cause cereal-based snack products are often consumed by
children (Kasprzak & Rzedzicki, 2008; Onwulata, Konstance, Smith,
& Holsinger, 2001; Onwulata, Smith, Konstance, & Hosinger, 2001;
Rampersad, Badrie, & Comissiong, 2003).

The effect of extrusion variables on the properties of extruded
cereals has been studied extensively (González, Torres, & Añón,
2000; Kokini, Chang, & Lai, 1992; Mason & Hoseney, 1986; Mitchell
& Areas, 1992). Moreover, the texture of expanded cereal based
snacks is determined mainly by extrusion conditions and their
moisture content.

It is well known that the addition of legumes to cereals pro-
duces an increase in both the amount and quality of the protein
mix (Young, 1991). This addition represents an economic way to
improve the protein value of cereal-based foods (Messina, 1999).
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Among legumes, those most used in cereal food mixtures are:
Glycine max (Solanas, Castrillo, Jover, & de Vega, 2008); Cicer ariet-
inum (Brenes, Viveros, Centeno, Arija, & Marzo, 2008; Lazou,
Michailidis, Thymi, Krokida, & Bisharat, 2007); Lupinus albus
(Masoero, Pulimeno, & Rossi, 2005; Díaz et al., 2006); Phaseolus
vulgaris and Phaseolus lunatus (Anton, Fulcher, & Arntfield, 2009;
Pérez-Navarrete et al., 2006; Solanas et al., 2008). Not much infor-
mation concerning the use of wild legume species has been found,
although Lathyrus sativus, belonging to the tribe Fabeae, has been
studied by Grela, Jensen, and Jakobsen (1999), and Kasprzak and
Rzedzicki (2007). The use of wild legumes in snack formulations
could also be interesting, as they could be a good way to add to
commercial products some advantages, such as variety and nov-
elty, which are important to modern consumers. There is only
one problem concerning the use of genus Lathyrus seeds: b-N-oxa-
lyl-L-a,b-diaminopropionic acid (ODAP). This is a non-protein ami-
no acid responsible for the neurolathyrism syndrome in humans
and animals, which is characterised by weakness of the hind limbs
and paralysis or rigidity of the muscles, and it appears after the
consumption for long periods of diets based on large amounts of
seeds (Campbell et al., 1994). However, the content of ODAP is
much lower or almost nonexistent in expanded products because
extrusion is a fast and effective method for reducing anti-nutri-
tional components of legumes (Shimelis & Rakshit, 2007).

The aim of this study was to evaluate the effect of the addition
of wild legumes (Lathyrus annuus and Lathyrus clymenum) on phys-
ical and nutritional properties of extruded products based on
whole corn and brown rice.

2. Materials and methods

2.1. Materials

Samples of Lathyrus seeds (L. annuus and L. clymenum) were ta-
ken from wild populations. Voucher specimens of the populations
studied were deposited in the Herbarium of the Department of
Plant Biology and Ecology of the University of Seville.

The beans were previously treated to inactivate lipoxygenase,
by immersing them in boiling water for 2 min followed by imme-
diate cooling with tap water (Fritz et al., 2006). This heat treatment
was done to avoid the development of a beany flavour during the
grinding step. Treated beans were dried in an oven, at 45 �C until
they reached between 9% and 10% moisture. The dried beans were
ground and converted into grits using a laboratory mill (Bühler AG,
Braunschweig, Germany). The resulting grits had a particle size of
between 210 and 570 lm.

Commercial samples of Fortuna rice (a low-amylose rice vari-
ety) and hard red corn, both from Molino Zacanini (Entre Rios,
Argentina) were milled according to an experimental procedure
developed previously (Robutti, Borras, González, Torres, & De
Greef, 2002). Particle size of the rice and corn grits obtained was
between 420 and 1119 lm.

2.2. Extruded samples

A Brabender 20 DN (Brabender GmbH & Co. KG, Duisberg, Ger-
many) single screw extruder was used to produce extruded cereal–
legume blend samples. The following conditions were selected
based on preliminary work: screw compression ratio: 4:1; cylindri-
cal die (diameter/length): 3/20-mm; screw speed: 150 rpm; and
extrusion temperature: 175 �C (die and extruder barrel). One hour
before each extrusion experiment, a grits blend sample containing
85% cereal (whole rice or corn) and 15% legume was prepared
using a planetary mixer (Brabender) and the moisture content
was adjusted to 14%, by adding tap water. This blend sample was

kept in a plastic bag until the extrusion step. This moisture level
was also selected as a result of preliminary work.

These extrusion conditions produce expanded products with a
good expansion rate and texture. The extruder was fed at maximum
rate (‘‘full-capacity’’) and experimental samples were taken as soon
as a stationary regime was reached. While each extruded sample
was taken, torque and mass output were measured. The sample
was then allowed to dry in the ambient air and kept in plastic bags.

2.3. Physical characterisation of extruded samples

The following details were determined for the expanded sam-
ples: (a) axial expansion was calculated as the ratio of extruded
product diameter and die diameter, taking the average of 10 mea-
surements at 10 different places along the sample; (b) density ex-
pressed as grams per cm3 was calculated using the mass output
coming from the extruder (in g per min, referred to as dry basis
(db)) and the product volume, which is calculated from the length
of product per minute and the product diameter; (c) specific
mechanical energy consumption (SMEC), in joule/g, was deter-
mined according to González, Torres, and De Greef (2002), by using
the following formula:

SMEC ¼ ð61:3� 10�3Þ � torque ðBUÞ � 150 rpm=Qa ðg=minÞ;

Qa being, the mass output referred as feed grits moisture (14%);
(d) product texture was evaluated by a trained panel (three
judges), according to Fritz et al. (2006), using a hardness (H) nine
point scale, the highest score (9) corresponding to the hardest sam-
ple. The score given to each sample was obtained by consensus
among the judges.

Water solubility determinations were carried out according to
González et al. (2002) and the sample as flour was used. One hundred
gram of each sample were first ground with a laboratory hammer
mill (Retsch GmbH & Co. KG, Haan, Germany) with a 2-mm sieve,
and then with a Cyclotec (FOSS, Hillerød, Denmark) mill through a
1-mm sieve. Water solubility was calculated as soluble solids per
100 g of flour (d.b). This was done by dispersing 2.5 g of flour in
50 mL water, shaking for 30 min and centrifuging at 2000g; soluble
solids were obtained after evaporation in an oven at 105 �C.

2.4. Analytical methods

Moisture and ash contents were determined using AOAC (1999)
945.39 and 942.05 approved methods, respectively. Total nitrogen
was determined by the micro-Kjeldahl method according to AOAC
(1999) 960.52 approved method. Crude protein content was esti-
mated using a conversion factor of 6.25 for legumes and corn,
and 5.95 for rice (according to Juliano, 1985). Total fibre was deter-
mined according to the procedure described by Lee, Prosky, and De
Vries (1992). Lipids associated with the flour and protein isolates
were extracted and measured following the method of Nash, El-
dridge, and Woolf (1967). Soluble sugars and polyphenols were
measured using standard curves of glucose (Dubois, Gilles, Hamil-
ton, Rebers, & Smith, 1956) and catechin (Mazza, Fukumoto, Dela-
quis, Girard, & Ewert, 1999), respectively.

2.5. Amino acid analysis

Samples (10 mg) were hydrolysed with 4 mL of 6 N HCl. The
solutions were sealed in tubes under nitrogen and incubated in
an oven at 110 �C for 24 h. Amino acids were determined after der-
ivatisation with diethyl ethoxymethylenemalonate by high-perfor-
mance liquid chromatography (HPLC), according to the method of
Alaiz, Navarro, Giron, and Vioque (1992), using DL-a-aminobutyric
acid as an internal standard. Tryptophan was determined after ba-
sic hydrolysis (Yust et al., 2004).
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2.6. In-vitro protein digestibility (IVPD)

In-vitro protein digestibility was determined according to the
method of Hsu, Vavak, Satterlee, and Miller (1977). Samples con-
taining 62.5 mg of protein were suspended in 10 mL of water and
the pH was adjusted to 8.0. An enzymatic solution containing
1.6 mg trypsin (17.7 BAEE U mg�1), 3.1 mg a-chymotrypsin
(43 U mg�1) and 1.3 mg peptidase (50 U g�1) per mL was added
to the protein suspension in a 1:10 v/v ratio. The pH of the mixture
was measured after 10 min, and the in-vitro digestibility was cal-
culated as a percentage of digestible protein using the equation:

%digestible protein ¼ 210:464� ð18:103� pHÞ:

2.7. Determination of mineral dialysability

(DFe%, DZn%) A modification of the widespread in-vitro Miller,
Schricker, Rasmussen, and Van-Campen (1981) method, according
to Wolfgor, Drago, Rodríguez, Pellegrino, and Valencia (2002) was
followed. The samples were prepared to 10% (w/w) of solids concen-
tration using deionised water. Aliquots (25 g) of homogenised sam-
ples were adjusted to pH 2.0 with 6 N HCl and after the addition of
0.8 mL pepsin digestion mixture (16% pepsin (Sigma P-7000) solu-
tions in 0.1 N HCl), were incubated at 37 �C for 2 h in a shaking water
bath. At the end of the pepsin digestion, dialysis bags containing
20 mL 0.19 M PIPES (piperazine-N,N0-bis[2-ethanesulfonic acid]
disodium salt) buffer (Sigma P-3768) were placed in each flask
and were incubated for 50 min in a shaking water bath at 37 �C. Pan-
creatin–bile mixture (6.25 mL of 2.5% bile (Sigma B-8631), 0.4% pan-
creatin (Sigma P-1750) solution in 0.1 N NaHCO3) was then added to
each flask and the incubation continued for another 2 h. The bag
contents were then weighed and analysed for mineral content by
flame atomic absorption spectroscopy (AAS). Assessment of miner-
als in samples was made by AAS after dry ashing (AOAC, 1999).

Mineral dialysability was calculated from the amount of each
dialysed mineral expressed as a percentage of the total amount
present in each sample.

Dialysable Mineral ð%Þ ¼ DM% ¼ ½D=ðW � AÞ� � 100;

where: D is the total amount of dialysed mineral (mg); W is the
weight of sample (g) and A is the concentration of each mineral in
the sample (mg/g).

The percentage of recommended daily intake (RDI) which is
supplied by a 30-g ration of the extruded products was calculated
using the following formula:

%RDI ¼Mineral Content� DM � 30:

2.8. b-N-oxalyl-L-ab-diaminopropionic acid (ODAP) determination

The ODAP content of extruded products was determined
according to Hussain, Chowdhurry, Haque, Wouters, and Campbell

(1994) with modifications. Samples (50 mg) were extracted twice
by stirring with 500 lL of 60% ethanol for 1 h. The samples were
centrifuged at 11600g for 10 min. Supernatants were recovered
and the volumes made up to 1 mL. Extract (200 lL) mixed with
400 lL of 3 M KOH was hydrolysed in boiling water for 30 min
and then cooled. An aliquot (25 lL) of the hydrolysed extract
was mixed with 75 lL of distilled water and 200 lL of a reagent
made of 10 mg of OPT 97%, 100 lL of 95% ethanol and 20 mL of
2-mercaptoethanol dissolved in 10 mL potassium tetraborate buf-
fer 0.5 M pH 9.9. The absorbance was measured at 425 nm after
30 min The procedure includes three blanks: 25 lL non-hydrolysed
extract + 75 lL of distilled water + 200 lL of reagent OPT (OPT
blank); 25 lL non-hydrolysed extract + 75 lL of distilled
water + 200 lL tetraborate buffer (sample blank); 25 lL of hydro-
lysed extract + 75 lL of distilled water + 200 lL tetraborate buffer
(buffer blank). The final absorbance was given as:

A ¼ ðAsample � Abuffer blankÞ � 1=3ðAOPT blank � Asample blankÞ:

The calibration curve (y = 0.5146x + 0.0741) was made with a
solution of DL-2,3-diaminopropionic acid HCl (DAP) as standard
and converted to ODAP by using a factor of 1.69 (Aletor, El-Monein,
& Goodchild, 1994). ODAP content was expressed as mg of ODAP/
100 mg of sample (%).

2.9. Statistical analysis

Analysis of variance was carried out using the software Stat-
graphics Plus 5.0, and the statistical differences among samples
were determined using Tukey’s test and p 6 0.05 degree of
significance.

3. Results and discussion

3.1. Extrusion process and physical evaluation

Table 1 shows values obtained from the physical evaluation of
the extruded samples corresponding to rice, corn and the respec-
tive blends with 15% wild legume added (L. annuus and L. clyme-
num). It is observed that axial expansion values corresponding to
rice-containing samples are higher than those containing corn. This
difference may be due to the higher oil content of whole corn com-
pared with brown rice (4.72% and 2.38%, respectively). The effect of
oil on expansion rate has been studied by several authors and its
magnitude could depend on the type and amount of oil (Faubion
& Hoseney, 1982). During the extrusion process fat components
act as lubricants, reducing the degree of cooking and consequently
the expansion ratio (Bhattacharya & Hanna, 1988). It was also ob-
served that the addition of legumes produces a decrease of expan-
sion in both rice- and corn-containing samples. In the case of rice
samples, significant reduction (p < 0.05) was caused by both
legume species, while for corn, only the blend with L. clymenum
showed a significant effect. These results are in agreement with
other authors working with mixtures of cereals and several other

Table 1
Physical properties of extruded samples.

Sample Expansion Density (g/cm3) Torque (gf. cm) Qa (g/min) Sol. (%) TS SMEC (J/g)

Rice 3.46 ± 0.09d 0.143 ± 0.01ab 6330 ± 90b 84.4 ± 0.5c 39.3 ± 0.22c 7 689.7 ± 11c

R + LA 3.20 ± 0.06c 0.147 ± 0.01b 5980 ± 70b 89.9 ± 0.6d 40.6 ± 0.41cd 8 611.4 ± 7bc

R + LC 3.22 ± 0.04c 0.146 ± 0.00b 5930 ± 80b 94.4 ± 0.7d 42.5 ± 0.10d 8 577.5 ± 8ab

Corn 2.84 ± 0.14b 0.131 ± 0.01ab 4000 ± 40a 69.8 ± 0.3a 19.3 ± 0.80a 8 526.3 ± 6a

C + LA 2.76 ± 0.11ab 0.142 ± 0.01ab 4270 ± 30a 78.2 ± 0.3b 22.6 ± 0.21b 8 502.4 ± 3a

C + LC 2.59 ± 0.06a 0.126 ± 0.00a 4520 ± 50a 80.6 ± 0.4bc 21.2 ± 0.58ab 8 515.9 ± 7a

Qa, feed caudal; Sol, water solubility; TS, product texture; SMEC, specific mechanical energy consumption; R, rice; LA, L. annuus; LC, L. clymenum; C, corn. Mean val-
ues ± standard deviation (x ± SD).
abcdDifferent letter superscripts in the same column indicate statistical differences among samples (p < 0.05), Tukey’s test.
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legumes, such as Lens culinaris, P. vulgaris, P. lunatus and
C. arietinum, (Anton et al., 2009; Patil, Berrios, Tang, & Swanson,
2007; Pérez-Navarrete et al., 2006; Shirani & Ganesharanee,
2009). They observed that as the degree of cereal replacement by
legume is increased, expansion rate decreases, mainly as a conse-
quence of the lower content of starch present in legumes.

It is well known that expansion and density are the best prop-
erties to describe product porosity (Asare, Sefa-Dedeh, Sakyi-Daw-
son, & Afoakwa, 2004). In Table 1 it is observed that density values
followed an inverse trend to that of expansion, as is expected
(Ahmed, 1999; Anton et al., 2009; Chaiyakul et al., 2009). Moreover
Onwulata, Konstance et al. (2001), Onwulata, Smith et al. (2001b)
and Veronica, Olusola, and Adebowale (2006) observed that as fi-
bre and protein-rich materials are added to starchy materials, the
density of expanded product is increased, although in these studies
the density value variations are not significant.

Solubility is an important indicator of the degree of cooking
(González, Torres, De Greef, & Bonaldo, 2006), because starch gran-
ule degradation leads to the production of soluble fragments
(Colonna, Tayeb, & Mercier, 1989). In Table 1 it is observed that
solubility values corresponding to corn samples are lower than
those of rice (p < 0.05). Again, this can be attributed to the reduction
of friction during extrusion caused by higher oil content of corn
with respect to rice, which in its turn caused a reduction in the de-
gree of cooking. On the other hand the addition of a legume caused
an increase in solubility depending on the sample. In the case of
rice-containing samples this increase was significant (p < 0.05) only
for the L. clymenum blend sample and in the case of corn samples,
only L. annuus blend showed significant difference.

Regarding the SMEC results, Table 1 shows that values corre-
sponding to rice samples are higher than those of corn (except
the blend of rice with L. clymenum and only corn extruded, where
there are not significant differences), as is expected according to
the explanation concerning the oil’s effect on the degree of friction.
Ahmed (1999) obtained similar results working with linseed–corn
extruded mixtures. On the other hand, when legumes are added to
cereal, SMEC values also decrease (in the present study there are
only significant differences between samples containing only rice
extruded and rice blended with L. clymenum). Pérez-Navarrete
et al. (2006) observed a similar effect by extruding a corn–P. lunatus
mixture. This effect could be attributed to the lower hardness of le-
gume cotyledons in comparison to the cereal endosperm hardness,
which could reduce the degree of friction in the extruder.

3.2. Nutritional evaluation

3.2.1. Chemical composition
Table 2 shows the chemical composition corresponding to

extruded samples. Moisture content is in the expected range

(between 7% and 79%). Ash content increased significantly
(p < 0.001) with the addition of legumes. Ash content in corn-
containing samples is higher (p < 0.001) than in those containing
rice. Regarding fat content, rice-containing samples have lower
amounts (p < 0.01) than those containing corn and there were no
significant differences between rice and its legume blends. On
the other hand, the addition of legumes reduced fat content of corn
blends, the differences being significant in the case of L. clymenum.

Fibre content increased significantly (p < 0.01) with the addition
of legume for both cereal samples, the highest values being those
corresponding to corn and its legume blends. Protein content also
increased significantly (p < 0.05) with the addition of legume, ex-
cept in the case of corn–L. annuus blend. It also observed that the
protein content of extruded corn is higher (p < 0.05) than that of
rice. Regarding soluble sugars, results depended on the type of
blend. In the case of rice-containing samples, soluble sugars in-
creased with the addition of legume. In the case of corn-containing
samples, the addition of L. clymenum diminished soluble sugar con-
tent (p < 0.001), while an opposite effect is observed when L. annu-
us is added, in which case soluble sugars increased (p < 0.001).
Furthermore, the soluble sugar content of corn samples is higher
(p < 0.001) than those of rice.

Finally, carbohydrate content diminished with the addition of
legumes, these differences being significant (p < 0.001) only in
the case of rice-containing samples; also the carbohydrate content
of corn–legume blends is lower than their rice-containing
equivalents.

3.2.2. Amino acid profile
Table 3 shows the results of amino acid (AA) composition

(g/100 g of protein) for extruded samples. It is observed that some
changes in AA profile occurred with the addition of legumes. Cys-
teine contents decreased with the addition of legumes, but only in
the case of corn–L. clymenun blend is the decrease significant
(p < 0.01), compared with corn alone. Nevertheless, the sulphur
amino acid content (Cys + Met) of all blends is higher than that
recommended by FAO/WHO/UNU (1985). It is also observed that
in all samples, Phe + Tyr content is higher than that of FAO
recommendations.

Changes in leucine and valine contents depended on the type of
cereal. Corn samples have a higher content (p < 0.001) of leucine
than the rice samples, but the addition of legume did not signifi-
cantly affect this value. All samples showed higher leucine content
than that of FAO recommendations. In the case of valine, rice sam-
ples showed higher (p < 0.05) content than those of corn and the
addition of legume did not significantly affect valine contents.
Again, all samples showed higher valine content than that of FAO
recommendations.

Table 2
Chemical composition corresponding to each extruded sample.

Sample Moisture (%)* Ash (%)2*** Fat (%)2** Fibre (%)2** Protein (%)2* Soluble sugars (%)2*** Carbohydrate (%)1,2***

R 8.2 ± 0.03c 1.19 ± 0.01a 0.53 ± 0.15a 3.81 ± 0.15a 7.38 ± 0.10a 0.23 ± 0a 86.86 ± 0.13c

R + LA 8.1 ± 0.11c 1.42 ± 0.02b 0.54 ± 0.14a 7.51 ± 0.16b 10.50 ± 0.53b 0.32 ± 0b 79.70 ± 0.49b

R + LC 7.9 ± 0.07bc 1.44 ± 0.01b 0.81 ± 0.00a 7.96 ± 0.01b 10.09 ± 0.16b 0.31 ± 0b 79.38 ± 0.14b

C 9.1 ± 0.34d 1.46 ± 0.02b 2.18 ± 0.02c 7.15 ± 0.18ab 10.23 ± 0.66b 0.44 ± 0c 78.54 ± 0.89ab

C + LA 7.1 ± 0.17ª 1.65 ± 0.01c 1.65 ± 0.09bc 11.95 ± 0.13c 11.25 ± 0.36bc 0.50 ± 0.01d 72.99 ± 0.42a

C + LC 7.3 ± 0.05ab 1.67 ± 0.02c 1.12 ± 0.15ab 11.86 ± 1.53c 12.13 ± 0.007c 0.31 ± 0b 72.89 ± 1.40a

Samples: R, rice; C, corn; R + LA, rice + L. annuus; R + LC, rice + L. clymenum; C + LA, corn + L. annuus; C-LC, corn + L. clymenum. 1, Calculated as 100 – (mois-
ture + ash + fat + fibre + protein + soluble sugars). 2 = Dry basis. Mean values ± standard deviation.
abcdDifferent letter superscripts in the same column indicate statistical differences.
* p < 0.05.
** p < 0.01.
*** p < 0.001, Tukey’s test.
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The changes in lysine contents depended on both the type of
cereal and legume. Rice samples showed higher lysine values
(p < 0.01) than those for corn samples and the addition of legume
significantly increased (p < 0.01) lysine content. However, none of
the samples showed enough lysine content to satisfy FAO recom-
mendations, indicating that the percentage of legume addition
should be higher if FAO recommendations are to be satisfied. Tryp-
tophan content in rice samples is higher (p < 0.01) than in those of
corn, and the addition of legume reduced it significantly (p < 0.01)
only in the case of rice-containing samples. Regarding FAO recom-
mendations for tryptophan content, it is observed that almost all
samples reach the minimum recommended level, the highest value
being for rice samples.

Regarding the content of other amino acids, such as isoleucine,
histidine, methionine and threonine it is observed that no signifi-
cant differences were observed among samples. All samples satis-
fied FAO recommendations for threonine content. However, corn-
containing samples did not satisfy the requirements for isoleucine.
Finally, all samples satisfy FAO recommendations for histidine,
with the exception of rice and rice–L. clymenum samples.

Regarding non-essential AA, significant differences among ex-
truded samples were found for alanine, aspartic acid, arginine
and glycine. The most noticeable difference corresponded to argi-
nine, due to the fact that its content in rice is much higher than
that in corn.

3.2.3. In-vitro protein digestibility
Protein digestibility is one of the most important factors deter-

mining protein quality (FAO, 1985). Table 4 show values of in-vitro
protein digestibility corresponding to extruded samples. Addition
of legumes did not affect digestibility, since no significant differ-
ences were observed among samples. These results are in agreement
with those of other workers (Alonso et al., 2000; Balandrán-
Quintana, Barbosa-Cánovas, Zazueta-Morales, Anzaldúa-Morales,
& Quintero-Ramos, 1998; Pérez-Navarrete et al., 2006).

3.2.4. Total phenolics contents
Table 5 shows polyphenol contents corresponding to extruded

samples. Corn contains a much higher polyphenol content than

rice and the addition of legume did not produce significant
changes.

3.2.5. Mineral contents and potential availability
Table 6 shows the results of iron and zinc content, their poten-

tial availability (%) and the % of recommended daily intake (RDI)
which is supplied, corresponding to extruded samples.

3.2.5.1. Iron. It is observed that iron content increased with the
addition of legumes, although the values were not always signifi-
cantly different. Legumes are considered iron-rich materials and
several researchers have observed a positive effect of the addition
of legumes to cereals (Hazell & Johnson, 1989; Lombardi-Boccia,
Dilullo, & Carnovale, 1991).

Table 3
Amino acid composition (g/100 g of protein) corresponding to extruded samples. Mean values ± standard deviation and FAO recommendation.

Rice Rice + LA Rice + LC Corn Corn + LA Corn + LC FAO

Essential amino acids Cys** 2.0 ± 0.1ab 1.3 ± 0.4a 1.3 ± 0.0a 2.3 ± 0.1b 2.1 ± 0.0ab 1.5a

Phe 5.0 ± 0.1 4.9 ± 0.4 4.6 ± 0.1 4.8 ± 0.0 5.0 ± 0.0 5.0
His 1.7 ± 0.1 2.2 ± 0.3 1.8 ± 0.0 2.3 ± 0.4 2.5 ± 0.1 2.3 1.9
Ile 2.8 ± 0.0 3.7 ± 1.1 2.9 ± 0.0 2.3 ± 0.0 2.6 ± 0.0 2.5 2.8
Leu*** 8.9 ± 0.0a 8.4 ± 0.5a 8.9 ± 0.1a 13.0 ± 0.2b 11.3 ± 0.0b 11.6b 6.6
Lys** 3.3 ± 0.3b 4.4 ± 0.1de 4.7 ± 0.1e 2.6 ± 0.0a 3.9 ± 0.2c 4.2cd 5.8
Met 1.6 ± 0.0 1.1 ± 0.2 1.0 ± 0.0 0.7 ± 0.8 1.7 ± 0.0 1.1 2.5€

Tyr** 3.2 ± 0.1b 2.9 ± 0.1ab 3.0 ± 0.1ab 3.0 ± 0.1ab 2.8 ± 0.0a 2.8 6.3€€

Thr 3.9 ± 0.1 4.4 ± 0.3 4.0 ± 0.0 4.3 ± 0.2 4.3 ± 0.2 4.1 3.4
Trp** 1.5 ± 0.1b 1.0 ± 0.0a 1.1 ± 0.0a 1.1 ± 0.1a 0.9 ± 0.0a 0.9a 1.1
Val* 4.5 ± 0.2b 4.4 ± 0.4b 4.1 ± 0.0ab 3.6 ± 0.1a 3.9 ± 0.0ab 3.8ab 3.5

Non-essential amino acids Ala** 6.3 ± 0.1ab 6.6 ± 1.1ab 5.7 ± 0.1a 8.5 ± 0.1b 7.6 ± 0.1ab 7.4ab

Arg*** 8.2 ± 0.1b 8.5 ± 0.3b 8.4 ± 0.1b 4.9 ± 0.0a 6.0 ± 0.1a 6.0a

Asp** 10.7 ± 0.2ab 11.0 ± 0.4ab 11.6 ± 0.2b 9.4 ± 0.5a 9.1 ± 0.5a 9.5ab

Gly* 5.2 ± 0.0b 5.2 ± 0.0ab 5.1 ± 0.0ab 5.1 ± 0.4ab 4.6 ± 0.1a 4.8ab

Glu 20.8 ± 0.0 20.4 ± 1.7 21.0 ± 0.2 22.6 ± 1.1 21.9 ± 0.4 21.8
Pro 4.8 ± 0.4 3.8 ± 0.2 4.8 ± 1.3 3.6 ± 0.5 4.0 ± 0.1 4.6
Ser 5.7 ± 0.3 5.8 ± 0.1 6.0 ± 0.0 5.9 ± 0.1 5.8 ± 0.0 6.1

Cys, cysteine; Phe, phenylalanine; His, histidine; Ile, isoleucine; Leu, leucine; Lys, lysine; Met, methionine; Tyr, tyrosine; Thr, threonine; Trp, tryptophan; Val, valine; Ala,
alanine; Arg, arginine; Asp, aspartic acid; Gly, glycine; Glu, glutamic acid; Pro, proline; Ser, serine; € = Met + Cys, €€ = Phe + Tyr; LA, L. annuus; LC, L. clymenum.
abcd Different letter superscripts in the same row indicate statistical differences (p < 0.05), Tukey’s test.
* p < 0.05.
** p < 0.01.
*** p < 0.001.

Table 4
In-vitro protein digestibility (PD) of extruded samples.

Sample PD (%)

Rice 84.1 ± 0.5
Rice + L. annuus 82.5 ± 1.7
Rice + L. clymenum 82.8 ± 0.2
Corn 81.8 ± 0.2
Corn + L. annuus 81.8 ± 0.3
Corn + L. clymenum 82.5 ± 0.0

Mean values ± standard deviation.

Table 5
Polyphenol content of extruded samples.

Sample Polyphenol (mg/g of sample)

Rice 0.36 ± 0.02a

Rice + L. annuus 0.28 ± 0.02a

Rice + L. clymenum 0.47 ± 0.10ª

Corn 1.20 ± 0.03b

Corn + L. annuus 1.06 ± 0.06b

Corn + L. clymenum 1.04 ± 0.09b

Mean values ± standard deviation.
abDifferent letter superscripts indicate statistical differences (p < 0.05), Tukey’s test.
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On the other hand, Fe dialysability increased with the addition
of legumes in all cases, but significant differences (p < 0.05) were
only observed between corn–L. clymenum and corn alone. Drago
et al. (2010) also observed an improvement in iron dialysability
when dehulled P. vulgaris was added to whole corn flour in a
50:50 ratio (11.6% vs. 10.5%).

Table 6 also shows the percentage of the recommended daily
intake (RDI) of iron given by a 30-g ration of expanded products.
It is noted that adding the wild legume increases the contributions
of this mineral, especially for rice–L. annuus (1.9 times compared
with rice) and corn–L. clymenum (1.96 times compared with corn).
Even though these values are not high, the RDI for iron (18 mg/day)
takes into account the value of bioavailability, and thus the per-
centage covered by this ration of these expanded products may
be higher, since the value we reported is the amount of potentially
bioavailable mineral.

3.2.5.2. Zinc. Table 6 shows that corn samples contain higher
(p < 0.001) amounts of Zn than those containing rice, and that
the addition of legumes increased the Zn content of both cereal
samples. It is also observed that Zn potential availability of corn-
containing samples is higher than that of samples containing rice,
and that it is also improved by the addition of legumes, although in
the case of corn alone and corn–L. annuus the difference is not
significant.

‘With respect to the percentage of the recommended daily in-
take (RDI) for zinc supplied by a 30-g ration of expanded products,
it is observed that for corn-containing samples it is higher than
those of rice (p < 0.001) and the addition of wild legumes increases
this by 1.2–1.4 times for corn and 1.6 times for rice (p < 0.001). The
RDI (15 mg/day) takes into account a zinc bioavailability of 20%
(Olivares, Martínez, López, & Ros, 2001), and thus the percentage
covered by the ration of these expanded products may be higher,
since the value we reported is the amount of potentially bioavail-
able zinc.

3.2.6. ODAP contents
Table 7 shows ODAP contents (%) of extruded samples. ODAP

content in extruded products is very low, which is interesting for

human consumption. Grela (1998) and Singh, Azeem, and Singh
(2003) also noted that the extrusion process results in decreased
levels of ODAP in L. sativus. Table 7 shows that blends containing
L. clymenum have higher ODAP contents than blends containing
L. annuus (p < 0.05).

4. Conclusions

Extruded products based on whole corn or rice with the addi-
tion of wild legumes offer four main advantages: they are whole
grain food grade; they have a better nutritional quality than a tra-
ditional extrudate, they are made with grains with such a small
amount of gluten that they can almost be considered ‘‘free from
gluten’’ cereals and they have very low amounts of antinutritional
components.

Corn–legume samples show a better chemical composition than
those of rice, since they have a higher content of proteins, fibre and
minerals. Finally, the fact that they are made with wild legumes
makes them innovative products.
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