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CD4+ T cells have a major role in regulating immune responses. They are activated by 
recognition of peptides mostly generated from exogenous antigens through the major 
histocompatibility complex (MHC) class II pathway. Identification of epitopes is important 
and computational prediction of epitopes is used widely to save time and resources. 
Although there are algorithms to predict binding affinity of peptides to MHC II molecules, no 
accurate methods exist to predict which ligands are generated as a result of natural antigen 
processing. We utilized a dataset of around 14,000 naturally processed ligands identified 
by mass spectrometry of peptides eluted from MHC class II expressing cells to investigate 
the existence of sequence signatures potentially related to the cleavage mechanisms that 
liberate the presented peptides from their source antigens. This analysis revealed preferred 
amino acids surrounding both N- and C-terminuses of ligands, indicating sequence-specific 
cleavage preferences. We used these cleavage motifs to develop a method for predicting 
naturally processed MHC II ligands, and validated that it had predictive power to identify 
ligands from independent studies. We further confirmed that prediction of ligands based on 
cleavage motifs could be combined with predictions of MHC binding, and that the combined 
prediction had superior performance. However, when attempting to predict CD4+ T cell 
epitopes, either alone or in combination with MHC binding predictions, predictions based  
on the cleavage motifs did not show predictive power. Given that peptides identified as 
epitopes based on CD4+ T cell reactivity typically do not have well-defined termini, it is pos-
sible that motifs are present but outside of the mapped epitope. Our attempts to take that 
into account computationally did not show any sign of an increased presence of cleavage 
motifs around well-characterized CD4+ T cell epitopes. While it is possible that our attempts 
to translate the cleavage motifs in MHC II ligand elution data into T cell epitope predictions 
were suboptimal, other possible explanations are that the cleavage signal is too diluted to 
be detected, or that elution data are enriched for ligands generated through an antigen 
processing and presentation pathway that is less frequently utilized for T cell epitopes.

Keywords: antigen processing, ligand elution, epitope prediction, human leukocyte antigen, major histocompatibility  
complex class II, CD4+ T cell epitopes, natural cleavage motif

Abbreviations: APCs, antigen-presenting cells; AUC, area under the ROC curve; CLIP, class II-associated invariant chain 
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INTRODUCTION

Major histocompatibility complex (MHC) class I molecules 
are expressed in virtually all nucleated cells, and their main 
biological function is to present peptides derived from process-
ing endogenous antigens to killer CD8+ T cells (1). By contrast, 
MHC class II molecules are primarily expressed by professional 
antigen-presenting cells (APCs) such as macrophages, dendritic 
cells, and B cells, and are mostly involved in binding and presen-
tation of peptides generated from exogenous antigens to CD4+ 
T  cells through the endocytic pathway of antigen presentation 
(2). MHC II molecules are also expressed by non-professional 
APCs such as endothelial cells, fibroblasts, epithelial cells, and 
tumor cells when induced by inflammatory signals (3). In the 
main endocytic pathway of antigen presentation, extracellular 
antigens are internalized by phagocytosis, macropinocytosis, 
or receptor-mediated endocytosis, and degraded in acidic and 
proteolytic compartments such as lysosomes or late endosomes 
by proteases generally called cathepsins (4). Less frequently, 
MHC II molecules also bind peptides generated from processing 
of endogenous antigens, namely cytosolic and nuclear proteins, 
acquired through autophagy (5).

The complexes of peptides generated from antigen process-
ing bound to MHC II molecules are transported to the cell 
surface, where they become available for recognition by CD4+ 
T  cells. CD4+ T  cell recognition of MHC class II presented 
peptides plays a critical role in diverse immune reactions such 
as immunity against viral and bacterial infections and parasitic 
infestations, as well as those involved in allergic reactions.  
In addition to these well-established roles, it is also understood 
that MHC class II antigen presentation pathway is involved in 
autoimmunity (1, 6) and cancer immunity (7–9). This broad 
immunological function makes the identification of MHC class 
II restricted peptides recognized as CD4+ T  cell epitopes an 
important research area.

For MHC class I restricted T cell epitopes, the identification 
of T cell epitopes is aided by MHC class I binding predictions, 
which drastically reduce the number of peptides that have to 
be tested, as the vast majority of T cell epitopes bind in the top 
0.5–2% of predicted binding peptides (10). By contrast, for MHC 
class II restricted T cell epitopes, the binding predictions are not 
as reliable (11), and epitopes are often in the top 10 or 20% of 
predicted binders. This is only partly a result of the predicted 
ligand affinities for MHC class II being less reliable compared 
to that of MHC class I. MHC class II binding predictions have 
become continuously more reliable (12–16), but the ability to 
predict MHC class II T cell epitopes is still substantially worse 
than for MHC class I. This suggests that factors beyond MHC 
class II binding affinity contribute to likelihood of a peptide to be 
recognized by CD4+ T cells.

It is widely recognized that natural processing shapes which 
peptides are available for binding to MHC molecules and subse-
quently presented to T cells, and that the capacity to bind MHC 
molecule is a necessary but not sufficient requisite for immu-
nogenicity. Several algorithms are available which can assist 
in the prediction of which peptides are natural class I ligands  
(17, 18). Natural ligands have also been recently used to train 

class I predictive algorithms (10, 19, 20) leading to an overall 
improved performance for ligands and CD8+ T cell epitopes. By 
contrast, no algorithm is currently available to predict which 
peptides are naturally processed by the MHC class II antigen-
presenting pathway. It is reasonable to hypothesize that analysis 
of MHC class II antigen processing and the resulting natural 
ligands could result in improving the epitope prediction algo-
rithms and cast additional light on the processing mechanism 
itself.

Recent advances in mass spectrometry (MS)-based tech-
niques have led to the identification of large amounts of peptides 
eluted from MHC molecules (21–25). These naturally processed 
peptide sets, called human leukocyte antigen (HLA) ligandome 
or HLA peptidome, are a valuable resource in expanding 
current knowledge about mechanisms of antigen processing.  
In this study, we analyzed sets of naturally processed MHC class 
II ligands identified by MS of peptides eluted from MHC class 
II-expressing cells and downloaded from the immune epitope 
database (IEDB) (26) to investigate MHC class II antigen-
processing mechanisms and examine whether this informa-
tion could be used to improve prediction of the CD4+ T  cell  
epitopes.

MATERIALS AND METHODS

Collection and Screening of Ligand Data
Major histocompatibility complex class II ligand elution assay 
data was collected by querying the IEDB database1 (26) using 
the following criteria: “Positive Assays Only, Epitope Structure: 
Linear Sequence, No T cell assays, No B cell assays, MHC ligand 
assays: MHC ligand elution assay, MHC Restriction Type: 
Class II.” The collected data included ligand sequence, details 
of the source from which the ligands originated including 
the source protein name, position of the ligand in the source 
protein, source organism name, and the restricting allele of 
the ligand. A Python script was used to parse the exported 
data. The source sequences of the ligands were collected from 
UniProt.2

Two independent sets of ligand data were used in the study. 
The first dataset was collected in July 2016 and contained 35,367 
ligands reported in IEDB up to that point. The collected data 
were screened based on factors such as ligand length and allele 
distribution. The length of the ligands in the original dataset 
ranged from 3 to 46 and the distribution of ligands varied widely 
with respect to length (Figure 1A). The most abundant length 
was 15, followed by 14 and 16. These three lengths together 
comprised almost 50% of the data. From the initial dataset, first 
we selected ligands with lengths that represented at least 0.5% of 
the total ligands, which included lengths 9–23. This comprised 
98.22% of the total data collected. Next, the restricting alleles of 
the ligands in the dataset were analyzed and entries with alleles 
listed unambiguously were selected. For example, some entries 
where the HLA alleles were listed as just the gene locus (HLA-DQ 

1 www.iedb.org (Accessed: 2016–2018).
2 www.uniprot.org (Accessed: 2016–2018).



FIGURE 1 | Selection of major histocompatibility complex (MHC) II ligand data and distribution of the data. (A) Distribution of ligand entries based on ligand length 
as collected from immune epitope database. The most abundant length was 15, followed by 14 and 16. Lengths 14–16 comprised around 50% and lengths 13–17 
represented around 71% of the ligand data. (B) Example of random peptides generated by shuffling the amino acid residues from a ligand and corresponding 
predicted MHC II binding (percentile rank). Five random peptides were generated from each ligand by shuffling the component amino acids and the median of the 
predicted binding (percentile ranks) of the random peptides was assigned as the predicted percentile rank of the random peptide. (C) Fold difference between the 
proportion of predicted binders among ligands and shuffled peptides for different peptide lengths. The fold difference plateaued after reaching 2.5. The red line 
indicates fold difference 2.5. (D) Distribution of ligand data based on restricting alleles (only B-chain is shown). (E) Distribution of the ligand data based on final 
selected lengths.
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and HLA-DR), or alleles from chicken, horse, cow, and mouse 
for which we did not have binding prediction algorithms, were 
excluded. This was done to streamline the analyses. Representative 
alleles were assigned for entries where serotypes were indicated 
(e.g., DRB1*07:01 for HLA-DR7). Redundant entries with 
identical ligand sequence and alleles were removed. From this 
set, alleles with less than 50 entries were excluded. Some entries 
for which the source proteins were not clearly annotated were 
also excluded. We did further analyses to identify optimal ligand 
lengths as well as potential false-positive antigens (see Results). 
On the basis of these analyses, only ligands of lengths 13–23 were 
included, and ligands from 199 potential false-positive antigens 
were excluded (Table S1 in Supplementary Material). The final 
dataset contained 14,051 unique ligand entries that came from 
2,604 source proteins. Details of the number of ligand entries 
in each filtering step is shown in Figure S1 in Supplementary 
Material. This dataset was used as the training ligand dataset for 
identifying the cleavage motif and generating the method for 
prediction of ligands.

A second set of eluted ligand data was collected from IEDB 
at a later stage of the study using same selection criteria as 
the previous ligand data and filtered to include only the 
studies from 2016 and 2017 and that were not present in the 
initial ligand dataset. The dataset was screened to eliminate 
redundancy by removing duplicate peptides and peptides with 
source protein information not provided unambiguously were 
also excluded. As above, ligands of length 13–23 were selected. 
Ligands that matched with any of the ligands in the training 
dataset with 100% identity as well as ligands that came from 
the source parent protein sequences in the training data were 
excluded. The final set contained 3,648 unique peptides that 
came from 1,144 unique protein sequences. No selection for 
specific restricting MHC molecules was done, as the data were 
only used for validation studies that did not require knowing 
the MHC restrictions. The source sequences were collected 
from UniProt. This dataset was used as the evaluation ligand 
dataset.

Collection of CD4+ T Cell Epitope Datasets
In addition to the ligand data, we collected different sets of 
CD4+ T cell epitopes. First among them were sets of 15-mer 
epitopes from studies done in our lab that were shown to be 
recognized by T  cells, and that were tested in a consistent 
format (referred as “in-house epitope set”). The peptides in 
these sets were tested for immune recognition in cohorts of 
18–91 donors by ELISPOT assays for secretion of one of the 
following cytokines: IFN-g, IL-5, IL-10, or IL-17. The details 
of epitope sets including the corresponding references of each 
study are listed in Table S2 in Supplementary Material. The 
details of the identification of these epitopes are described in 
the peer-reviewed references listed in the table. In some cases, 
the epitope sets were selected based on interim analysis and 
do not exactly match the final epitope lists in the published 
reports. A brief description of the peptide selection protocols is 
as follows: for the epitope set from Timothy grass (TG) known 
allergens, previous studies identified 20 epitopes that accounted 
for 79.5% of the total response to a set of TG-derived pollen 

antigens (Phl p allergens) in TG allergic individuals (27). Since 
some of these were not 15-mers, longer peptides were “decon-
structed” to derive 15-mers spanning those longer peptides.  
A total of 41 15-mers were derived. For the epitope set from novel 
Timothy grass allergens (NTGA), 19 peptides were described to 
encompass an NTGAp19 peptide pool, which were selected to  
encompass at least 40% of the total IL-5 response directed 
against all NTGA peptides screened (28). For the epitope set 
from house dust mite allergens, the peptide set included the 34 
most dominant peptides cumulatively accounting for 90% of 
the total allergen-specific response detected in the screen (29). 
In analogy with what described for the TG set, longer regions 
were deconstructed into 15-mers, which yielded 52 peptides 
in total. For the epitope set from cockroach allergens, 71 most 
dominant epitopes were selected based on total SFC values of 
>1,000 (30). For TB epitope set, we selected 65 15-mer epitopes 
identified from the vaccine candidate antigens and previously 
known epitopes that captured 80% of the response (31, 32). 
In total, 248 epitopes were included in this set. The source 
sequences were collected from UniProt.

As a second set of epitopes, we used CD4+ T cell epitopes 
identified by tetramer mapping studies (referred as “tetramer 
set”). These peptides were collected from IEDB with the follow-
ing selection criteria: “Positive assays only, Epitope structure: 
Linear sequence, T Cell assays: qualitative binding/multimer/
tetramer (tetramer), No B cell assays, No MHC ligand assays, 
MHC restriction type: Class II, Host organism: Homo sapi-
ens (human) (ID:9606, human).” The collected dataset was 
filtered for keeping only 15-mer epitopes for which a source 
antigen protein ID was available. The dataset contained 122 
unique epitopes. The source sequences were collected from  
UniProt.

In addition to the above epitope sets, we identified five studies 
curated by IEDB that contained 15-mer peptides spanning six 
proteins that were tested for immunogenicity in the context of 
HLA class II restricted T cells. We collected the epitopes from 
these studies which included 73 unique epitopes from 6 distinct 
proteins that are completely independent from the other datasets 
(referred as “IEDB epitope set”) (33–37). More details regarding 
collection of this dataset are available in Ref. (38). The source 
sequences were again collected from UniProt.

Calculation of “Cleavage Probability 
Score” for Prediction of Ligands
We first used the amino acid preferences around cleavage sites 
identified from the MHC ligand data to derive a “motif score” for 
N- and C-terminuses that can be applied to any sequence. This was 
done by first calculating the frequencies of the three amino acid 
residues at the N- and C-terminuses of the peptides (N−1, N0, 
and N+1 for positions one preceding N-terminus, N-terminus, 
and one after the N-terminus, respectively and correspondingly 
C−1, C0, and C+1 positions for C-terminus). These were then 
divided by the background frequencies of corresponding amino 
acids in the protein set overall, and these relative amino acid fre-
quencies were log transformed to calculate log-odds scores. For 
a given triplet of amino acids, we can now assign a score of them 
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being a C-terminal or N-terminal cleavage, by simply calculating 
the sum of log-odds scores:

 N motif  score− = ( ) ( ) ( )−log log logN N N10 1 10 0 10 1F F F+ + +  

 C log log logC C C− = ( ) ( )( )motif score 10 1 10 0 10 1F F F− ++ +  
where FN−1, FN0, and FN+1 are the relative frequencies of amino 
acids at one position preceding the N-terminus of the peptide, 
N-terminus, and one after the N-terminus, respectively and cor-
respondingly for C-terminus.

Next, we calculated the probability of the given peptide to 
be ligand based on the peptide length and N-motif and C-motif 
scores. We used the relative proportion of the peptides of each 
length in the training ligand set as the probability based on length 
(called length probability) (Table S3 in Supplementary Material). 
For calculating the N-motif and C-motif probability, the entire 
set of peptides were divided into bins of approximately equal 
number of peptides separately for N- and C-motifs, based on 
their N-motif and C-motif scores, respectively. The N-motif and 
C-motif probability of the peptides was then calculated based on 
the number of ligands in the corresponding bin (Tables S4 and 
S5 in Supplementary Material). The “cleavage probability score” 
for each peptide was then derived by calculating the product of 
the length probability, N-motif probability, and C-motif prob-
ability. Figure S2 in Supplementary Material shows an illustration 
of deriving cleavage probability score for a peptide based on its 
length, N-motif, and C-motif.

RESULTS

Generation of a High Quality MHC Ligand 
Elution Dataset
The training ligand dataset contained more than 14,000 naturally 
processed ligands identified by MS of peptides eluted from 
MHC class II-expressing cells. The dataset was collected from 
IEDB database by querying for MHC II ligand elution assays. 
The initial dataset contained 35,367 peptides and was screened 
for lengths and unambiguous allele restrictions as mentioned 
in Section “Materials and Methods.” After initial screening, the 
dataset contained 28,007 peptides of lengths 9–23. Within this 
set, the length distribution of some of the peptides reported as 
ligands was suspiciously short/long, raising concerns that some of 
them might be enriched for degradation products or other con-
taminants, rather than being derived from peptides truly bound 
to MHC. We thus set out to determine if there was a bias for 
peptides of certain lengths to better conform with MHC binding 
motifs than peptides of other lengths. This was done based on 
binomial probability distribution comparing the proportion of 
predicted binders among ligands and random peptides generated 
by shuffling the ligand residues for each ligand length. Five sets 
of random peptides were generated from the ligand sequences by 
shuffling the amino acid residues within the ligands (Figure 1B). 
Binding affinity was then predicted for the original ligands 
and random peptide sets for their corresponding alleles using 
NetMHCIIpan-3.1 (12). The median of the predicted percentile 
ranks of the five random sets was calculated and assigned as the 
binding affinity of the random peptides.

Based on a predicted binding affinity cutoff of percentile 
rank 10.0, the number of predicted binders among the original 
ligands and the random peptide sets were calculated. We found 
that the fold differences between the proportion of predicted 
binders among ligands and shuffled peptides for different 
lengths plateaued after reaching 2.5 (Figure  1C). The lengths 
with a minimum fold difference of 2.5 were thus selected, which 
included lengths 13–23 and contained 24,099 peptides. The 
shortest length of 13 corresponded to a 9-mer binding core and 
2 flanking residues on both sides of the binding core, which 
is in concordance with previous experimental reports for the 
minimal length of a high affinity MHC ligand, which showed 
that binding affinity drops of drastically for peptides shorter than 
12–13 residues (39, 40). Notably, there was no decrease in this 
fold difference for long sequences up until 23, supporting that 
such very long peptides and potentially longer ones are indeed 
very capable of binding to MHC class II molecules, which again 
aligns with previous reports that even full length proteins can 
bind when sufficiently denatured (41).

Major histocompatibility complex ligand elution assays can 
possibly pick up peptides that are not actually bound to the MHC 
molecule, but instead are derived from degradation products 
of contaminating proteins that get co-eluted with the MHC: 
peptide complex, or that are derived from MHC molecules 
themselves. If that is indeed the case, then certain proteins that 
are more likely to be co-eluted should be enriched as a source of 
peptides that do not possess the sequence motif necessary for 
binding to the MHC, which would identify their source proteins 
as potential false-positive antigens. The same protocol described 
above (using binomial probability distribution) was used to 
identify such potential false-positive antigens and exclude them 
from the final dataset. The analysis identified proteins that had 
significantly less number of predicted binders among ligands 
than expected of random peptides. The percentile rank cutoff 
for selecting predicted binders was 10.0. The analysis identified 
199 proteins as potential false positives, which were excluded 
(Table S1 in Supplementary Material). Some of the top proteins 
in this list were MHC chains such as HLA-DQ alpha and beta 
chains, HLA-DP beta chain, HLA-DM alpha and beta chains, 
and beta-2-microglobulin. Proteins expressed in the endoplas-
mic reticulum and golgi network such as Trans-Golgi network 
integral membrane protein 2 and Endoplasmin were also in the 
list. After excluding these proteins and limiting ligands to length 
13–23, the dataset contained 18,286 ligand entries. Figure  1D 
shows the distribution of the ligand data based on the restricting 
HLA alleles. The data were dominated by ligands restricted by DQ 
alleles. Around 61% of the ligands in the dataset were restricted 
by the four DQ alleles while the 10 DR alleles were associated 
with 25% of the data and 14% of the ligands were restricted by the 
two mouse alleles. Overall, there was a lack of data comprising 
DP alleles, with only one allele from the DP locus and were very 
few ligands in the dataset that associated with this allele.

As a final filtering step, we excluded all ligands that were not 
found with 100% identity in their source parent proteins. This final 
set included 14,051 ligand entries that came from 2,604 unique 
protein sequences. Details of the number of ligand entries in each 
filtering step is shown in Figure S1 in Supplementary Material. 



FIGURE 2 | Enrichment and depletion of amino acids within and adjacent to major histocompatibility complex (MHC) II ligands and predicted MHC II binders. 
Heatmaps generated from the relative frequencies of amino acids at ligands/binders and nearby positions with respect to the overall amino acid frequency of the 
source proteins. “N” and “C” represents the N- and C-terminuses of the ligands, respectively and the numbers represent the amino acid positions with respect to 
N- and C-terminuses. The legend shows the color scale of the heat map with respect to the relative frequency of amino acids which is represented by the numbers 
on the legend. (A) Heatmap generated from ligands. (B) Heatmap from predicted binders. The pattern of amino acid enrichment and depletion was found to be 
significantly different between the heatmaps generated based on cleavage motif and binding motif.
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Figure 1E shows the final distribution of the data based on ligand 
length. As before, the most frequent length among the ligands 
in the final set was 15, followed by 14 and 16. Lengths 13–17 
represented more than 80% of the final ligand dataset. Overall, 
this selection process provided us with a dataset of MHC class 
II ligands with well-defined source antigens, known restriction, 
and which removes multiple potential sources of contaminants.

Amino Acid Composition of MHC Ligand 
Boundaries Reveals Putative Cleavage 
Motif
Major histocompatibility complex ligands are cleaved from their 
source proteins by various enzymes. We hypothesized that the 
specificity of these enzymes would result in certain amino acids 

being favored over others at the cleavage sites at the start and 
end of MHC ligands. Accordingly, the amino acid composition 
of the ligands and adjacent regions was analyzed. The sequence 
regions analyzed included 10 residues prior and past the N- and 
C-terminuses of each ligand including residues at both termini. 
The frequency of the amino acids at each position was computed 
and the pattern of enrichment/depletion was analyzed by com-
paring it to the amino acid frequencies in the source proteins 
overall. As most ligands are ~15 residues in length, going in 10 
amino acids from either terminus means that the enrichment/
depletion motifs are expected to overlap, and in fact they do. 
Figure 2A shows the enrichment and depletion of amino acids 
at positions from the N-terminus ±10 positions; the C-terminal 
enrichment is shown from positions −3 to +10, because posi-
tions C−4 to C−10 from the C-terminus show essentially the 
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same motif as the positions N+4 to N+10 from the N-terminus.  
We focused on the cleavage motif represented by the relative 
frequencies of amino acids at ligand termini and at the adjacent 
positions in comparison to the overall amino acid frequen-
cies in the full length source proteins as shown in Table S6 in 
Supplementary Material.

The heatmap generated from the cleavage motifs showed 
prominent enrichment at N-terminus for P at position N+1 and 
D at N0, N+1, N+2 and at C-terminus for K and R at C0, I and 
V at C−1 and G, N and Q at C0 (Figure 2A). By contrast, the 
heatmap showed depletion of several hydrophobic residues, most 
prominently at the C0 and N+1 positions. We examined if the 
motif changed when we considered different ligand lengths by 
themselves, or only ligands restricted by HLA-DR or DP or DQ. 
We did not detect any significant differences; in fact, the motifs 
for all of the datasets we generated overlapped very closely (Tables 
S7 and S8 and Figures S3 and S4 in Supplementary Material). 
In all cases, the cleavage motifs at N- and C-terminuses were 
almost perfectly conserved, but the motif inside the ligands var-
ied, which could be attributed to the difference in binding motif 
patterns associated with different alleles. This suggested that the 
motifs detected are not locus or peptide length dependent, but 
rather reflect general preferences for antigen processing, which 
is in line with the discovered motif matching to well-known 
cleavage motifs of proteases.

We also consistently detected a depletion of Cysteine residues 
not only within MHC ligands but also outside of them. While 
the depletion of Cysteines within eluted ligands could be due to 
experimental problems of these residues oxidizing and/or form-
ing disulfide bonds, which would make them harder to detect, 
the fact that the Cysteine depletion is also present in flanking 
regions of the ligand suggests that, at least partially, Cysteine 
rich regions are poor for MHC ligand presentation, potentially 
due to their ability to form disulfide bonds that make them less 
accessible for MHC ligand generation (42–48).

To examine how the terminal sequence motifs discovered 
in our MHC ligand analysis compared to peptides that bind to 
MHC, whether they are naturally processed or not, we created 
a control dataset of peptides collected from the same source 
proteins of our ligand dataset, including only 15-mer peptides 
predicted to bind MHC using the 7-allele method as described 
in Ref. (49) based on the recommended universal threshold of 
7-allele median consensus percentile rank 20.0 (for comparison, 
the average 7-allele median consensus percentile ranks of the 
15-mer ligands was 33.57. There were ~38% 15-mer ligands 
below the threshold 20.0). An amino acid enrichment/depletion 
pattern was generated from this data the same way it was done 
for MHC ligands above, with the resulting heatmap shown in 
Figure  2B, and the numeric values reported in Table S9A in 
Supplementary Material. Overall, the motif obtained from 
peptides selected based on binding prediction was found to be 
distinct from that of the natural eluted MHC ligands. While there 
was overlap in the amino acid preferences at internal positions 
expected to be in contact with the MHC molecule, there was no 
sign of a cleavage motif at the termini for these predicted binders. 
For example, in contrast to natural ligand-based enrichment pat-
tern, P and N were depleted at N-terminus cleavage positions and 

K and R were found to be depleted at the C-terminus. Similarly, 
enrichment of K and R at the C-terminus and depletion of C were 
less pronounced. We repeated this analysis using allele-specific 
binding predictions rather than the 7-allele methods, which led 
to identical results (Table S9B and Figure S5 in Supplementary 
Material). This confirms that the sequence motifs surrounding 
MHC ligand termini are due to processes other than MHC bind-
ing, such as cleavage of the ligands from their source protein.

Prediction of MHC II Ligands Using the 
Terminal Cleavage Motifs
We wanted to determine if we could use the discovered cleav-
age motifs at the ligand termini in a predictive fashion. In a first 
analysis, we examined how well the motifs could re-identify the 
ligands in the training ligand data. The complete source sequences 
were broken down to all possible peptides of lengths 13–23. 
Peptides identical to the ligands were considered positive and all 
others were considered negative. The cleavage probability scores 
were estimated for each peptide (details in Section “Materials and 
Methods”), with the peptides with higher scores being predicted 
to have better chance to be ligands. In brief, the cleavage prob-
ability scores—the probability of a peptide being a ligand—were 
calculated based on peptide length and the cleavage motifs at 
N- and C-terminuses comprising the three amino acid residues 
at the N- and C-terminuses. We plotted the receiver operating 
characteristic curve (ROC curve) and estimated the area under 
the ROC curve (AUC) on a per-protein basis. In brief, the ROC 
curve plots the sensitivity as a function of the false positive rate 
of a binary classifier as the classification threshold is varied and 
the AUC is used as measure of performance of the prediction 
method. An AUC of 0.5 indicates completely random prediction, 
and an AUC of 1.0 indicates perfect prediction. In our case, the 
average AUC was found to be 0.851 when the performance was 
evaluated on a per protein basis and the AUCs were averaged. This 
value constitutes an upper boundary of prediction performance 
using this scoring scheme, as the motif values are applied to the 
same dataset from which they were generated.

Validation of “Cleavage Probability Score” 
Using Independent MHC II Ligand Dataset
To verify the ability of the cleavage motifs to predict eluted 
ligands, we used an independent ligand dataset collected from 
the IEDB references published between 2016 and 2017, and 
excluded any ligand and protein sequences that were included in 
the training dataset. This evaluation set contained 3,648 unique 
peptides that came from 1,144 unique sequences. We predicted 
the ligands in the evaluation ligand data using the cleavage 
probability scores derived based on the cleavage motifs that were 
identified. The average AUC was 0.767 when the evaluation was 
done on a per protein basis and the AUCs were averaged.

Improved MHC II Ligand Prediction by 
Combining Cleavage Motifs and Binding 
Motifs
We wanted to see if combining the scoring based on cleavage 
motifs with MHC binding predictions would improve the overall 



TABLE 1 | Performance improvement with combined prediction approach in 
terms of area under the ROC curve (AUC).

Alpha Average AUC—training  
ligand data

Average AUC—evaluation  
ligand data

0 0.591 0.630
0.1 0.635 0.665
0.2 0.675 0.693
0.3 0.710 0.712
0.4 0.738 0.723
0.5 0.759 0.728
0.6 0.774 0.726
0.7 0.779 0.722
0.8 0.778 0.716
0.9 0.774 0.708
1 0.768 0.700

Comparison of the prediction performance when only one scoring method is used 
(binding-based when α = 0 and cleavage motif-based when α = 1.0) with the 
combined scoring approach where both binding- and cleavage motif-based scoring 
schemes were combined together. The AUC was highest for the training data at 
alpha = 0.7 and highest for evaluation data at alpha = 0.5.
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ability to predict MHC II ligands. We thus combined the cleav-
age motif based on cleavage probability scores derived above 
with the previously established “7-allele method” which is used 
for prediction of binding with MHC II alleles (49). In brief, the 
7-allele method predicts the binding affinity of a peptide with 
seven HLA-DR alleles and calculates the median predicted affin-
ity, which serves as a proxy for the ability of a peptide to bind 
promiscuously to different HLA molecules. Peptides with lower 
median percentile rank value are considered better predicted 
epitope candidates. The two scores were then combined with 
different weights as follows:

 

Combined score cleavage probability score
binding 

= α
+( −α)
×

×1 sscore  
where cleavage probability score is the score for the peptide 
based on the cleavage motif as explained above and binding 
score is the median percentile rank for the same peptide from 
the 7-allele method representing the MHC binding affinity.  
We used the sequences with 15-mer ligands only since the 
7-allele method for binding prediction was available for only 
15-mer peptides. The cleavage probability scores were converted 
to percentile ranks to adjust to the same scale as binding scores. 
The conversion to percentile ranks was done for each peptide 
with reference to the peptides from within the corresponding 
protein as reference.

The value of α was varied from 0 to 1 with interval of 0.1. Thus, 
with α = 0, the combined score was totally derived from binding 
score and with α = 1, the combined score was totally attributed 
by the cleavage probability score. Overall, we saw improvement 
in prediction performance for alpha values between 0.0 and 
1.0, when both scoring schemes contribute rather than when 
either of the scoring methods was used alone. The results from 
this analysis are summarized in Table  1. When we applied 
the combined scoring approach on the training ligand data, 
the highest performance achieved was average AUC  =  0.779 
(α  =  0.7), which was a slight improvement from the cleavage 

probability score alone (average AUC = 0.769). For the evaluation 
ligand data the performance improved to average AUC = 0.728 
(α = 0.5) compared to cleavage probability score alone (average 
AUC = 0.700) (p-value = 0.02, paired t-test). A smaller improve-
ment to AUC  =  0.722 was observed when using α value of  
0.7 that was optimal in the training set.

Cleavage Motifs Fail to Predict  
CD4+ T Cell Epitopes
As we were able to use cleavage motifs to predict MHC II 
ligands, we wanted to see if we could use the same approach 
to improve CD4+ T cell epitope prediction. To test the ability 
of the cleavage probability score to differentiate actual epitopes 
from other peptides, we collected three separate sets of epitopes: 
one containing 15-mer epitopes from studies done in our lab 
that were shown to be recognized by T cells (“in-house epitope 
set”), another containing 15-mer CD4+ T cell epitopes identified 
by tetramer mapping studies (“tetramer set”), and a third one 
containing 15-mer epitopes curated by IEDB from studies done 
on overlapping peptides in six antigens (“IEDB epitope set”) 
(details of the peptide sets are provided in Section “Materials 
and Methods”).

The T cell epitopes in two of our datasets were discovered 
based on screens of consecutive 15-mer peptides overlapping 
by 10 residues that span their source proteins (the third one 
being the tetramer dataset). Such overlapping peptide datasets 
avoid potential biases from pre-selection of peptides tested 
for T cell recognition based on their predicted ability to bind 
MHC. Importantly, the N- and C-terminal boundaries of these 
peptides are a result of this overlapping peptide synthesis 
scheme, and thus the epitope peptide termini are not expected 
to be efficient cleavage sites. This does not impede their rec-
ognition by epitope specific memory T  cells, as the peptides 
are supplied liberated from their source sequence. As long as 
the tested peptide can bind the MHC molecule and contains 
the amino acid sequence that primed the naive T cell receptor 
(TCR), the memory TCR can recognize it. So, while the 15-mer 
peptides recognized by memory T cells in our dataset do not 
have to have efficient cleavage sites at their termini, there needs 
to be overlapping priming peptide sharing a ~9-mer core that 
engage the TCR, and that can be efficiently liberated from the 
source protein.

Taking these into consideration, we calculated a score for each 
15-mer in a protein that evaluates the ability to cleave peptides 
overlapping with this 15-mer by at least nine residues. For this 
purpose, we first calculated probability scores for all peptides of 
lengths 13–23 for all sequences in each of the three epitope sets. 
Then, for each 15-mer peptide in the protein, we calculated the 
average score among the peptides that shared 9-mer binding core 
with it and assigned it to the given peptide. The 15-mer peptides 
that matched exactly with the epitopes were labeled positive, 
and 15-mers that shared less than nine residues with any of the 
epitopes were labeled as negative. We plotted the ROC curve on 
a per protein basis and the average AUC was calculated for the 
three datasets. We found that the AUC was around 0.5 for all 
three datasets, showing that the cleavage probability scores failed 
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to identify the CD4+ T cell epitopes. Using the maximum score of 
any of the overlapping peptides for a given 15-mer instead of the 
average score also gave similar AUC values around 0.5, suggesting 
that we could not detect an increase in cleavage efficiencies of 
CD4+ T cell epitopes.

Furthermore, we wanted to see if combining the cleavage 
probability scores with predicted binding scores (predicted 
median percentile rank from the 7-allele method representing 
the MHC binding affinity) could improve the prediction perfor-
mance. For this, we predicted the binding affinity of all 15-mers 
in terms of “median percentile rank” (here called binding score) 
using the “7-allele method.” Same as before, for each peptide 
we calculated the average binding score among the peptides that 
shared 9-mer binding core with it and this average binding score 
was assigned to the given peptide. We first used the predicted 
binding scores alone to predict the epitopes and the AUCs for 
the in-house epitope set, tetramer set, and IEDB epitope set 
were 0.649, 0.747, and 0.668, respectively. For combining these 
binding scores with the cleavage probability scores, we first used 
the same approach as before using α parameter with the value 
of α being varied from 0 to 1 with interval of 0.1. The cleavage 
probability scores were converted to percentile ranks to adjust to 
the same scale as binding scores as before. Thus, with α = 0, the 
combined score was totally contributed by binding score alone 
and with α  =  1, the cleavage probability score attributed the 
complete combined score. But we found that any α > 0 did not 
improve the AUC. In all three datasets, the best performance 
was when binding scores were used alone.

Since a linear combination of cleavage motif prediction and 
binding prediction using α parameter did not show improve-
ment we wanted to try an alternate approach. For this, we first 
classified the peptides into MHC “binding” and “non-binding” 
based on the recommended median percentile cutoff-score of 
20.0. We calculated the AUC using this “binary” binding data 
and the AUCs for the in-house epitope set, tetramer set, and 
IEDB epitope set were 0.538, 0.596, and 0.582, respectively 
(average  =  0.572). Furthermore, we replaced the cleavage 
probability scores of the predicted non-binders with “poor” 
score (=0.0) while the predicted binders retained the cleavage 
probability scores that we calculated (all of which are >0.0). We 
did prediction performance evaluation with the updated cleav-
age probability scores which contained the binding information  
and found the AUCs to be 0.537, 0.601, and 0.555, respectively 
for the above epitope sets (average = 0.564). Overall, the AUCs 
for the combined scoring scheme were not significantly better 
compared to the corresponding AUCs that we obtained when  
the predicted binding scores alone were used.

Availability of the Method
An online tool for predicting the MHC class II ligands is made 
available at the IEDB Analysis Resource website at http://tools.
iedb.org/mhciinp. The stand-alone and API versions of the tool 
will be made available in the future at the IEDB Analysis Resource 
website as well.3

3 http://tools.iedb.org/ (Accessed: 2016–2018).

DISCUSSION

Binding of peptides to MHC molecules is considered to be the 
limiting factor in the T  cell epitope antigen processing and 
presentation pathway, but binding in itself is not sufficient to 
generate an immune response (50). Thus, most epitope predic-
tion algorithms rely on MHC-peptide binding data for training 
algorithms. This provides reliable information regarding the 
“binding motifs” of peptides to MHC molecules, but lacks 
information on how the peptides are cleaved naturally from the 
antigens. Using data from more than 14,000 naturally processed 
peptides that were eluted from MHC II molecules, we uncov-
ered a robust “cleavage motif ” surrounding the N-terminal and 
C-terminal ends of naturally processed ligands within antigens. 
The cleavage motifs had various degrees of enrichment of P 
and D at N-terminus and K, R, I, V, G, N, and Q at C-terminus.  
At the same time several other residues were depleted at N- and 
C-terminuses, mostly the hydrophobic residues. The residues W, 
F, Y, I, V, L, M, and C were depleted at various degrees at different 
positions at both N- and C-terminuses. P was also depleted at 
N−1, N0, and C+1 positions. This cleavage motif information 
was used to generate a scoring scheme which was in turn used 
in devising a new method for predicting MHC II ligands. This 
cleavage motif is universal to MHC class II ligands, independent 
of the restricting allele.

As mentioned above, cleavage motifs had various degrees of 
enrichment of P and D at N-terminus and K, R, I, V, G, N, and Q at 
C-terminus. This gives insight on the specificity of the processing 
itself. First of all, it has long been recognized that processing can 
occur as a result of several types of proteases (51), including a 
prominent role for cathepsins (52). Indeed, the enrichment for D 
at the N-terminus is consistent with the reported role of aspartic 
proteases cathepsins D and E (53). The enrichment for P is con-
sistent with the fact that its α-amino group is secondary rather 
than primary as other amino acid, and is therefore unavailable 
for degradation from aminopeptidases. Furthermore, the K/R 
C-terminal enrichment is the hallmark of a trypsin-like specific-
ity. Trypsin was in fact used to define the first class II restricted 
epitope in history, back in the early 1980s (54).

In addition to the enrichment of residues that are consist-
ent with cleavage of peptide termini by proteases, several 
hydrophobic amino acids were found to be depleted at various 
positions at N- and C-terminuses, and also Cysteine residues 
were depleted throughout the vicinity of the ligands. This 
could be due to factors other than cleavage motifs that influ-
ence antigen processing and presentation (55). Specifically, the 
antigen three-dimensional structure can influence proteolytic 
processing and therefore govern the presentation of individual 
ligands and determine the rate of efficiently presenting peptides 
to T-cells, which would be the case for the hydrophobic core 
of proteins, or residues between disulfide bonds formed by 
Cysteine pairs (56–59).

Moreover, we cannot exclude that the use of MS for identifica-
tion of the naturally eluted peptides contributes for some of the 
detected motifs. It is expected that, for example, the presence 
of charged amino acids impacts the ability to detect peptides. 
However, it is not expected that such favored amino acids is 
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concentrated at the ends of the peptides, and there should defi-
nitely be no influence of residues flanking the eluted ligand in its 
source protein. This makes us confident that the major contributor 
to the detected motif in the residues immediately surrounding 
naturally processed ligands is reflecting cleavage preferences.

The comparison of MHC class I and class II restricted ligands 
is informative. For MHC class I, it has long been shown that the 
processing machinery starting with proteasomal cleavage, TAP 
transport, and trimming in the ER shapes the ligand repertoire 
available for binding to MHC class I molecules. However, the 
predominant position in a peptide that determines its ability to 
bind to MHC class I molecules is the C-terminal residue, and 
that same residue predominantly determines its ability to be 
cleaved by the proteasome and transported by TAP. Presumably 
due to coevolution, both processes favor the same kind of amino 
acid residues, which makes sense as MHC molecules that bind 
peptides that they are not supplied with would not be efficient 
in displaying peptides to T  cells (60, 61). Due to this overlap 
in peptide residues responsible for MHC class I binding and 
processing, combining predictions of the two has a comparably 
minor effect. By contrast, the MHC class II ligand cleavage motif 
we describe here is flanking the residues responsible for peptide 
binding to MHC class II molecules, and does not overlap with the 
binding motif. This explains why combining MHC class II bind-
ing and cleavage predictions provide substantial improvements  
to identify the ability to predict MHC class II ligands.

This study incorporates cleavage and binding motifs into  
prediction of MHC II ligands but it is important to note that 
several other factors could also contribute in ultimately deter-
mining the epitope repertoire and immunogenicity. For exam-
ple, HLA-DM, which interacts with MHC II–class II-associated 
invariant chain peptide (CLIP) complexes and dissociates CLIP 
from MHC binding groove, is believed to influence CD4+ T cell 
epitope repertoire (4, 62). The relative surface accessibility of 
different regions of the antigens, mostly determined by the 
structure of the antigens, may also be a contributing factor to 
the overall epitope repertoire (48). Composition of the amino 
acids that come in contact with TCR has been shown to influ-
ence the immunogenicity in MHC class I antigen presentation 
(63) and same could be true in case of MHC class II as well. 
Incorporation of these factors as well as additional parameters 
such as recognition of epitopes by sets of known TCRs could 
potentially narrow this down further (64).

We want to stress that the cleavage motif described here, and 
the prediction method derived, are intentionally kept very simple. 
We simply calculated ratios of amino acid frequencies to obtain 
the C-terminal and N-terminal cleavage motifs. No fitting of our 
combined MHC binding and processing model to T cell epitope 
data was performed apart from varying a single scaling parameter 
(alpha) that combines the two scores. We fully expect that more 
complex machine learning approaches will be able to further 
improve on the performance reported here. The purpose of keeping 
things simple is to demonstrate for the first time that the MHC class 
II binding motif and the cleavage motif independently contribute to 
the likelihood of a peptide being an MHC II ligand.

Despite the ability of the cleavage motifs to predict the MHC II 
ligands, it failed to predict the CD4+ T-cell epitopes in our epitope 

sets, both alone and in combination with MHC binding predic-
tions. As discussed before, there could be several other factors 
that influence antigen presentation and recognition by TCRs. 
Given that peptides identified as epitopes based on CD4+ T cell 
reactivity typically do not have well-defined termini, it is possible 
that motifs are present but outside of the mapped epitope. Our 
attempts to take that into account computationally did not show 
any sign of an increased presence of cleavage motifs around well-
characterized CD4+ T cell epitopes. It could also be possible that 
the cleavage precursor signals in the ligands are getting diluted 
in the epitope data and are unable to be recovered this way. 
Besides, since we are attempting to use the cleavage information 
in an “allele-agnostic” way, i.e., not considering the HLA allele 
restriction of the peptides, the approach may be unable to capture 
MHC-specific signals. While it is possible that our attempts to 
translate the cleavage motifs in MHC class II ligand elution data 
into T cell epitope predictions were suboptimal, another possible 
explanation is that such elution data are enriched for ligands gen-
erated through an antigen processing and presentation pathway 
that is less frequently utilized for T cell epitopes.
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