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Abstract Our main goal is to investigate whether the infinitary rules for the quan-
tifiers endorsed by Elia Zardini in a recent paper are plausible. First, we will argue
that they are problematic in several ways, especially due to their infinitary features.
Secondly, we will show that even if these worries are somehow dealt with, there is
another serious issue with them. They produce a truth-theoretic paradox that does not
involve the structural rules of contraction.

Keywords Substructural logic · Infinitary quantifiers · Paradoxes · Truth

1 Introduction

The last few years have witnessed the development of a variety of new and inter-
esting non-classical approaches to the paradoxes of self-reference. Some of these
approaches question one or more of the structural properties usually attributed to the
classical consequence relation, such as reflexivity, exchange, monotonicity, contrac-
tion, and transitivity. It is a well-known fact that the liar paradox, Russell’s paradox,
Curry’s paradox, and other famous conundrums all involve, explicitly or implicitly,
the rule of structural contraction. Very roughly, this rule embodies the idea that if
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something follows from two occurrences of a sentence, then it follows from just one
occurrence of it. In this paper we will focus on a specific non-contractive account
that has been advocated by Elia Zardini in a number of recent papers (e.g., in [21, 22,
24]).

One interesting consequence of the failure of contraction is that it is possible
to make a distinction between two different conjunctions and two different dis-
junctions1 (which we will abbreviate to ‘junctions’ in what follows): the so-called
‘additive’ and ‘multiplicative’ junctions.2 The usual quantifiers (which are typically
represented as ∀ and ∃) interact in the expected way with the additive junctions,
in the sense that we can understand ∀ as a generalized (additive) conjunction and
we can understand ∃ as a generalized (additive) disjunction. Unfortunately, as far
as we know, there is no consensus in the literature regarding how to define multi-
plicative quantifiers. For instance, discussing the prospects of a set theory based on a
substructural logic, Mares & Paoli point out that

A proof system (axiomatic or otherwise) for set theory would presuppose, at
least, a proof system for first order logic—and in substructural logics that’s
exactly what is beyond the state of the art. The current approaches to first order
substructural logics superimpose to propositional logics which contain inten-
sional and extensional connectives a first-order upper layer that only contains
extensional quantifiers, simply because there are several conflicting intuitions
about what intensional quantifiers look like or what rules they should obey
(...). The fascinating proposal in the direction of a contraction-free theory of
naive truth recently advanced by Elia Zardini (...), where intensional quanti-
fiers of sorts are an important part of the picture, stands in need of a closer
assessment, but may be inadequate exactly for specular reasons, since this sys-
tem only contains intensional quantifiers (and connectives)—while it is the
interplay between the two families of quantifiers that is likely to be especially
difficult to unwind. However, until some more light is shed on what we consider
one of the most important philosophical, as well as technical, problems about
substructural logics, we have to confine ourselves to blocking those paradoxes
arising at the level of propositional connexion, while being unable to follow up
with a positive proposal as to the form our alternative set theory, or formal truth
theory, should assume [9, p. 463].

We will argue for two things in this paper. First, we will claim in the next section
that the rules given by Zardini in [21] for the quantifiers are problematic in several
ways. After that, we will show in Section 3 that, even if these worries are somehow
taken care of, these quantifiers generate a paradox (due to Andrew Bacon) that does
not involve the rules of structural contraction. In Section 4 we provide some closing
remarks.

1A similar distinction is available if the rule of structural weakening is rejected (or if both rules are
rejected).
2The terminology varies, though. On occasions, the labels ‘extensional/intensional’ or ‘lattice-/group-
theoretic’ are used.
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Contraction, Infinitary Quantifiers, and Omega Paradoxes 613

2 Multiplicative Quantifiers and Infinitary Rules

The general framework we will employ relies on sequents. A sequent is an ordered
pair of multisets of formulas, represented as Γ ⇒ Δ.3 The distinction between addi-
tive and multiplicative connectives originates in the literature on linear logic, which
was first developed by J.Y. Girard in [6]. Linear logic not only rejects the structural
rules of contraction but it also rejects the structural rules of weakening.

Definition 1 (Multiplicative-Additive Linear Logic MALL) Let Γ , Δ, Π , and Σ be
(finite) multisets of formulas, let φ and ψ be formulas. The system MALL is given
by the following rules:4

Structural rules
Id

φ⇒φ

Cut
Γ ⇒φ,Δ Π,φ⇒Σ

Γ,Π⇒Δ,Σ

Operational rules

L¬ Γ ⇒φ,Δ
Γ,¬φ⇒Δ

R¬ Γ,φ⇒Δ
Γ ⇒¬φ,Δ

Additive operational rules

L � Γ,φ⇒Δ
Γ,φ�ψ⇒Δ

R � Γ ⇒φ,Δ Γ ⇒ψ,Δ
Γ ⇒φ�ψ,Δ

L � Γ,ψ⇒Δ
Γ,φ�ψ⇒Δ

R � Γ ⇒φ,Δ
Γ ⇒φ�ψ,Δ

L � Γ,φ⇒Δ Γ,ψ⇒Δ
Γ,φ�ψ⇒Δ

R � Γ ⇒ψ,Δ
Γ ⇒φ�ψ,Δ

Multiplicative operational rules

L⊗ Γ,φ,ψ⇒Δ
Γ,φ⊗ψ⇒Δ

R⊗Γ ⇒φ,Δ Π⇒ψ,Σ
Γ,Π⇒φ⊗ψ,Δ,Σ

L⊕Γ,φ⇒Δ Π,ψ⇒Σ
Γ,Π,φ⊕ψ⇒Δ,Σ

R⊕ Γ ⇒φ,ψ,Δ
Γ ⇒φ⊕ψ,Δ

Since they will play no role in what follows, we have left out of MALL the so-
called exponentials and, to simplify things, we have also omitted the additive and
multiplicative truth and falsity constants (see [14] for more details).

3Multisets are basically sets with repetitions. That is, a multiset is just like a set except for the fact that it is
sensitive to the different occurrences of a member. For example, the multiset with members a, a, and b is
not the same as the multiset with members a and b. Obviously, we need to use collections that are sensitive
to the occurrences of formulas because we do not want to take for granted that contraction holds. Also,
since multisets are insensitive to the order in which its members occur, the structural rules of exchange are
assumed to hold.
4The name MALL and the notation for the logical vocabulary is taken from [5].
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As the presentation of MALL makes clear, to introduce a disjunction on the right-
hand side of the sequent arrow, we have two different options available: R� and R⊕.
A dual point applies if we want to introduce a conjunction on the left-hand side of
the sequent arrow. We might do so by using the rule L� or the rule L⊗ (we have
two rules for each of R� and L�, for we can apply these rules if exactly one of the
disjuncts/conjuncts occurs in the place indicated). There is a similar liberty if we
want to introduce a disjunction on the left-hand side of the sequent arrow. We might
do so using either L� or L⊕. And once more, a dual point applies to conjunction
regarding the rules R� and R⊗. Here the disparity has to do with the context (i.e.,
the formulas in Γ , Δ, Π , and Σ). In the rules L� and R�, which are additive, both
premises have the same context, namely Γ and Δ. This is not necessarily so for the
other rules, which are multiplicative.

In classical logic these subtle distinctions are irrelevant. Sequent calculi presen-
tations of classical logic with multiple conclusions contain (explicitly or implicitly)
versions of the rules of structural weakening and contraction:

LK Γ ⇒Δ
Γ,φ⇒Δ

RK Γ ⇒Δ
Γ ⇒φ,Δ

LW
Γ,φ,φ⇒Δ
Γ,φ⇒Δ

RW
Γ ⇒φ,φ,Δ
Γ ⇒φ,Δ

With these rules in place, the additive and the multiplicative junctions are equiva-
lent, in the sense that φ � ψ implies φ ⊕ ψ and vice versa (and similarly for � and
⊗). In other words, in classical logic it does not matter if we present disjunction
(conjunction) additively or multiplicatively, as the following derivations make clear
(for � and ⊗, there are similar derivations):

So, putting things a bit differently, if contraction and weakening rules are available,
the additive/multiplicative divide vanishes.

The absence of these structural rules changes things drastically. The additive junc-
tions � and � are no longer equivalent to the multiplicative junctions ⊗ and ⊕. If the
contraction rules are rejected, we no longer have φ �ψ ⇒ φ ⊗ψ or φ ⊕ψ ⇒ φ �ψ .
And if the weakening rules are rejected, we cannot prove φ ⊗ ψ ⇒ φ � ψ or
φ � ψ ⇒ φ ⊕ ψ . Hence, in MALL and other substructural logics we need to be
careful when formulating the rules for conjunction and disjunction. One conceptu-
ally interesting way of viewing the situation that is sometimes put forward (see [9]
and [14]) is that logical constants such as conjunction and disjunction are ambiguous
expressions in natural language, with two possible readings, an additive reading and
a multiplicative reading. The problem with classical logic is that it is unable to make
this distinction, and so it conflates the two readings.
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Fascinating as it is, the distinction between different kinds of junctions brings tech-
nical complications with it. Since existential (universal) quantification is sometimes
understood as a kind of generalized disjunction (conjunction), the presence of two
disjunctions (conjunctions) seems to call for the presence of two existential (univer-
sal) quantifiers. Of course, we can define additive quantifiers quite naturally in this
framework. We will use ∃A and ∀A for the additive existential and universal quanti-
fiers, respectively. In the rules below, t is any term and a is a term not occurring in
the conclusion-sequent:

L∃A Γ,φ(a)⇒Δ

Γ,∃Axφ⇒Δ
R∃A Γ ⇒φ(t),Δ

Γ ⇒∃Axφ,Δ

L∀A Γ,φ(t)⇒Δ

Γ,∀Axφ⇒Δ
R∀A Γ ⇒φ(a),Δ

Γ ⇒∀Axφ,Δ

In fact, it is straightforward to add these rules to the system above, thus obtaining
a first-order version of MALL.5

The issue here is how to define the multiplicative quantifiers.6 There have been
a few proposals in the literature,7 but we will only focus on Zardini’s idea in [21].
Zardini offers a non-contractive theory of naive truth IKT ω (the I stands for the
identity axioms, the K stands for weakening, the T stands for the truth predicate,
and the ω stands for the infinitary quantifiers) that is based on a logic expressed
in a purely multiplicative language. The logic (without the truth predicate, whose
consideration will be deferred until the next section) can be specified as follows.

Definition 2 (IKω) Let Γ , Γ ′,..., Δ, Δ′,... be (possibly infinite but at most denumer-
able) multisets of formulas, let φ be a formula, and let t0, t1, t2,... be closed singular
terms. The system IKω is given by the rule of identity (Id), the cut rule (Cut), the
negation rules (L¬ and R¬), the multiplicative fragment of MALL (L⊕, R⊕, L⊗,
and R⊗), and the following additional rules:

5The idea that quantifiers obeying these rules should be identified as the additive quantifiers (or, at least,
that there is an additive—rather than a multiplicative—flavor to them) has been endorsed on several occa-
sions (e.g., in [5, p. 509], in [15, p. 316], in [16, p. 304], and even in [21, p. 509–512]). The identification
is likely grounded in the algebraic treatment of these quantifiers, where the universal quantifier is charac-
terized as the infimum in a lattice of values and the existential quantifier as the supremum, thus mimicking
additive conjunction and additive disjunction, respectively. While this can be regarded as a compelling
reason to support the identification, the matter is not entirely obvious. In fact, below (see footnote 13) we
will point to one way in which someone might reject the identification that strikes us at least as worth
mentioning.
6This, we reckon, is particularly troubling for those concerned with the concept of truth. If truth is to
serve as a device that (perhaps among other things) allows us to express restricted universal and existen-
tial quantifications, then we should have the appropriate resources in our theory for truth to fulfill this
requirement.
7For example, [11] introduces multiplicative quantifiers for many-valued logic. And [15] and [23] provide
philosophical arguments to show how interesting non-extensional quantifiers can be. In particular, [23]
argues that in the case of the universal quantifier the additive/multiplicative distinction can be more or less
equated with the natural language distinction between ‘anything’ and ‘everything’.
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Weakening rules8

LK∗ Γ ⇒Δ
Γ ′⇒Δ

RK∗ Γ ⇒Δ
Γ ⇒Δ′

Quantificational rules

L∃Z Γ,φ(t0)⇒Δ Γ ′,φ(t1)⇒Δ′ Γ ′′,φ(t2)⇒Δ′′ ...

Γ,Γ ′,Γ ′′,...,∃Zxφ⇒Δ,Δ′,Δ′′,...

R∃Z Γ ⇒φ(t0),φ(t1),φ(t2),...,Δ

Γ ⇒∃Zxφ,Δ

L∀Z Γ,φ(t0),φ(t1),φ(t2),...⇒Δ

Γ,∀Zxφ⇒Δ

R∀Z Γ ⇒φ(t0),Δ Γ ′⇒φ(t1),Δ
′ Γ ′′⇒φ(t2),Δ

′′ ...

Γ,Γ ′,Γ ′′,...⇒∀Zxφ,Δ,Δ′,Δ′′,...

In the quantifier rules, t0, t1, t2,... is a complete enumeration of the closed terms
of the language. As Zardini points out, these rules are sound only if every object is
denoted by a term in the language, and this means that the objects the quantifiers
range over have to be countably many.

Despite their non-standard features, the quantifiers behave nicely in a number of
respects. For instance, we can prove Universal Instantiation (i.e., ∀Zxφ ⇒ φ(t))
and Particular Generalization (i.e., φ(t) ⇒ ∃Zxφ), if negation behaves in the stan-
dard way, we can prove the Quantificational De Morgan rules (those are ∀Zxφ ⇔
¬∃Zx¬φ, ∃Zxφ ⇔ ¬∀Zx¬φ, ¬∀Zxφ ⇔ ∃Zx¬φ, and ¬∃Zxφ ⇔ ∀Zx¬φ),9

among other things. Not only that, but also Zardini’s quantifiers seem to interact very
nicely with the multiplicative junctions and, at least under certain assumptions, the
interplay between them and the additive quantifiers is exactly as one would expect.
The first point is very easy to see. As Zardini observes in [21, p. 515], it can be
proved that the principles of quantificational adjunction and abjunction are valid
(i.e., φ(t0), φ(t1), φ(t2), ... ⇔ ∀Zxφ and ∃Zxφ ⇔ φ(t0), φ(t1), φ(t2), ...). Recall
that in this sort of sequent calculus the structural comma corresponds to the multi-
plicative conjunction when it occurs on the left and to the multiplicative disjunction
when it occurs on the right. So, clearly, we can view these quantifiers as infinitary
multiplicative junctions.

8In these weakening rules, Γ (Δ) is properly included in Γ ′ (Δ′), where inclusion between multisets is
understood in the following way: Γ is a sub-multiset of Γ ′ if and only if every member of Γ is a member
of Γ ′ and occurs at least as many times in Γ ′. In particular, there is nothing preventing an application of
the rules where, say, Γ is a finite multiset and Γ ′ is an infinite multiset.
9We are using ‘Γ ⇔ Δ’ as an abbreviation of ‘Γ ⇒ Δ and Δ ⇒ Γ ’.
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To understand why the second point holds (i.e., that the interplay with the additive
quantifiers is as one would expect), we need to give a slightly different presentation
of the rules of structural contraction:

LW ∗ Γ,φ,φ,φ,...⇒Δ
Γ,φ⇒Δ

RW ∗ Γ ⇒φ,φ,φ,...,Δ
Γ ⇒φ,Δ

The idea behind these contraction rules is that we can contract infinitely many
occurrences of a formula all at once.10 It is interesting to observe that in a frame-
work where these rules are available, the following two sequents are derivable:
∃Zxφ(x) ⇔ ∃Axφ(x) (and similarly for the universal quantifiers). More specifically,
if contraction is available, there is a proof that Zardini’s existential quantifier implies
the additive existential quantifier and if weakening is available, there is a proof of the
converse:

What these derivations show is that if the infinitary versions of contraction and weak-
ening are available, then the relation between the ∃Z and ∃A is exactly parallel to the
relation between ⊕ and �, which is what we should expect from the multiplicative
quantifier.11

In spite of these nice properties, we should be wary of accepting the claim that
Zardini’s quantifiers are the multiplicative quantifiers. Here we will mostly discuss
the existential quantifier, but similar considerations apply to the universal quantifier.
Let’s start with R∃Z . This rule simply equates the existential quantifier to an infinite
(multiplicative) disjunction and informally states that there is an object having a cer-
tain property φ if this object is denoted by the term t0 or it is denoted by the term t1
or... . L∃Z is a generalized version of the ω-rule. Ignoring the context, it informally
states that if we reject that the object denoted by t0 has the property φ and we reject
that the object denoted by t1 has the property φ and ..., then we must reject the claim
that there is an object having the property φ.

10It is worth noticing that, in virtue of the compactness property, these contraction rules, as well as the
weakening rules introduced above, are equivalent over classical logic to the standard rules of contraction
and weakening, which only allow us to contract or weaken on a single formula per application.
11The reader might be skeptical of the use of infinitary structural rules in the proof of the equivalence
between ∃Z and ∃A. But if we are already on board with the idea of infinitary rules for the quantifiers, it
seems unproblematic to endorse structural rules like these. In any case, we will see below that there are
independent reasons to reject Zardini’s quantifiers, so we need not worry at this point about other infinitary
rules.
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618 B. Da Ré, L. Rosenblatt

One feature that is hard to accept about ∃Z is that one of its rules is classically
unsound. As we mentioned, the L∃Z rule implies the ω-rule, a rule that is not classi-
cally valid. So, in a way, the resulting logic will extend classical logic, for it accepts
some inferential patterns that the classical logician would deem incorrect. Notice that
nothing like this happens in MALL or in the propositional fragment of IKω. While
multiplicative conjunction and disjunction respect their classical counterparts, the
infinitary quantifiers introduced by Zardini do not.12 In addition to this, these rules
treat the quantifiers—from a proof-theoretic perspective—as substitutional, requiring
each object in the domain to be denoted by a term in the language. The substitu-
tional interpretation of the quantifiers is subject to a number of problems which are
very well-known, so we do not need to rehearse them here (e.g., since the language
contains denumerably many terms and formulas, the correctness of the rules depends
on the quantifiers ranging over only countably many objects; but if so, then a very
restrictive assumption is being made about the domain of quantification).

Instead, we will turn our attention to a puzzling feature of the quantifiers that is
specific to Zardini’s infinitary non-contractive framework. Although the distinction
between additive and multiplicative junctions is clear, the distinction becomes prob-
lematic if we try to extend it to the quantifiers. Here is why. Zardini is operating
under the assumption that the existential quantifier should be understood as a gen-
eralized disjunction. This assumption is what allows us to distinguish between the
additive right rule for the existential quantifier, where only one of the substitution
instances occur in the premise-sequent, and the multiplicative right rule, where all
the substitution instances (for closed terms) occur in the premise-sequent. However,
the assumption also tells us something about the left additive and multiplicative rules
for the existential quantifier. In particular, it seems to entail that the rule L∃A is not
the additive left rule for the existential quantifier (even admitting that R∃A is its addi-
tive right rule). The reason is that the assumption pushes us towards a multi-premise
left rule (in the same way as the left rule for ∨ has multiple premises), which in turn
means that in this case we should distinguish the additive and the multiplicative rules
in terms of shared/independent contexts. Thus, the additive left existential rule would
look like this:

L∃?Γ, φ(t0) ⇒ Δ Γ, φ(t1) ⇒ Δ Γ, φ(t2) ⇒ Δ ...

Γ, ∃?xφ ⇒ Δ

To put the point a bit differently: treating the multiplicative existential quantifier
as an infinitary multiplicative disjunction would be more reasonable if the additive
existential quantifier were treated as an infinitary additive disjunction, as in the rule
above.13 But the consensus seems to be that the additive existential quantifier is the
quantifier obeying the standard rules L∃A and R∃A, and the rule above is not equiv-

12See [16] for a criticism along these lines.
13To further elaborate on the idea hinted at in footnote 5, we should note that it is not entirely out of
the question for someone like Zardini to endorse the claim that both the additive and the multiplicative
quantifiers should obey infinitary rules. In fact, if infinitary rules are taken to be unproblematic, L∃? seems
to be a generalization of L� in exactly the same way as L∃Z is a generalization of L⊕. However, neither
Zardini nor, as far as we know, anyone else has taken this route, so there is no need to discuss it here.
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alent to L∃A, at least not in every kind of setting. In particular, if the theory under
consideration includes arithmetic, we should not expect that disproving φ(n), for
every n, is sufficient to reject ∃Axφ(x).14 Now, because this rule contracts the con-
text, it might be unappealing for someone like Zardini. But that is besides the point.
The mere possibility of giving a context-sharing infinitary rule for the existential
quantifier should cast some doubts on the idea of categorizing a quantifier as multi-
plicative solely because it obeys an infinitary rule that resembles one of the rules for
⊕.15

In sum, there are a number of reasons to be suspicious of Zardini’s infinitary quan-
tifiers. And interestingly, the case against them can be made stronger. For we will see
in the next section that even if none of the arguments we have given are sufficient
to conclude that the rules for the quantifiers should be jettisoned, there is another
problem affecting them. To this we now turn.

3 An Omega Paradox

The main goal of this section is to show that Zardini’s quantifiers generate a truth-
theoretic paradox that does not rely on the structural rules of contraction. More
specifically, what we will establish is that adding Zardini’s truth theory to a back-
ground theory that contains a modicum of arithmetic results in inconsistency. In order
to prove this, we draw heavily on a recent ω-inconsistency result due to Andrew
Bacon. Bacon shows in [1] that:

Proposition 1 Any transparent truth theory16 closed under the following rules is
ω-inconsistent:17

14We are very grateful to an anonymous referee for suggesting this way of presenting the argument.
15In case the reader is wondering about the interaction of this quantifier with the other ones, this will
ultimately depend on the right-hand side rule for ∃? (which, presumably, should be the same as that for
∃A). But even if we leave this unspecified, it can be shown that, assuming weakening, ∃?xφ ⇒ ∃Zxφ is
derivable, and even without weakening, ∃?xφ ⇒ ∃Axφ is derivable.
16A transparent truth theory is, roughly, a theory where for any formula φ, φ and φ is true are everywhere
intersubstitutable. In the context of a sequent calculus this amounts to the idea that if Γ ⇒ Δ is derivable
and Γ ′ ⇒ Δ′ is obtained from Γ ⇒ Δ by replacing (possibly within a formula) φ for φ is true (or vice
versa), then Γ ′ ⇒ Δ′ is derivable too.
17Recall that a theory is ω-inconsistent if it proves ⇒ ∃xφ and it also proves φ(n) ⇒ for each n. In this
context, we could equivalently say—using infinitary sequents—that a theory is ω-inconsistent if it proves
∃xφ ⇒ and also ⇒ φ(0), φ(1), φ(2), ... . Bacon makes a distinction between strongly ω-inconsistent the-
ories and weakly ω-inconsistent theories. However, for our purposes this distinction will be unnecessary.
From a semantic point of view, the models of a consistent but ω-inconsistent arithmetical theory can-
not be standard: each model of the theory contains in its domain non-standard numbers. In other words,
among other undesirable consequences, ω-inconsistent theories disrupt the intended ontology of the base
arithmetical theory (see [2] and [8]). The issue of ω-inconsistency has not received much attention in
the literature on substructural approaches to the truth-theoretic paradoxes. One exception is [4], where
Andreas Fjellstad shows how to prove the ω-inconsistency of certain theories without assuming the tran-
sitivity of the corresponding consequence relations. At certain points in the proof of Theorem 1 below we
rely on some of Fjellstad’s insights.

Author's personal copy
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1. If φ ⇒ ψ , then ∃xφ ⇒ ∃xψ

2. φ → ∃xψ ⇒ ∃x(φ → ψ) (where x is not free in φ)

To establish that Zardini’s quantifiers generate a paradox we need to do two things.
First, we have to check that (the appropriate instances of) these two principles hold
in (a suitable extension of) IKω. Secondly, we need to make sure that Bacon’s proof
does not implicitly rely on contraction at some point. This will be enough to cause
trouble, since the rule L∃Z—which is basically a generalized version of the ω-rule—
will turn any ω-inconsistency into a plain inconsistency.

Up until now our focus has been on conjunction and disjunction. So, in the pre-
sentation of IKω, we omitted the (multiplicative) conditional →. But, since Bacon’s
result uses a conditional, it will be useful to have → around. It can be defined as
usual, in terms of disjunction and negation: ¬φ ⊕ ψ := φ → ψ . In fact, it is easy to
check that → satisfies the following rules:

L →Γ ⇒φ,Δ Π,ψ⇒Σ
Γ,Π,φ→ψ⇒Δ,Σ

R → Γ,φ⇒ψ,Δ
Γ ⇒φ→ψ,Δ

Another thing that was absent from IKω was the truth predicate T r(x). So far, we
have only been discussing the logical properties of Zardini’s quantifiers, so there was
no need to consider truth. But now we want to suggest that these quantifiers are prone
to paradoxes in a way that the rest of the logical vocabulary of IKω is not. In order
to substantiate this claim, we need to introduce a transparent truth predicate to IKω.
This is done using the rules below, where as usual we take �φ� to be a term that
denotes the formula φ.

Definition 3 (IKT ω) The system IKT ω is given by IKω plus the following rules
for the truth predicate:

LT r
Γ,φ⇒Δ

Γ,T r�φ�⇒Δ
RT r

Γ ⇒φ,Δ
Γ ⇒T r�φ�,Δ

The paradox we will discuss below does not show that IKT ω is trivial. In fact,
in [21] Zardini proved its non-triviality via a nice cut elimination result. What the
paradox is meant to show is that there is an important expressive limitation affect-
ing IKT ω. In particular, there are certain self-referential sentences involving the
quantifiers that cannot be expressed on pain of triviality. To prove this fact we will
consider a theory that extends IKT ω with some logical and arithmetical machinery.
The machinery is very modest. We will work with a first-order language that con-
tains all the numerals 0, 1, 2,... , a two-place function symbol + for addition, a logical
constant ⊥, and two additional function symbols →. and ⊥. representing these con-
nectives.18 We shall also assume that there is some standard Gödel coding available
for the expressions of the language and we will use the usual corner-quotes notation,
as above. Another thing that we will require of this theory is for it to prove all true

18We assume familiarity with the dot notation and with the overlining notation. The reader can look at [7]
for the details.
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identities expressible in the language.19 More specifically, the theory will be couched
in a language that contains the following function symbol f :20

f (0, x) = x→. ⊥.
f (n + 1, x) = x→. f (n, x)

Intuitively, this function tracks down the number of embedded conditionals point-
ing to ⊥. For example, f (1, �φ�) stands for the number coding the formula φ →
(φ → ⊥), f (2, �φ�) stands for the number coding the formula φ → (φ → (φ →
⊥)), and so on. The function f is of course available in Peano arithmetic and weaker
theories. That is, these theories can prove for each sentence φ that:

f (0, �φ�) = �φ�→. ⊥.
and for each number n

f (n + 1, �φ�) = �φ�→. f (n, �φ�).
Finally, following Bacon’s [1], we will also assume that the language contains
a sentence μ that is provably equivalent to ∃ZxT rf (x, �μ�). That is, we will
assume that the following two sequents are available: μ ⇒ ∃ZxT rf (x, �μ�) and
∃ZxT rf (x, �μ�) ⇒ μ.

So, our official theory can be specified as follows.

Definition 4 (IKT ω+ ) The system IKT ω+ is given by IKT ω plus the following rules:

Identity rules21

L = Γ,φ(t)⇒Δ
Γ,s=t,φ(s)⇒Δ

R = Γ ⇒φ(t),Δ
Γ,s=t⇒φ(s),Δ

⊥ rule22

L⊥⊥ ⇒
Rules for μ

Lμ
μ⇒∃ZxT rf (x,�μ�)

Rμ ∃ZxT rf (x,�μ�)⇒μ

19Despite appearances, this is not too demanding. There are extremely weak arithmetical theories
satisfying this requirement, such as Baby Arithmetic (see e.g. [19]).
20The function f has its origins in Shaw-Kwei’s [18]. See also [1] and [10]. For reasons of readability, we
will write f instead of f. , omitting the dot notation for the function.
21Typically, the identity predicate also requires the following additional rule:

= −pop
Γ, t = t ⇒ Δ

Γ ⇒ Δ

However, as an anonymous referee rightly pointed out, this rule is admissible through the application of
the T erms rule (see below) and Cut .
22Another rule that comes to mind for ⊥ is this:

⊥ − drop
Γ ⇒ ⊥,Δ

Γ ⇒ Δ

In IKT ω+ ⊥-drop and L⊥ are interderivable, so we can use either one. For definiteness, we will stick to
L⊥.
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622 B. Da Ré, L. Rosenblatt

Rule for terms
If t and s are terms such that t = s, then we have:

T erms ⇒ t = s

This last rule plays two key roles. First, it guarantees that every term t which is
not a numeral is such that there is a numeral n such that ⇒ t = n. This is important
because 0, 1, 2,... are not all the closed terms of the language, and in applying L∃Z ,
we need all the closed terms of the language. For instance, 3, 2+ 1, and 0+ 3 are all
singular terms standing for the number 3, but only the first is a numeral. However,
as our theory has enough resources to prove that ⇒ n = t , for any t = n, then if
Γ, φ(n) ⇒ Δ is derivable for each n, using Cut and L=, it follows that Γ, φ(t) ⇒ Δ

has a derivation for each closed term t of the language as well.23 More rigorously,
we can prove:

Lemma 1 The following rules for ∃Z are derivable in IKT ω+ :

L∃Z∗
Γ,φ(0)⇒Δ Γ ′,φ(1)⇒Δ′ Γ ′′,φ(2)⇒Δ′′ ...

Γ,Γ ′,Γ ′′,...,∃Zxφ⇒Δ,Δ′,Δ′′,...

R∃Z∗
Γ ⇒φ(0),φ(1),φ(2),...,Δ

Γ ⇒∃Zxφ,Δ

Proof This is straightforward. In the case of R∃Z∗ , we just apply RK∗ and R∃Z . In
the case of L∃Z∗ , we need to use T erms, L=, Cut , and L∃Z .

Secondly, the rule T erms also guarantees that the function f behaves as expected.
In particular, we have the following:

Lemma 2 (See [4], p. 101) These rules for f are derivable in IKT ω+ :

f0
Γ,f (0,�μ�)=�μ�→. ⊥. ⇒Δ

Γ ⇒Δ
fn+1

Γ,f (n+1,�μ�)=�μ�→. f (n,�μ�)⇒Δ

Γ ⇒Δ
For each number n

Proof Immediate, by the definition of f , the rule T erms, and Cut .

Now we have all we need to state our main result.

Theorem 1 IKT ω+ is trivial.

The rest of the section will be devoted to the proof of this. It is by no means
difficult, but it is a bit long and tedious.

23And similarly for R∀Z . If Γ ⇒ φ(n),Δ is derivable for each n, using Cut and R=, it follows that for
each closed term t , Γ ⇒ φ(t),Δ is also derivable.
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Let’s get to it. First, by Lμ we have

μ ⇒ ∃ZxT rf (x, �μ�)

By LT r we can infer

T r�μ� ⇒ ∃ZxT rf (x, �μ�)

and by R→
⇒ T r�μ� → ∃ZxT rf (x, �μ�)

Starting from this sequent, the strategy of the proof is as in Fig. 1 (see below). Here
are its main steps:

(1) ⇒ T r�μ� → ∃ZxT rf (x, �μ�)
(2) ⇒ ∃Zx(T r�μ� → T rf (x, �μ�))
(3) ⇒ ∃ZxT rf (x + 1, �μ�)
(4) ⇒ ∃ZxT rf (x, �μ�)
(5) ⇒ μ

(6) T rf (n, �μ�) ⇒, for each n

(7) ∃ZxT rf (x, �μ�) ⇒
(8) ⇒
(9) Γ ⇒ Δ

The reader familiar with [1] will notice that this is basically the structure of Bacon’s
proof of ω-inconsistency.

Fig. 1 Strategy of the proof
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Fig. 2 T r�μ� → ∃ZxT rf (x, �μ�) ⇒ ∃ZxT r(�μ�→. f (x, �μ�))

We already have the first sequent, so let’s see how to obtain the second. Consider
the following derivation, which we will call D0:24

We also have the following derivation, labelled D1:

Next comes D2:

Of course, we could continue with D3, D4, and so on. If we put the end-sequents of
all these derivations together, we can proceed as in Fig. 2 to obtain the sequent

T r�μ� → ∃ZxT rf (x, �μ�) ⇒ ∃ZxT r(�μ�→. f (x, �μ�)).
Now, we already have

⇒ T r�μ� → ∃ZxT rf (x, �μ�)
So, by an application of Cut we can obtain

⇒ ∃ZxT r(�μ�→. f (x, �μ�))
The next step is to obtain

∃ZxT r(�μ�→. f (x, �μ�)) ⇒ ∃ZxT rf (x + 1, �μ�)

24In what follows, for the sake of simplicity, we will be sloppy with the substitution of identicals. Observe
that what the rules L= and R= allow us to do—with the help of the rules for f , T erms, and Cut—is to
substitute identical terms. So, instead of explicitly applying these rules, we will directly substitute identical
terms in the derivations and we will mark the steps at which we do this with the label “Subs of id”.
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Fig. 3 ∃ZxT r(�μ�→. f (x, �μ�)) ⇒ ∃ZxT rf (x + 1, �μ�)

This can be done using the derivation in Fig. 3. Then another application of Cut is
enough to infer

⇒ ∃ZxT rf (x + 1, �μ�)
Our next goal is to show that

∃ZxT rf (x + 1, �μ�) ⇒ ∃ZxT rf (x, �μ�)
This is not hard to do, as the derivation in Fig. 4 shows. So, by another application of
Cut

⇒ ∃ZxT rf (x, �μ�)
But ∃ZxT rf (x, �μ�) ⇒ μ by Rμ. So cutting on ∃ZxT rf (x, �μ�), we have

⇒ μ

And of course, given that L⊥ proves ⊥ ⇒, by L→ we infer

μ → ⊥ ⇒
which by another application of L→ delivers

μ → (μ → ⊥) ⇒
and then

μ → (μ → (μ → ⊥)) ⇒
and so on. By the truth rules, the rules for f , T erms, and L=, we then have for each
number n:

T rf (n, �μ�) ⇒
This means that the resulting theory is ω-inconsistent. But, since the rule L∃Z∗ is
available, we have

∃ZxT rf (x, �μ�) ⇒
And we can turn this ω-inconsistency into an inconsistency simpliciter, because we
end up with both

⇒ ∃ZxT rf (x, �μ�)
and

∃ZxT rf (x, �μ�) ⇒

Fig. 4 ∃ZxT rf (x + 1, �μ�) ⇒ ∃ZxT rf (x, �μ�)
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626 B. Da Ré, L. Rosenblatt

By a final application of Cut we can obtain the empty sequent:

⇒
And, by weakening,

Γ ⇒ Δ

In other words, IKT ω+ is trivial. This is surprising since contraction was not applied
at any point in the derivation!

4 Final Remarks

There are a number of interesting issues arising from the previous two sections. The
first thing we want to point out is that the proof above does not seem to go through
with the additive quantifier ∃A. The reason is simple. The most obvious way of
obtaining ∃AxT r(�μ�→. f (x, �μ�)) from T r�μ� → ∃AxT rf (x, �μ�) involves an
application of right contraction. This step is an instance of the classically valid rule
that allows us to go from φ → ∃Axψ to ∃Ax(φ → ψ):

This rule does hold for Zardini’s quantifier ∃Z . So, even though the proof offered in
the previous section does not involve any explicit application of contraction, it might
be suggested that the rule R∃Z absorbs contraction, at least for existentially quantified
formulas on the right-hand side of the sequent arrow.25 While the premise-sequent of
that rule is Γ ⇒ φ(t1), φ(t2), φ(t3), ..., Δ, its conclusion-sequent is Γ ⇒ ∃Zxφ, Δ,
but we can see this last sequent as the result of contracting on the existentially quan-
tified formula infinitely many times, as in Section 2. As one anonymous referee puts
it, the aforementioned surprise in the proof of theorem 1 might be said to vanish once
we realize that R∃Z is a contraction-absorbing rule.26

25In this respect, R∃Z is similar to the more well-known (see [20], p. 77):

R∃∗ Γ ⇒ ∃∗xA(x),A(t),Δ

Γ ⇒ ∃∗xA(x),Δ

in that they both can be used to provide a sequent calculus where contraction is absorbed (pending the
appropriate choice of the other rule for the existential quantifier and the rest of the logical rules). Moreover,
in the proof of ω-inconsistency developed by Fjellstad in [4], it is precisely this kind rule that is used
(actually, because Fjellstad’s proof is given in terms of the universal quantifier, what is needed is a dual rule
for introducing the universal quantifier on the left-hand side of the sequent arrow, but this is not important).
26Moreover, the referee also points out that a quick inspection of Fjellstad’s proof will reveal that for it to
go through it is only required that the right-hand side rule of the quantifier employed admits contraction.
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This, we reckon, is too hasty. The rule R∃Z might be said to be contraction-
absorbing in the same way that, say, the rule R⊕ is contraction-absorbing. Of course,
to fully absorb contraction we need to suitably combine these rules with context-
sharing left introduction rules. However, the whole point of Zardini’s approach is to
have a purely multiplicative vocabulary. And although it is this choice of vocabu-
lary that allows him to retain a number of classically valid principles (such as modus
ponens, the law of excluded middle, and so on) that would otherwise require contrac-
tion, there is no paradox affecting the quantifier-free fragment of Zardini’s theory.
Having one of the contraction-absorbing rules is not enough to wreak havoc in the
case of the connectives, so we do find it a bit surprising that this is enough in the case
of the quantifiers.27

Another feature worth noting has to do with the notion of ω-inconsistency. For
Zardini’s quantifiers there is no interesting notion of ω-inconsistency. Given the
rules for the quantifiers (along with the rules of cut and weakening), both notions
are indistinguishable from the notion of plain inconsistency or triviality. If we
have a derivation of ⇒ φ(0), φ(1), φ(2), ..., by R∃Z∗ we also have a derivation of
⇒ ∃Zxφ(x) and if we have a derivation of φ(n) ⇒ for every n, by L∃Z∗ we also have
a derivation of ∃Zxφ(x) ⇒. This is why the proof we used, which is in essence an
ω-inconsistency proof, turns out to be a full triviality proof.28

Before finishing, let’s consider one more thing about the proof in the last section
that might strike the reader as doubtful. The function f used to construct the
self-referential sentence μ is usually taken to require an arithmetical theory, but
non-contractive accounts of truth (like the ones in [9, 17, 21]) handle self-reference
without introducing arithmetic. This is so for a reason. Simply adding the axioms of
Peano or Robinson’s arithmetic is not enough. We cannot expect all arithmetical the-
orems to follow from the axioms in the absence of contraction. It won’t work either to
use Negri and von Plato’s method from [12] and [13] to introduce a version of Robin-
son’s arithmetic with contraction built-in. This is because in order to have contraction
admissible over the logical part of the theory, the method requires single-premise
multiplicative rules and multi-premise additive (context-sharing) rules for the logical
connectives, and we have seen that this is not available in Zardini’s approach.

Nevertheless, we think that this is unproblematic. For instance, there is no diffi-
culty, as far as we can tell, with restricting contraction to arithmetical formulas. This
will simply give us the machinery to construct μ in the usual way using a predicate
capturing the diagonalisation function. Another legitimate path that we could have

27Another interesting question that might be posed is if the proof holds for the purely additive fragment
of the language (i.e., the fragment with the additive quantifier and the additive conditional). The rules for
the additive conditional (�) are as follows:

L � Γ ⇒φ,Δ Γ,ψ⇒Δ
Γ,φ�ψ⇒Δ

R � Γ,φ⇒Δ
Γ ⇒φ�ψ,Δ

R � Γ ⇒ψ,Δ
Γ ⇒φ�ψ,Δ

With these rules, it is easy to check that the step from ⇒ φ � ∃Axψ to ⇒ ∃Ax(φ � ψ) is indeed valid
(because L� contracts the context). However, the interest of this is moot. As far as we know, no one has
advocated a truth theory based on the additive conditional in the literature. Therefore, we will not explore
this alternative.
28As expected, for the additive quantifier the notion of ω-inconsistency is indeed different from the notion
of plain inconsistency or triviality.
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followed—but didn’t—is simply to assume that all the theorems of arithmetic are at
our disposal. So, for example, the diagonal lemma would hold in full generality and
it would apply to extensions of our basic language that contain ∃Z in the usual way,
thus allowing us to construct self-referential sentences with this quantifier in the same
way that we can construct self-referential sentences with new predicates or operators
that we might like to add to the basic language of arithmetic.29

Although we think that there is nothing wrong with these approaches, we have
taken a different route in the previous section. In fact, IKT ω+ is not strong enough
to prove all the theorems of Robinson’s or Peano arithmetic. We have not required
IKT ω+ to represent all recursive functions, but only to prove the relevant facts about
f . Nor have we required IKT ω+ to prove the diagonal lemma in full generality, but
only the instance involving μ. In other words, the triviality proof for IKT ω+ requires
much less than a proper arithmetical theory or a full theory of syntax. This is not to
say that it could not be extended to such a theory. Our point here is that much less is
needed to cause trouble.

Lastly, it is worth mentioning that we are not the firsts to wonder about the relation
between Zardini’s approach and arithmetic. In [3, p.862] the authors point out that:

(...) while IKT ω is known to be non-trivial, its relation to models of PA has not
yet been explored.

The proof in the previous section goes some way towards an answer. Of course,
Zardini proves the consistency of his truth theory—which includes the infinitary
quantifiers. However, what the result of this paper shows is that there are self-
referential sentences that are simply not expressible in the language of Zardini’s
theory. If they were, the resulting theory would be trivial.
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