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Abstract. It has been argued recently (in Beall (2009) and Beall and Murzi

(2013)) that dialetheist theories are unable to express the concept of naive

validity. In this paper, we will show that LP can be non-trivially expanded

with a naive validity predicate. The resulting theory, LPVal reaches this

goal by adopting a weak self-referential procedure. We show that LPVal is

sound and complete with respect to the three-sided sequent calculus SLPVal.

Moreover, LPVal can be safely expanded with a transparent truth predicate.

We will also present an alternative theory LPVal
∗

, which includes a non-

deterministic validity predicate.
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1. Introduction

Dialetheists argue that the acceptance of contradictions is the best way to solve

the paradoxes while achieving a semantically closed language. In recent years,

Beall (2009) and Beall and Murzi (2013) tried to show that dialetheism is unable

to express the concept of naive validity. The inexpressibility result goes as follows.

Let Val be a naive validity predicate, characterized by the following rules and

meta-rules. Let A and B be formulas variables. ⟨A⟩ and ⟨B⟩ are names for A and

B, respectively. The so-called naive validity principles are the following:

A ⊢ B
VP

⊢ V al(⟨A⟩, ⟨B⟩)

VD
A,V al(⟨A⟩, ⟨B)⟩ ⊢ B

⊢ V al(⟨A⟩, ⟨B⟩) ⊢ A
MetaVD

⊢ B

If the theory achieves self-reference through something like strong diagonaliza-

tion, there will be a sentence A definitionally equivalent to V al(⟨A⟩, ⟨�⟩), usually
1
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known as “the Beall-Murzi sentence.” This sentence will cause major harm, as the

following proof shows.

A,V al(⟨A⟩, ⟨�⟩ ⊢ �
(Def. Eq.)

A,A ⊢ �
(Contraction)

A ⊢ �
(VP)

⊢ V al(⟨A⟩, ⟨�⟩)
(Def. Eq.)

⊢ A (MetaVD)
⊢ �

The proof is carried out in a sequent system that has Contraction as a valid

meta-rule.1 The dialetheist, then, should give up some of the principles involved

in the proof. She must abandon V D (the initial sequent is an instance of it), V P ,

MetaV D, the inter-sustitutivity of V al(⟨A⟩, ⟨�⟩) and A or Contraction. Rejecting

Contraction seems not a natural option, at least if the dialetheist supports LP or

the non-transitive logic ST . But the rest of them are still suspects. As the sup-

porters of ST must reject MetaV D, and we are trying to find out if a dialetheist

approach is compatible with a naive validity predicate, we will focus on what a

supporter of LP should do in a case like this. We will argue that she can inter-

nalize a naive validity predicate. To do that, she must change the way to achieve

self-reference. In particular, she must move from (what we will call) a strong self-

referential procedure to a weak one. Thus, Def. Eq., the principle that establishes

that we can substitute “the Beall-Murzi sentence” for another sentence identical

to it, must be dropped. Self-reference will be obtained instead through a suitable

biconditional, e.g., a conjunction of conditionals. Those constants will be instances

of LP ’s material conditional, which does not validates Modus Ponens. In Goodship

(1994), Laura Goodship provides a general remark regarding the alternatives for

this biconditional. If we want the theory to be safe from trivialization due to seman-

tic paradoxes, there seem to be two main routes: (1) either the conditional should

invalidate Modus Ponens, or (2) it should invalidate Contraction and Pseudo Modus

1Notice that, as for any formula B, � ⊢ B, an application of V P will prove ⊢ V al(⟨�⟩, ⟨B⟩). Then,

by an application of MetaV D, ⊢ B.
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Ponens. In this paper, we will explore one possible realization of the first alter-

native2: we will consider a theory of näıve validity that invalidates Modus Ponens

since it is based on the paraconsistent logic LP. The paper is structured as follows.

In Section 2 we present the dialetheist logic LP, the semantic notion of validity

that an LP’s supporter may wish to internalize and show that it is a naive one. In

Section 3 we demonstrate how to extend LP with a naive validity predicate. We

will call the resulting theory LPVal. LPVal uses a weak self-referential procedure.

We will show that it is non-trivial. Therefore, Beall and Murzi were wrong in claim-

ing that a dialetheist theory cannot be expanded with a naive validity predicate.

We will also give a three-sided sequent calculus for LPVal, SLPVal, and show that

it is sound and complete with respect to LPVal. In Section 4, we will demonstrate

how to add a transparent truth predicate to LPVal. In Section 5, we will present an

objection raised against this approach, and developed an alternative theory with a

non-deterministic and naive validity predicate. Finally, in Section 6 we make some

concluding remarks. Completeness proofs for both SLPVal and SLPVal+ can be

found in the Appendix.

2. Two ways to achieve self-reference in a dialetheist theory of

validity

Graham Priest’s LP is a first order logic, with the usual connectives (negation,

conjunction, etc) and a standard three-valued (1, 1
2
,0) Strong Kleene interpreta-

tion.3 For the sake of simplicity, we will deal with a propositional version of LP.

We show below the matrices for LP’s connectives. Validity is understood in the

usual way, as the preservation of designated values. LP’s designated values are

1, 1
2
.

2Additionally, there are in fact many connections between our project and the one presented in
Goodship (1994) by Laura Goodship, named by Beall (2011) as “the Goodship Project.” Those
links will become explicit when we explain how we get self-referential sentences in our theory of

näıve validity, in Section 3.
3For an extensive presentation of LP, see Priest (1979) and Priest (2006)
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Figure 1. Matrices for the logic LP

Our goal, then, is to internalize the notion of naive validity. One way to do

it is by adding a naive validity predicate to LP ’s language.4 We will need, then,

both (i) a way to name the sentences of the language, and also (ii) a way to build

self-referential sentences. To achieve (i), we will introduce designated names for

every sentence. Thus, for every sentence A, ⟨A⟩ will be the name of A in every

model. Though this can also help us achieve (ii), it is not necessary nor desirable,

as we will see soon. But before that, we need to examine carefully the two main

options we have. Either way, they should let us have in the language potentially

problematic or pathological formulas, like the Beall-Murzi sentence that allegedly

causes trouble to dialetheism.

Probably the most popular and common way to build self-referential sentences

is through PA, first-order Peano Arithmetic. In PA, self-reference is usually taken

to be achieved through the weak and/or the strong Diagonal Lemma.5 According

4Though in principle it is possible to internalize validity either with a validity constant or a
validity predicate, we will choose this last approach, since adding a validity operator has expressive
limitations comparable to the ones of a truth operator.
5Let L be a first order language that includes the language of first-order Peano Arithmetic, and

let Th be a theory that extends PA. Assume then that there is available a name-coding device
⟨⋅⟩ of formulas of L over ω, and let ⃗ abbreviate the sequence of variables j1, . . . , jn by ⃗. Then
the Weak Diagonal Lemma will be proved in Th.

Weak Diagonal Lemma: For every formula A(j, ⃗) ∈ L, there is a formula B(⃗) ∈ L such
that

Th ⊢ B(⃗) ↔ A(⟨B(⃗)⟩, ⃗)

To prove the the Strong Diagonal Lemma, the theory must contain terms for each recursive

function.

Strong Diagonal Lemma: For every formula A(j, ⃗) ∈ L, there is a term t such that

Th ⊢ t = ⟨A(t, ⃗)⟩
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to (a simplified version of) the Weak Diagonal Lemma, for each open formula φ(x),

there is a formula ψ such that the theory proves that φ(⟨ψ⟩) is equivalent to ψ.

But one may want more. In particular, one may search for linguistic items that

are identical to other linguistic items that talk about the first ones. The Strong

Diagonal Lemma is usually interpreted as a way to get precisely that, through

names that refer to sentences that include that same name as one of its terms.

There seem to be two main options to represent self-reference in a theory: either

through a weak or a strong procedure. The former achieves this goal by requiring

a self-referential sentence to be equivalent to a sentence that “talks about” the first

one. The latter involves an essential use of identities.

We will present general versions of both the weak and the strong procedures.

These principles may be understood, on the one hand, as semantic versions of proof-

theoretic self-referential principles, and, on the other hand, as general procedures

that are instantiated (in PA) by the (semantic versions of the) Weak and the Strong

Diagonal Lemma.6

These options might be instantiated by a plethora of technical tools, varying

from one framework to the other. In this paper, we will discuss some examples

thereof.

Definition 2.1 (Weak Self-Referential Procedure). Let Th be a theory that has a

name-forming device ⟨⋅⟩. If for every formula A(x), with x as the only free variable

in A(x), there is a (closed) formula B such that the formula B ↔ A(⟨B⟩) is true

in Th, then we say that Th adopts a weak self-referential procedure.

Definition 2.2 (Strong Self-Referential Procedure). Let Th be a theory that has a

name-forming device ⟨⋅⟩. If for every formula A(x), with x as the only free variable,

there is a term t such that t is identical to the name of A(t) in Th, then we say

that Th adopts a strong self-referential procedure.

For more about the Diagonal Lemmas, see Boolos (2007)
6At least when we restrict our attention to formulas with one free variable.



6 FEDERICO MATIAS PAILOS

Remark 2.3. Notice that these procedures can sometimes be already present “in”

the theories in question, e.g. if they are extensions of arithmetical theories that

validate the Weak and/or the Strong Diagonal Lemma. But in some cases, they

do not come with the theories, but are “imposed from the meta-language”, e.g. by

restricting the valuations to the ones that guarantee that the relevant biconditionals

take a designated value.

Moreover, it is possible for a theory to satisfy one procedure, but not the other.

For example, if one works with a language that does not have an identity oper-

ator, or one does not adopt a meta-linguistic function from names to formulas

that restrict the models, then the theory lacks the resources to have a Strong

Self-Referential Procedure. Nevertheless, the theory may include a Weak Self-

Referential Procedure. We will see below an example of such a theory.7

Let’s now return to what was our initial goal: to add a naive validity predicate

Val to LP. Val, then, must satisfy V D, V P and MetaV D. Suppose that a strong

self-referential procedure is added to the expanded LP . There seems to be one

big problem with this way of doing things: the theory becomes trivial. And this is

because, as we are using a strong self-referential procedure, there will be some name

⟨B⟩ such that ⟨B⟩ = ⟨V al(⟨B⟩, ⟨⊥⟩⟩). And as V al satisfies V D, V P and MetaV D,

and the consequence relation is contractive, then we may reason as we do on page

2 and go on to prove ⊥.

Moreover, if the theory allows some strong self-referential procedure like strong

diagonalization, there will be a sentence A definitionally equivalent to V al(⟨A⟩, ⟨�⟩),

e.g. “the Beall-Murzi sentence.” Now reason as follows.8

7We will like to thank an anonymous referee for helping us clarify this point. As she points out,

although strong self-reference might be expressed in the meta-language, it is not expressible in the
object language on pain on triviality. We think she is right, if identity is understood classically,
e.g., if no identity assertion takes a non-classical value. We guess (though we do not have a proof
to fully justify this claim) that a non-classical treatment of identities might help us recover the

syntactic functions that we lack in the present framework. We think that such a project is worth
exploring. But we will leave the accomplishment of this task for future work.
8As there may be some doubts about whether a strong self-referential procedure has the same
effect as the Definitional Equivalence Principle that takes part in the proof described in page 2,

we will present a proof that does not use that principle.
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V al(⟨A⟩, ⟨�⟩), V al(⟨A⟩, ⟨�⟩) ⊢ �
(Contraction)

V al(⟨A⟩, ⟨�⟩) ⊢ �
(VP)

⊢ V al(⟨A⟩, ⟨�⟩)

The first step is an instance of V D. Remember that ⟨A⟩ is a name of V al(⟨A⟩, ⟨�⟩).

This also explains why the second inferential step is a case of V P .

A similar reasoning will prove another instance of ⊢ V al(⟨A⟩, ⟨�⟩). A further

application of MetaV D will prove �. And as for any formula B, � ⊢ B, an applica-

tion of V P will prove ⊢ V al(⟨�⟩, ⟨B⟩). Then, an application of MetaV D will show

that ⊢ B.

Our initial goal was to find a way to expand LP with a naive validity predicate.

We will explore another way to achieve this aim. It will involve a radical change

in the self-referential procedure adopted. As we have shown, it cannot be a strong

one. We will use instead a weak self-referential procedure, as we will see in the next

section.

3. Weak self-reference for LPVal

We will now present a weak self-referential procedure for LP . We will show how

this makes possible to expand LP with a naive validity predicate V al in a way

that avoids triviality. It is important to remark that there may be many other

ways to achieve this goal, and this is just one option. We will now give a formal

presentation of the target theory, LPVal.

LPVal will be the result of expanding (the propositional version of) LP with

infinitely many names for every formula in the language, and a validity predicate

V al. V al will be defined by the following matrix.

V al(⟨A⟩, ⟨B⟩) 1 1
2

0
1 1 1 0
1
2

1 1 0
0 1 1 1

Figure 2. Matrix for Val
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This matrix is a natural one for an LP naive validity predicate.9 It reflects LP’s

consequence relation, as it gets value 1 iff (designated) values 1, 1
2
are preserved from

premises –represented by the first term of the assertion– to conclusion –represented

by the the second term. Moreover, it reflects the fact that there are no validity

“gaps” or “gluts” –e.g. there is no inference that is neither (both) valid nor (and)

invalid.10

Despite being a natural matrix for a validity predicate for LP , this is not the

only one that can be suitable for it. The only restriction that has been imposed to

those possible candidates is that they should satisfy V D, V P and MetaV D. And

this can be achieved in multiple ways. For example, one can specify a new validity

predicate V al1 such that v(V al1(⟨γ1∧ ...∧γn⟩, ⟨φ⟩)) =
1
2
iff either v(γ1∧ ...∧γn) =

1
2

or v(φ) = 1
2
, or if just v(γ1 ∧ ..., γn) =

1
2
or v(φ) = 1

2
, but not if both get that

value. In fact, one can safely add at once all those predicates associated with

different “validity-related” matrices , as long as a weak self-referential procedure is

adopted.11 Thus, we should turn to that issue now.

3.1. Technical details. To guarantee non-triviality we will use a weak self-referential

procedure. As we are working in a semantic framework that does not extend PA,

we need to find some other way to validate the Weak Self-Referential Principle.

9This matrix was first introduced in the literature of paraconsistent logics by Antonio Sette in
Sette (1973). It is also the one corresponding to the conditional defined in the system MPT,
developed in Coniglio and Silvertrini (2014). The authors endorse that conditional precisely

because it allegedly reflects the consequence relation of the theory, that is the same as in LP :
preservation of values 1, 1

2
.

10Nevertheless, this does not mean that we straightforward reject validity “gaps” or “gluts”.
Moreover, there are some approaches that support a non-classical view for validity. In particular,
Meadows (2014) support a “gappy” theory of validity, while Pailos and Tajer (2017) defend a

“glutty” version of it. Those approaches are interesting on there own, but we think they are not
available for a supporter of LP. LP’s notion of validity leaves no space neither for “gluts” nor for
“gaps”, because it should be understand in a traditional way, as preservation of designated values

–e.g., of “truth”– from premises to conclusions. Thus, the way a supporter of LP deals with a
validity predicate must be very different form the way she treats, for example, a truth predicate
–e.g., a predicate that admits a “glutty” behaviour.
11Though it might be strange to explain the behaviour of a predicate through a matrix, like
a truth-functional connective, we hope to have make it clear enough how this predicate works.

In fact, if we were working in a theory with a transparent truth predicate, every self-referential
sentence that includes V al can be emulated with the help of the truth predicate and a suitable
conditional that shares V al’s truth table. But without that kind of resource, it is not possible to

made self-referential sentences just with truth functional constants.
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This will require that statements that fix the self-referential character of the target

sentences should be true in our theory, e.g. they should get a designated value

in every relevant valuation. We will accomplish this task by restricting the set of

valuations to the ones that guarantee this result. Moreover, we will also need to

make some other minor adjustments.

First, we need to select an infinite proper subset of propositional variables. We

will mark them –in the metalanguage– with an ∗.12 Let’s consider, then, the

sentence-scheme x∗ ↔ Ax∗ , where Ax∗ is any sentence that has at least one in-

stance of V al(⟨xP ⟩, ⟨xC⟩) as a subformula, and x∗ is a distinguished propositional

letter. V al(⟨xP ⟩, ⟨xC⟩) will be a validity assertion such that x∗ is a subformula

of either xP , xC , or of both of them. Finally, for every formula C, ⟨C⟩ will be a

designated name for C, built with the help of a function symbol Q that will be

added to the language, such that Q(C) = ⟨C⟩. The instances of Ax∗ in the bicondi-

tional statement will give us every potential self-referential sentence that includes

a validity predicate that can be represented in the language.13

Thus, we will be able to model the pathological sentences that will be around

when predicates like V al(x, y) are added to the language. In particular, we will

have in the language sentences like p∗ ↔ V al(⟨p∗⟩, ⟨r⟩) or q∗ ↔ ¬V al(⟨(¬s⟩, ⟨q∗⟩).

We will impose a further semantic restriction to this setting. Let y be a metalin-

guistic variable that ranges over propositional letters, and let B be also a met-

alinguistic variable that ranges over formulas that include at least one instance of

V al(⟨yP ⟩, ⟨yC⟩). A formula-scheme By will be an instantiation of B, e.g., a formula

such that every expression in it (besides parenthesis) is either a propositional letter,

or a logical constant, or the metalinguistic variable y. Therefore, V al(⟨p∗⟩, ⟨r⟩) and

V al(⟨q⟩, ⟨p∗⟩) are different formula-schemes.

12This last move is not essential. But putting a mark on the distinguished propositional letters will
make things easier to follow, as those propositional letters will play a key part in the self-referential

procedure we are about to present.
13Notice that neither xP nor xC belong to the language of the theory. Moreover, for every x∗,
there will be (infinitely) many formulas with the structure V al(⟨xP ⟩, ⟨xC⟩). For example, there

will be one such that xP
= x∗, but xC

= p, one such that xC
= x∗ and xP

= q ∧ r, etc.
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We will select, for each formula-schema By, one and only one biconditional. Each

one of them will have a different distinguished propositional letter as its left term.

Let Z be the set of such biconditionals.

Finally, we will restrict the valuations to the ones that assign a designated value

to each member of Z.14 This makes those biconditionals true in every valuation,

and allows a version of the Weak Self-Referential Principle to hold in the target

theory, LPVal. 15 Thus, though every member of Z will be an instance of the Weak

Self-Referential Principle, not every instance of the Weak Self-Referential Principle

will be a member of Z. For example, if p∗ ↔ V al(⟨p∗⟩, ⟨r⟩) is a member of Z, then,

q∗ ↔ V al(⟨q∗⟩, ⟨r⟩), is not.16

It is essential that we use a biconditional to represent self-referential sentences

that receives value 0 only when the antecedent receives value 1 and the consequent

receives value 0, and that receives value 1
2
when the antecedent receives value 1

2

and the consequent value 0. LP ’s material biconditional belongs to that group.

The following fact about LPVal must be highlighted: it is a non-trivial theory.

Theorem 3.1 (Non-Triviality). There is at least one valuation that does not give

a designated value to every formula of LPVal.

Proof. Take a valuation v that assigns 1
2
to every propositional letter. Let p∗ be the

propositional letter of the Beall-Murzi biconditional for LPVal, p∗ ↔ V al(⟨p∗⟩, ⟨⊥⟩).

Thus, v(p∗) = 1
2
. (In fact, that is the only value that p∗ can receive in any valuation.)

Now consider the validity assertion V al(⟨p∗⟩, ⟨p∗⟩). As is easy to check, v will

14Notice that such valuations exist. Just consider the one that assigns the value 1

2
to every

propositional letter.
15We would like to highlight that is only a version of that principle holds in our system. As
we already mentioned, we will have, for every formula-schema By , one and just one sentence of
the form y∗ ↔ B∗y in Z. An unrestricted version of the principle makes all instances of such

biconditionals true. For our purposes, the restricted version will be good enough.
16As we have already explained, those biconditionals can also be read as a way to mimic (some
relevant) instances of the weak diagonal lemma, that are themselves traditionally treated as a way
to achieve self-reference. Therefore, this allow us to have in the language sentences that represent
part of the instances of the (weak) diagonal lemma. Nevertheless, we would not have all of them.

For example, we will not have cycles –e.g. sentences that refer to other sentences that (eventually)
refer to them. But it will not be difficult to expand this procedure to include them all. Still, as our
primary interest is not cycles (nor, for example, a validity version of a Yablo’s chain) this seems
to be good enough to achieve our goals. (For more about the Yablos Paradox, see e.g. Yablo

(1993).)
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be such that v(V al(⟨p∗⟩, ⟨p∗⟩)) = 1. Therefore, v(¬V al(⟨p∗⟩, ⟨p∗⟩)) = 0. Thus,

LPVal is not trivial. The only thing we need to check is if v is an admissible

valuation –e.g. a valuation that gives a designated value to every biconditional

in Z. But, as we have established, every propositional letter q will be such that

v(q) = 1
2
, including every propositional letter distinguished with a ∗. Thus, every

biconditional r∗ ↔ Ar∗ that belongs to Z will receive a designated value in v. 17

�

So far, we have proved that LP can be expanded with the predicate Val. Nev-

ertheless, we still need to prove that Val expresses naive validity.

Theorem 3.2 (Val is a naive validity predicate).

Proof. Val satisfies the semantic versions of V P , V D and MetaV D.

In the cases of V P and MetaV D, this means that those rules are validity-

preserving: if the premises are valid, then the conclusion is valid too. In the case of

V D, it means that it is a valid inference. Let’s start with V P . If A ⊧ B, then, for

every valuation v, either v(A) = 0 or v(B) ∈ {1, 1
2
}. In either case, v(V al(⟨A⟩, ⟨B⟩) =

1. Now we need to prove the semantic version of V D: A,V al(⟨A⟩, ⟨B)⟩ ⊧ B. If

the premises are true in a valuation v, then either v(A) = 0 or v(V al(⟨A⟩, ⟨B⟩) = 0,

or, if v(A), v(V al(⟨A⟩, ⟨B⟩) ∈ {1, 1
2
}, then v(B) ∈ {1, 1

2
}. The only relevant case

is the one where v(A), v(V al(⟨A⟩, ⟨B⟩) ∈ {1, 1
2
}. But in that case, by the matrix

corresponding to V al, v(B) ∈ {1, 1
2
}, and so we are done. If MetaV D is a valid

(meta)rule, if both ⊧ V al(⟨A⟩, ⟨B⟩) and ⊧ A, then, once again by V al’s matrix,

⊧ B.

�

Thus, we have proven that LPVal can internalize a naive validity predicate.

But it may be claimed that all we have proven is that it can internalize semantic

versions of the principles that a real naive validity predicate should satisfy. And to

17We would like to thank Dave Ripley for his help with this result.
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prove what we intended to prove, we need to present a calculus that is sound and

complete with respect to LPVal.

That is what we will do in the next section.

3.2. A sequent calculus for LPVal. We will now present the three-sided dis-

junctive sequent system SLPVal (for “Sequent system for LPVal”). We are not

claiming that it is impossible to give a traditional, two-sided sequent calculus, but

the three-sided calculus that we will display simplifies the completeness proof given

in the Appendix. Moreover, SLPVal has two further advantages. On the one hand,

each truth value will be represented in it, something that a two-sided sequent sys-

tem cannot obviously do. On the other hand, SLPVal makes it easy to realize

what is special about pathological sentences like the Beall-Murzi sentence. Those

sentences cannot receive a classical truth value in any valuation.18

We will now specify how disjunctive sequents behave. Γ,Σ,∆ will be sets of

sentences.

Definition 3.3. A disjunctive sequent Γ ∣ Σ ∣ ∆ is satisfied by a valuation v iff

v(γ) = 0 for some γ ∈ Γ, or v(σ) = 1
2

for some σ ∈ Σ, or v(δ) = 1 for some

δ ∈ ∆. A sequent is valid iff it is satisfied by every valuation. A valuation v is a

counterexample to a sequent if v does not satisfy the sequent.

An inference from Γ to ∆ will be valid in LPVal if and only if there is no valuation

such that every formula in Γ receives a value 1, 1
2
and every formula in ∆ receives

value 0. There is a strong relation between valid three-sided sequents and valid

LPVal’s inferences:

Γ ⊧LPVal ∆ if and only if Γ ∣∆ ∣∆ is valid.

18Classical values, in this framework, will be associated with the left and the right sides of a
three-sided sequent. But it can be prove that the Beall-Murzi can only receive the intermediate
value, because the sequent that is empty on the left and on the right, and has only the Beall-Murzi

sentence in the middle, will have a proof. That proof is very similar to the one that Ripley in
Ripley (2012) gave for the sequent that has only the Liar sentence in the middle and is empty
on the extremes. In fact, the Beall-Murzi sentence can be used to define a constant for the

intermediate value, and, with its help, it is easy to define constants for the classical values.



VALIDITY, DIALETHEISM AND SELF-REFERENCE 13

This follows from the definition of LPVal validity and the definition of validity

for a three-sided sequent.

The proof system we are about to present includes, as usual, some axioms and

rules. A sequent is provable if and only if it follows from the axioms by some number

(possibly zero) of applications of the rules. As we are working with sets, the effects

of Exchange and Contraction are built in, and Weakening is built into the axioms.

LPVal has three forms of Cut, and also a Derived Cut rule (that can be inferred

from the three basic rules of Cut) that will play a key part in the Completeness

Proof. Id, SeudoDL (short for “Seudo Diagonal Lemma”) and VAL are the axiom-

schemes of SLPVal.19 Cut1, Cut2, Cut3 and DerivedCut are structural rules. The

rest of them are SLPVal’s operational rules. To apply the rule SeudoDL, p∗ ↔ Ap∗

must be a member of Z.

Id
A,Γ ∣ A,Σ ∣ A,∆

SeudoDL
Γ ∣ p∗ ↔ Ap∗ ,Σ ∣ p∗ ↔ Ap∗ ,∆

VAL
V al(⟨A⟩, ⟨B⟩),Γ ∣ Σ ∣ V al(⟨A⟩, ⟨B⟩),∆

Γ,A ∣ Σ ∣∆ Γ ∣ Σ,A ∣∆
Cut 1

Γ ∣ Σ ∣∆

Γ ∣ Σ ∣∆,A Γ ∣ Σ,A ∣∆
Cut 2

Γ ∣ Σ ∣∆

Γ,A ∣ Σ ∣∆ Γ ∣ Σ ∣∆,A
Cut 3

Γ ∣ Σ ∣∆

Γ,A ∣ Σ,A ∣∆ Γ ∣ Σ,A ∣∆,A Γ,A ∣ Σ ∣∆,A
Derived Cut

Γ ∣ Σ ∣∆

Γ ∣ Σ ∣∆,A
L¬

Γ,¬A ∣ Σ ∣∆

Γ ∣ Σ,A ∣∆
M¬

Γ ∣ Σ,¬A ∣∆

Γ,A ∣ Σ ∣∆
R¬

Γ ∣ Σ ∣∆,¬A

A ∣ B ∣ B
R-Val

⊘ ∣ ⊘ ∣ V al(⟨A⟩, ⟨B⟩)

Γ ∣ Σ,A ∣∆,A Γ,B ∣ Σ ∣∆
L-Val

Γ, V al(⟨A⟩, ⟨B⟩) ∣ Σ ∣∆

Γ,A,B ∣ Σ ∣∆
L∧

Γ,A ∧B ∣ Σ ∣∆

Γ ∣ Σ ∣∆,A Γ ∣ Σ ∣∆,B
R∧

Γ ∣ Σ ∣∆,A ∧B

19VAL reflects the semantic behaviour of the validity predicate. What VAL express is that every

sentence of the form V al(⟨A⟩, ⟨B⟩) will either receive the value 0 or the value 1 (but never the

value 1

2
) in every valuation.
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Γ ∣ Σ,A ∣∆,A Γ ∣ Σ,B ∣∆,B Γ ∣ Σ,A,B ∣∆
M∧

Γ ∣ ΣA ∧B ∣∆

As the rest of the constants (∨, → and ↔) can be defined in terms of the former,

we will not specify rules for them.

The following are some important properties of LPVal and SLPVal:

Theorem 3.4 (Soundness). If a sequent Γ ∣ Σ ∣∆ is provable, then it is valid.

Proof. The axioms are valid, and validity is preserved by the rules, as can be checked

without too much trouble.

�

Theorem 3.5 (Completeness). If a sequent Γ ∣ Σ ∣∆ is valid, then it is provable.

Proof. In the Appendix.

�

4. Adding a transparent truth predicate

So far, we have shown how to expand the dialetheist logic LP with a naive

validity predicate that also expresses its own notion of semantic consequence. There

are several validity theories that intend to solve the Validity Paradox in a variety

of ways. But a promising theory of validity that is immune to semantic paradoxes

should also interact safely with a transparent truth predicate.20 This is what we

will get with LPVal+. LPVal+ expands LPVal’s language with a transparent truth

predicate Tr.

A Tr(⟨A⟩)
0 0
1
2

1
2

1 1

Figure 3. Matrix for Tr

20For example, Toby Meadows, in Meadows (2014), gives a theory of naive validity that cannot

be expanded with a transparent truth predicate without becoming trivial.
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One important thing about LPVal+ is that its weak self-referential procedure

should be slightly different from the one we saw for it to allow not only self-

referential sentences involving the validity predicate, but also self-referential sen-

tences involving the truth predicate or both of them. Thus, we will have new self-

referential sentences as terms of the biconditionals used to express self-reference.

Those biconditionals will have, as theirs right terms, formulas that include instances

of Tr. Sentences of the form x∗ ↔ Ax∗ will now be understood as formulas where

Ax∗ refers to a sentence that with least one instance of V al(⟨xP ⟩, ⟨xC⟩) or at least

one instance of Tr(⟨x∗⟩) as subformulas.

Now we can model the pathological sentences that are around when predicates

like validity or truth are introduced in the language. Once again, we will select,

for each formula-schema Ax∗ , one and only one biconditional. Each biconditional

will have a different propositional letter as its left term. We will call our new set

of such biconditionals, Z∗.

The valuations will be restricted to the ones that assign a designated value to

each member of Z∗.21 This allows a version of the Weak Self-Referential Principle

to hold in our theory, as those biconditionals will become true in every valuation.

Theorem 4.1 (Non-Triviality). There is at least one valuation v such that for

some formula A of LPVal, v(A) = 0.

Proof. The same strategy as the one used to prove LPVal’s non-triviality can be

used to prove that LPVal+ is not trivial.

�

LPVal+ will be sound and complete with respect to a new disjunctive three-

sided sequent system, SLPVal+. SLPVal+ expands SLPVal with a transparent

truth predicate, and three new rules for it.

Γ ∣ Σ ∣∆,A
RTr

Γ ∣ Σ ∣∆, T (⟨A⟩)

Γ ∣ Σ,A ∣∆
MTr

Γ ∣ Σ, T (⟨A⟩) ∣∆
Γ,A ∣ Σ ∣∆

LTr
Γ, T (⟨A⟩) ∣ Σ ∣∆

21Such valuations also exist in this case. We only need to consider, once again, the one that

assigns 1

2
to every propositional letter.
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To apply SeudoDL, p∗ ↔ Ap∗ must be a member of Z∗.

The relation between valid sequents of SLPVal+ and valid inferences of LPVal+

will be once more the expected one. Moreover, SLPVal+ is sound and complete

with respect to LPVal+.

Theorem 4.2 (Soundness). If a sequent Γ ∣ Σ ∣ ∆ (of SLPVal+) is provable, then

it is valid.

Proof. The axioms are valid, and validity is preserved by the rules, as can be easily

checked.

�

Theorem 4.3 (Completeness). If a sequent Γ ∣ Σ ∣ ∆ (where each sentence in the

sequent is a LPVal+’s formula) is valid, then it is provable in SLPVal+.

Proof. In the Appendix.

�

5. Validity as an intensional notion

We will like to mention one important objection against this approach raised

by Graham Priest. Validity is an intensional notion. It cannot be modeled by

a matrix, because the resulting theory will be deeply unsound: it will make true

validity assertions that are not intuitively valid.22 Take a valuation v such that

v(p) = 1 and v(q) = 0. Then v(V al(⟨q⟩, ⟨p⟩)) = 1. But this surely isn’t right,

because p and q are independent contingent formulas.

It is important to understand that this argument doesn’t tell against treating

a validity predicate as a sort of conditional, but against interpreting it as a deter-

ministic, extensional connective, whose meaning is fixed by its truth-table. Every

validity predicate resembles a kind of conditional. One of the main features of a

semantically closed theory is to have a way to express in the theory its consequence

relation. And the linguistic item that fulfills this task will be relating the premises

22Or will validate inferences that involve validity assertions that are not intuitively valid.
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and conclusions in very much the same way as a suitable conditional → will relate

the antecedent and the consequent. Let γ1, . . . , γn be the formulas in Γ. The va-

lidity predicate and such a conditional should satisfy both the Deduction Theorem

and its converse:

Γ ⊧ φ iff ⊧ V al(⟨Γ⟩, ⟨φ⟩)

Γ ⊧ φ iff ⊧ (γ1 ∧ ... ∧ γn) → φ

Thus, the problem seems not to be that we model validity with a conditional,

but that we use a deterministic conditional. If the validity predicate is associated

with a particular deterministic matrix, then its truth-value will be fixed by the

values of its terms. But of course, the truth of a validity assertion in a particular

valuation v does not imply that that validity assertion is true in the theory. To be

true in the theory, it should be true in every valuation. And it is not that awkward

to say that those assertions are valid, or true in (or according to) the theory. Thus,

even if those valuations make true sentences like V al(⟨q⟩, ⟨p⟩), it is not the case

that they will be valid, or true in the theory.23

Moreover, it is not even true that validity is necessarily associated with “nec-

essary truth-preservation”, or some other related notion. From an inferentialist

perspective, to capture a notion like validity in the language, is to add a symbol

to the language, and, moreover, rules that express its normative use in the infer-

ential practice. Most probably, an inferentialist will consider V P , V D, and maybe

MetaV D, as the rules that capture the meaning of the validity predicate.24 From

the inferentialist’s perspective, there is nothing essential about validity that a pred-

icate does not capture if it obeys those rules. Thus, an inferentialist that recognizes

V P , V D and MetaV D as the rules that define a validity predicate will accept V al

as a full-blooded validity predicate.

23The awkwardness, in cases like these, seems to be not different from the one generated by a

conditional that is true if its antecedent is false, or its consequent is true, or some other sufficient
extensional condition.
24Though there is some open debate about whether MetaV D, as we already mentioned, should be
part of the list. An inferentialist like David Ripley, for example, rejects MetaV D as an adequate

rule for a validity predicate.
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Nevertheless, there may be inferentislists that think that the anti-extensionalist

argument we presented before is sound. Thus, if validity cannot be modelled by a

traditional, deterministic matrix, but nevertheless it should satisfy V P , V D and

MetaV D, then it should be inferred that some naive validity predicates, such as

V al, are not real validity predicates. The mistake, then, is to think that V P , V D

and MetaV D are not only necessary, but also (jointly) sufficient conditions for a

naive validity predicate. If this is true, then, our proposal not only proves (1) that

a dialetheist theory is compatible with a naive validity predicate, but also that (2)

that a naive validity predicate may not be a real validity predicate after all.

Our original worry, then, can be reformulated like this: can a naive validity

predicate, that is also a real validity predicate, be added to a dialetheist theory?

What we will do in the rest of the section is to justify a positive answer to that

question.

5.1. A non-deterministic approach. Though we realize that a naive valid-

ity predicate recovered through a deterministic matrix will not satisfy an anti-

extentionalist about validity, we think that a validity predicate based on a suit-

able non-deterministic matrix may do the required job, even according to Priest’s

standards. Thus, let V al∗ be a validity predicate whose behaviour is not truth-

functional, in the sense that the truth values of the formulas that are mentioned

in a validity assertion does not fix the value of the validity assertion. These kind

of predicates can be recovered by non-deterministic matrices. So, the values of the

formulas A and B do not fix the value of formulas like V al∗(⟨A⟩, ⟨B⟩).25

We will apply the same strategy that we use in the case of LPVal, with the only

difference that the new language replaces all instances of V al with occurrences of

V al∗. Call the resulting theory, LPVal
∗

. LPVal
∗

, as LPVal, will have a weak self-

referential procedure. In particular, LPVal
∗

will achieve self-reference in the same

way as LPVal does.

25For more about non-deterministic semantics, see Avron (2007) and Avron and Zamansky (2011)
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We will now introduce the matrix for V al∗. The leftmost column represent the

values of the formula A, and the topmost line represent the values of the formula

B.

V al(⟨A⟩, ⟨B⟩) 1 1
2

0

1 1, 1
2
, 0 1, 1

2
, 0 0

1
2

1, 1
2
, 0 1, 1

2
, 0 0

0 1, 1
2
, 0 1, 1

2
, 0 1, 1

2
, 0

Figure 4. Matrix for V al∗

This matrix should be understood in this way. For any pair of formulas A,B,

and every valuation v, if v(A) = 1, 1
2
, and v(B) = 0, then v(V al(⟨A⟩, ⟨B⟩) = 0.

This seems intuitively right. If there is at least one valuation where the premise

(or the conjunction of the premises) takes a designated value, but the conclusion

takes the undesignated value 0, then that inference will be invalid. And the validity

assertion should reflect this fact by receiving the undesignated value 0. In every

other case, the validity assertion may receive any of three truth values. This will

allow LPVal
∗

to handle in the right way the unpleasant results faced by LPVal.

In LPVal, if v(p) = 1, 1
2
, then v(V al(⟨q⟩, ⟨p⟩) = 1. Thus, the inference from p to

v(V al(⟨q⟩, ⟨p⟩) will be valid. But in LPVal
∗

, even if v(p) = 1, 1
2
, it could still be

the case that v(V al∗(⟨q⟩, ⟨p⟩) = 0. Though every LPVal’s valuation will be an

LPVal
∗

’s valuation, there will be more LPVal
∗

s valuations than LPVal valuations.

Thus, LPVal
∗

will be a sub-theory of LPVal. Take, for example, two sentences A

and B such that for a valuation v, v(A) = 1 and v(B) = 1
2
. In LPVal, for every

such v, v(V al(⟨A⟩, ⟨B⟩) = 1. But in LPVal
∗

, V al∗(⟨A⟩, ⟨B⟩ can take the value 1, 1
2

or, moreover, 0.

The non-deterministic behaviour of the new validity predicate is compatible with

the anti-extensionalist rejection of the idea that the falsity of the first term, or the

truth of the second term, of a validity assertion, makes it true. But this does not

come without costs. V al∗ has two major problems. The first one is that there will

be no valid validity assertion, because for every combination of truth values of A

and B, for any formulas A and B, there will be at least one valuation v such that
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v(V al∗(⟨A⟩, ⟨B⟩) = 0. The second is that, by itself, V al∗ is not a naive validity

predicate, because it will invalidate V P . Nevertheless, the satisfaction of V P can

be imposed by brute force. 26 Thus, the valuations v can be restricted to the ones

such that, if A ⊧ B, then, for every valuation v, v(V al∗(⟨A⟩, ⟨B⟩) = 1, 1
2
. This

simple move solves both problems. Therefore, in this new scenario, for every new

validity assertion V al∗(⟨A⟩, ⟨B⟩), ⊧ V al∗(⟨A⟩, ⟨B⟩).

What remains to be proved is that the semantic versions of V D and MetaV D

hold in LPVal
∗

. Let’s start with the former, and assume A,V al∗(⟨A⟩, ⟨B⟩) ⊧ B.

Thus, for every valuation v, either v(A) = 0 or v(V al∗(⟨A⟩, ⟨B⟩) = 0, or, if v(A),

v(V al∗(⟨A⟩, ⟨B⟩) = 1, 1
2
, then v(B) = 1, 1

2
. The only relevant case is when v(A),

v(V al∗(⟨A⟩, ⟨B⟩) = 1, 1
2
. But then, by the matrix corresponding to V al∗, v(B) =

1, 1
2
, and so we are done. For MetaV D, if both ⊧ V al∗(⟨A⟩, ⟨B⟩) and ⊧ A, then,

once again, ⊧ B.

LPVal
∗

will also be non-trivial. The proof runs as LPVal’s non-triviality proof.

As all LPVal’s valuations are also LPVal
∗

’s valuations, so is the one that gives a

designated value to every biconditional that express a self-referential formula, and

a non-designated value to at least one sentence. Nevertheless, it seems not easy

to build a proof-system for LPVal
∗

, as V al∗’s assertions don’t have a deterministic

behaviour. Giving that our initial goal is already accomplished, we will leave the

task of developing a proof-system for LPVal
∗

for future work.

5.2. Limits and problems. Regardless the virtues it may have, LPVal
∗

still suffer

from a different kind of “incompleteness” problem. In particular, some intuitively

valid inferences involving validity assertions wont turn out valid. This is just one

example:

V al∗(⟨⊺⟩, ⟨p⟩) ⊧ V al∗(⟨⊺⟩, ⟨p ∨ q⟩)

26A similar strategy was adopted, for example, by Meadows (2014).
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There might be a pretty straightforward way out of this problem.27 In Negri

(2005), Sara Negri explains how to prove, in a sequent calculi, principles and infer-

ences that involved the necessity operator by adding suitable inferential schemes.

For example, a principle like ◻(A → B) → (◻A → ◻B) can be recovered through

the addition of the following rule to the standard sequent system LK for classical

logic:
A ⊢ B

K
◻A ⊢ ◻B

In a similar vein, one can demand that V al∗ should satisfy the following meta-

rule:
A ⊧ B

K − V al∗
V al∗(⟨⊺⟩, ⟨A⟩) ⊧ V al∗(⟨⊺⟩, ⟨B⟩)

With the restriction thatK−V al∗ imposed, a validity assertion like V al∗(⟨p⟩, ⟨p∨

q⟩) will be satisfied in every valuation.

A similar manoeuvre may be adopted with other sequent-calculi rule-versions of

modal principles. We may dictate further restrictions on validity versions of those

modal rules to validate intuitive validity principles.28

Nevertheless, there seems to be another important flaw of the non-deterministic

proposal. It can be argued that a validity theory must prove not only every validity

assertion corresponding to a valid inference, but also every negation of a validity

assertion corresponding to an invalid inference. In particular, the non-deterministic

approach does not validate a sentence like ¬V al∗(⟨p⟩, ⟨q⟩). Still, the theory can

prove some of these negations. For example, ¬V al∗(⟨⊺⟩, ⟨⊥⟩).

27A similar solution is considered in Barrio et al. (2017). In that paper, the authors assess
different ways to add a validity predicate to the non-transitive logic ST .
28Other rules of this kind that Negri mentioned in Negri (2005) are the following:

A ⊢ B
T
◻A ⊢ B

◻A ⊢ B
S4
◻A ⊢ ◻B

The validity-version of T might be the following:
A ⊢ B

T − V al
V al∗(⟨⊺⟩, ⟨A⟩) ⊢ B

And here is a the validity-version of S4:
V al∗(⟨⊺⟩, ⟨A⟩) ⊢ B

S4 − V al
V al∗(⟨⊺⟩, ⟨A⟩) ⊢ V al∗(⟨⊺⟩, ⟨B⟩)
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There seems to be no easy answer to this problem. But we will leave the explo-

ration of possible solutions to future works.

6. Conclusion

We have shown, contrary to what is claimed in Beall (2009) and Beall and Murzi

(2013), that dialetheism can express the concept of naive validity. We have shown

that LP can be non-trivially expanded with a naive validity predicate V al, and,

moreover, that such a predicate can express LP’s own consequence relation. V al

can afford to express and deal with semantic paradoxes involving validity. LPVal

achieves non-triviality by means of a weak self-referential procedure. We have also

shown that LPVal is sound and complete with respect to the three-sided sequent

calculus SLPVal. LPVal can be safely expanded with a transparent truth predicate.

Finally, we faced the objection that a naive validity predicate should be intensional

through a theory that uses a validity predicate whose meaning is given by a non-

deterministic matrix. The new theory, LPVal
∗

, also achieves self-reference through

a weak self-referential procedure.

7. Appendix: SLPVal
’s and SLPVal+

’s Completeness Proof

We will use the method of reduction trees,29 that allows to build for any given

sequent, either a proof of that sequent, or a counterexample to it. The method also

provides of a way of building the eventual counterexample. We will introduce the

notions of subsequent and sequent union, that will be used in the proof:

Definition 7.1. A sequent S = Γ ∣ Σ ∣∆ is a subsequent of a sequent S′ = Γ′ ∣ Σ′ ∣∆′

(written S ⊑ S′) if and only if Γ ⊑ Γ′, Σ ⊑ Σ′, and ∆ ⊑∆′.

Definition 7.2. A sequent S = Γ ∣ Σ ∣ ∆ is the sequent union of a set of sequents

[Γi ∣ Σi ∣ ∆i]i∈I (written S = ⊔[Γi ∣ Σi ∣ ∆i]i∈I) iff Γ = ⊔i∈IΓi, Σ = ⊔i∈IΣi and

∆ = ⊔i∈I∆i.

29For similar proofs, see Ripley (2012) and Paoli (2012).
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The construction starts from a root sequent S0 = Γ0 ∣ Σ0 ∣∆0, and then builds a

tree in stages, applying at each stage all the operational rules that can be applied,

plus Derived Cut “in reverse”, e.g. from the conclusion sequent to the premise(s)

sequent(s). For the proof, we use an enumeration of the formulas and an enumer-

ation of names. We will reduce, at each stage, all the formulas in the sequent,

starting from the one with the lowest number, then continuing with the formula

with the second lowest number, and moving on in this way until the formula with

the highest number in the sequent is reduced. If case a formula appears in more

than one side of the sequent, we will start by reducing the formula that appears on

the left side and then proceed to the middle and the right side, respectively. The

final step, at each stage n of the reduction process, will be an application of the

Derived Cut rule to the n-formula in the enumeration. If we apply a multi-premise

rule, we will generate more branches that will need to be reduced. If we apply a

single-premise rule, we just extend the branch with one more leave. We will only

add formulas at each stage, without erasing any of them. As a result of the process

just described, every branch will be ordered by the subsequent relation. Any branch

that has an axiom as it topmost sequent will be closed. A branch that is not closed

is considered open. This procedure is repeated until every branch is closed, or until

there is an infinite open branch. If every branch is closed, then the resulting tree

itself is a proof of the root sequent. If there is an infinite open branch Y , we can

use it to build a counterexample to the root sequent.

Stage 0 will just be the root sequent S0. If it is an axiom, the branch is closed.

For any stage n + 1, one of two following things might happen:

(1) For all branches in the tree after stage n, if the tip is an axiom, the branch

is closed.

(2) For open branches: For each formula A in a sequent position in each open

branch, if A already occurred in that sequent position in that branch (e.g.

A has not been generated during stage n + 1), and A has not already been

reduced during stage n + 1, then reduce A as is shown below.
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● If A is a negation ¬B, then: if A is in the left/ middle/ right position, extend

the branch by copying its current tip and adding B to the right/middle/left

position.

● If A is a conjunction B ∧ C, then: (i) if A is in the left position, extend

the branch by copying its current tip and adding both B and C to the left

position. (ii) If A is in the middle position, split the branch in three: extend

the first by copying the current tip and adding B to both the middle and

right positions; extend the second by copying the current tip and adding

C to the middle and right positions; and extend the third by copying the

current tip and adding both B and C to the middle position. (iii) If A is

in the right position, split the branch in two: extend the first by copying

the current tip and adding B to the right position; and extend the second

by copying the current tip and adding C to the right position.

● If A is a Val assertion V al(⟨B⟩, ⟨C⟩), then: (i) If A is in the right position,

extend the branch by copying its current tip and adding B to the left

position, and C to the middle and right positions. (ii) If A is in the left

position, then split the branch in two. Extend the first by copying the

current tip and adding B to the middle and right positions, and extend the

second by copying the current tip and adding C to the left position. (iii) If

A is in middle position, then do nothing.

As the disjunctions, conditionals and biconditionals sentences can be defined in

terms of negations and conjunctions, it won’t be necessary to specify special rules

for them. Those cases will be subsumed in the ones already specified.

We will also apply the Derived Cut rule at each step. Consider the nth formula

in the enumeration of formulas and call it A. Now extend each branch using the

Derived Cut rule. For each open branch, if its tip is Γ ∣ Σ ∣ ∆, split it in three

and extend the new branches with the sequents Γ,A ∣ Σ,A ∣ ∆, Γ,A ∣ Σ ∣ ∆,A, and

Γ ∣ Σ,A ∣∆,A, respectively.



VALIDITY, DIALETHEISM AND SELF-REFERENCE 25

Now we need to repeat this procedure until every branch is closed, or until there

is an infinite open branch. If the first scenario is the actual one, then the tree itself

is a proof of the root sequent, because each step will be the result of an application

of a structural or operational rule to the previous steps. If the second scenario is

the actual one, we can use the infinite open branch to build a counterexample.

If in fact there is an infinite open branch Y , then the Derived Cut rule will have

been used infinitely many times. Thus, every formula will appear at some point in

the branch for the first time, and will remain there in every step afterwards. Now,

we first collect all sequents of the infinite open branch Y into one single sequent

Sω = Γω ∣ Σω ∣∆ω = ⊔ {S ∣ S is a sequent of Y }. Notice that,

as Derived Cut has been applied infinitely many times in the construction of the

branch, every formula will occur in exactly two places in Sω.
30 Thus, there will

be a valuation such that no formula in the sequent gets the value associated with

the place where it occurs (i.e. 0 if the formula occurs in the left, 1
2
if it occurs in

the middle, 1 if it occurs in the right). Hence, for each formula A in the sequent,

v will give A a value different from the ones corresponding to the sides where A

appears in the sequent. But that includes all the formulas in the initial and finite

sequent S0. That valuation, then, will also be a counterexample to S0. Therefore

that valuation will be a counterexample to the sequent being considered.

Thus, for atomic formulas A (propositional letters and truth assertions), v(A) = 0

or 1
2
or 1, respectively, iff A does not appear in Γω or Σω or ∆ω, respectively.

The rules for reducing formulas can be used to show by induction that, if none

of the components of complex formulas receive the value associated with any place

in which they appear in Sω, neither will the compound. We will not see, due

to limitations of space, how this method works in detail. For conjunctions and

negations, we proceed exactly as is shown in Ripley (2012). The new cases are

30It cannot occur in the three places, because then there will be some finite stage n where the
formula appears for the first time in the branch in the three sides. But then that sequent will be

an axiom, and therefore the branch will be closed.
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that of Val assertions. Thus, we will just check how that type of assertion can be

reduced.

In the cases of validity assertions V al(⟨B⟩, ⟨C⟩), where V al(⟨B⟩, ⟨C⟩) appears

on the right side of the sequent, the result of reducing it is a sequent with B on

the left, and C on both the middle and the right sides. Notice that neither can

C appear also on the left nor can V al(⟨B⟩, ⟨C⟩) appear also on the left. If any of

those two things happen, the relevant formula will appear at some point for the

first time in the branch. But if that happens, then that node of the branch will

be an axiom (a case of Id or of V AL), and so the branch will be closed. So both

C and V al(⟨B⟩, ⟨C⟩) will appear in the middle and on the right side. Thus, there

seems to be just two possibilities: (i) either B is both in the left and the middle

sides of the sequent, or (ii) it is both in the left and the right side of the sequent.

Let us start with (i). Then, by inductive hypothesis, v(B) = 1 and v(C) = 0, but

then v(V al(⟨B⟩, ⟨C⟩)) = 0. Now consider (ii). By inductive hypothesis, v(B) = 1
2

and v(C) = 0, but then v(V al(⟨B⟩, ⟨C⟩)) = 0. Thus, in neither of these cases

V al(⟨B⟩, ⟨C⟩) will receive a value associated with the sides where it appears.

Now we need to evaluate the case where V al(⟨B⟩, ⟨C⟩) appears both on the left

and on the middle sides. The result of reducing V al(⟨B⟩, ⟨C⟩) on the left will be

two new branches: (i) the one with the addition of B on the middle and on the

right, and (ii) the one with the addition of C on the left. In (i), v(B) = 0, and thus

v(V al(⟨B⟩, ⟨C⟩) = 1. In (ii), either (iia) C appears also on the middle, or (iib) C

appears also on the right. In (iia), v(C) = 1, and thus v(V al(⟨B⟩, ⟨C⟩)) = 1. In

(iib), v(C) = 1
2
, and thus v(V al(⟨B⟩, ⟨C⟩)) = 1. And so we are done.

By completing the induction along these lines, we can show that we can design a

valuation such that no formula receives the value associated with any place where

it appears in Sω. But, as we know, that includes all the formulas in the initial and

finite sequent S0. That valuation, then, will also be a counterexample to S0, which

is what we were looking for. Thus, for any sequent S, either it has a proof or it has

a counterexample.
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Finally, SLPVal+’s proof uses the method of reduction trees that we already

present for SLPVal. We need to add are new clauses Tr. Thus, for any stage n+1,

if the branch is open, and A is a truth assertion Tr(⟨B⟩), then:

● if Tr(⟨B⟩) is in the left/middle/right position, extend the branch by copying

its current tip and adding B to the left/middle/right position.

If Tr(⟨B⟩) appears on the left/middle/right side of the sequent, the result of

reducing it is a sequent with an additional B on the left/middle/right side.

In the cases where Tr(⟨B⟩) appears in an infinite open branch, then v(Tr(⟨B⟩)) =

0 or 1
2
or 1, respectively, iff B does not appear in Γω or Σω or ∆ω, respectively. B

will appear in exactly the places where Tr(⟨B⟩) appears. As any formula in sequent

that corresponds to an infinite open branch, B appears in exactly two places. If

Tr(⟨B⟩)) appears in the only place where B does not appear, then, as Tr(⟨B⟩) will

eventually be reduced, B will appear in the only place where it does not appear

until that moment in branch. But then that sequent will be an axiom, and thus the

branch will be closed. This is the only possibility that we need to consider. Tr(⟨B⟩)

can not appear in less places that B: as any formula in a sequent corresponding to

an infinite open branch, it has to appear in exactly two places.
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