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A B S T R A C T

Soil moisture (SM) available for evapotranspiration is crucial for food security, given the significant inter-
annual yield variability of rainfed crops in large agricultural regions. Also, incoming solar radiation (Rs) in-
fluences the photosynthetic rate of vegetated surfaces and can affect productivity. The aim of this work is to
evaluate the ability of crop water stress and Rs remotely sensed data to forecast yield at regional scale. Tem-
perature Vegetation Dryness Index (TVDI) was computed as an indicator of crop water stress and soil mois-
ture availability. TVDI during critical growth stage of crops was calculated from MODIS products: MODIS/
AQUA 8-day composite LST at 1km and 16-day composite vegetation index at 1km. Rs data were obtained
from Clouds and the Earth’s Radiant Energy System (CERES). The relationship between TVDI, Rs and yield
of wheat, corn and soybean was analyzed. High R2 values (0.55–0.82, depending on crop and region) were
found in different agro-climatic regions of Argentine Pampas. Validation results showed the suitability of
the model RMSE = 330–1300 kgha−1, Relative Error = 13–34%. However, results were significantly improved
considering the most important factor affecting yield. Rs proved to be important for winter crops in humid
areas, where incoming radiation can be a limiting factor. In semi-arid regions, soils with low water retention
capacity and summer crops, crop water stress showed the best results. Overall, results reflected that the pro-
posed approach is suitable for crop yield forecasting at regional scale several weeks previous to harvest.

© 2018.

1. Introduction

It is expected that the world total population could reach 9.15 bil-
lion by 2050, which will impact on world agriculture (Alexandratos
and Bruinsma, 2012; Global Harvest Initiative, 2014). In this context,
it is crucial not only to increase agriculture production for food secu-
rity and energy, but also to ensure environmentally sustainable sys-
tems. Also, growth in crop production will mainly come from yield in-
creases rather than from arable land expansion and increases in crop-
ping intensity. Thus, understanding the factors that affect crop yield
should be important to face future crop production fluctuations due to
global climate change, water demand and soil limitations.

Although world irrigated areas have been increasing in the last
decades, cultivated areas are highly dominated by rainfed crops
(Alexandratos and Bruinsma, 2012). In such systems, soil water avail-
ability is frequently the main factor for maintaining crop productiv-
ity (Holzman and Rivas, 2016; Tadesse et al., 2015). Soil moisture
shows high spatial and temporal fluctuations caused by a wide range
of factors like topography, rainfall, groundwater level and soil type.
Remotely sensed information plays an important role in vegetation
drought monitoring given the periodic coverage allowing continuous

⁎ Corresponding author at: IHLLA, Rep. Italia 780, Azul B7300, Argentina.
Email address: mauroh@faa.unicen.edu.ar (M.E. Holzman)

measurements at different scales. Thus, cost-effective systems that
provide early warning risk reduction in crop productivity during ex-
treme events (e.g. drought and water excess) are highly valuable.

Over the last years, different studies have investigated the relation-
ship between crop indices (e.g. vegetation indices, leaf area index),
soil moisture or evapotranspiration and crop yield (Anderson et al.,
2016; Holzman et al., 2014a; Holzman and Rivas, 2016; Leroux et al.,
2016; Mladenova et al., 2017; Wu et al., 2014). Overall, vegetation-re-
lated attributes and indices are based mainly on spectral reflectance
properties as indicators of vegetation health, status and aboveground
biomass (Mladenova et al., 2017). Soil moisture and evapotranspi-
ration methods are based mainly on temperature/energy balance ap-
proaches, estimating land surface temperature (LST) from thermal in-
frared (Mallick et al., 2009; Wagle et al., 2017) or microwave bands
(Liu et al., 2017). Hence, LST is used as a proxy of latent heat flux
and root zone soil water availability (Holzman et al., 2014b; Rivas and
Caselles, 2004).

Thermal/reflectance remote sensing methods have been proved to
be effective in detecting drought and vegetation production. Wu et
al. (2014) evaluated a model based on enhanced vegetation index
(EVI), LST from MODIS and radiation data from the National Cen-
ter for Environmental Prediction (NCEP). That model provided better
results of gross primary production (GPP) than the standard MODIS
GPP product for forest and non-forest areas. In Brazil, Anderson et
al. (2016) found strong correlations between corn, soybean and cot

https://doi.org/10.1016/j.isprsjprs.2018.03.014
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ton yield and the Evaporative Stress Index computed from LST and
leaf area index (LAI) data from MODIS. In the Sahelian region,
Leroux et al. (2016) reported correlation (r = 0.59) between LST and
NDVI from MODIS and simulated pearl millet. Also, Mladenova et al.
(2017) showed that evapotranspiration and soil moisture indices can
provide better information for estimating corn and soybean yields than
vegetation indices, given the conservative characteristic of those in-
dices as indicators of water stress. In Holzman et al. (2014a), Holzman
and Rivas (2016) we analyzed the capability of the Temperature Veg-
etation Dryness Index (TVDI) computed from LST and EVI from
MODIS to estimate wheat, soybean and corn yield in the Argentine
Pampas. Results showed that TVDI during the critical growth stage is
a suitable indicator of crop water stress and the impact on crop yield
at regional scale (R2 ≥ 0.70). Also, in Argentina Sayago et al. (2017)
compared the TVDI from Landsat with indicators of soybean water
stress.

Although these studies have proven the extensive analysis of ther-
mal and reflectance data as crop water stress indicators, it should be
noted that solar radiation could be a limiting factor for crop produc-
tion in areas with persistent cloud cover (e.g. humid and sub-humid
regions). Solar radiation influences the photosynthetically active radi-
ation absorbed by canopy and then, vegetation production (Monteith,
1977). In addition, Xin et al. (2016) concluded that the partitioning of
diffuse and direct solar radiation should be considered for modeling
production on a daily or shorter basis. Argentina is one of the main
grain exporters, especially corn, wheat and soybean (Argentina is the
third producer of soybean with 40–56 million tonnes per year), and the
production comes mainly from the Argentine Pampas. The works car-
ried out in this region have been focused mainly on crop water stress
and the limiting effect of incoming solar radiation still needs to be ad-
dressed. The aim of this work is to evaluate the combination of a soil
water availability indicator through TVDI and incoming solar radia-
tion to estimate spatially corn, wheat and soybean yield prior to har-
vest in the Argentine Pampas. Thus, this study shows a novel approach
that also considers the effect of solar radiation on crop yield.

2. Background

Thermal remote sensing methods that can provide estimates of wa-
ter status in soil-plant system are based on principles of energy con-
servation through the surface energy balance equation:

where Rn is the net radiation, LE is the latent heat flux (evapo-
transpiration), H is the sensible heat flux and G is the soil heat flux
(G ≈ 0 over maximum vegetation cover). The H and LE terms are dif-
ficult to calculate from remotely sensed data and can be estimated us-
ing models of different complexity (Wagle et al., 2017). However,
LST has been widely used as an indicator of H. The incoming so-
lar radiation (Rs) is the main radiative variable determining the Rn
and LE. Aerodynamic effects influence LE and H. Over vegetated ar-
eas, with a given available energy incident at surface (Rn-G), the dis-
tribution of solar radiation into H and LE depends mainly on stom-
atal resistance to respiration (Holzman and Rivas, 2016; Rivas and
Caselles, 2004). Such stomatal resistance is strongly influenced by
root zone soil water availability (Kurc and Small, 2004), and de-
termines the coupled water and carbon fluxes with the atmosphere.
Thus, LST is a simple proxy of root zone soil water availability and
the impact of these conditions on crop productivity (Bhattacharya
et al., 2011; Holzman et al., 2014a). On the other hand, vegetation
indices reflect the amount of vegetation and the photosynthetic ca-
pacity. They have been widely applied to monitor vegetation water

stress, although they reflect drought effects in advanced stage
(Farquhar and Sharkey, 1982).

In Holzman et al. (2014a), Holzman and Rivas (2016) a model to
estimate crop water stress and yield was evaluated in the Argentine
Pampas. The model considers only limitations to yield due to soil wa-
ter availability:

where Yr is the actual crop yield, TVDIcum is the cumulative TVDI
during crop critical growth stage, C1, C2 and C3 are coefficients of re-
gression between TVDI and yield depending on agro-climatic regions
(Holzman and Rivas, 2016). TVDI is based on the negative correlation
between LST and EVI (Sandholt et al., 2002):

where LST is the observed surface temperature at a given pixel,
LSTmin is the minimum temperature (maximum LE) for a certain re-
gion. LSTmax is the maximum temperature for a given EVI in the
LST/EVI scatterplot of a region, calculated as a linear fit to EVI
(LSTmax = aEVI + b). The a and b parameters are the intercept and
slope of linear adjustment of LSTmax. This index takes values between
0 and 1 indicating maximum and minimum soil water availability, re-
spectively.

The TVDI is based on the LST/vegetation index (VI) triangular
space (Sandholt et al., 2002), which has been used in several works to
monitor vegetation water stress (e.g. Holzman and Rivas, 2016; Nutini
et al., 2014). Meteorological data are not required for its calculation,
although it is an integrative index that takes into account the main sur-
face-atmosphere processes of the surface energy balance and the pho-
tosynthetic rate of vegetated areas. Fractional vegetation cover, sensed
through VI, determines the amount of vegetation visible to the sen-
sor, which will affect the spatially integrated LST. Evapotranspiration
mainly determines the LST through the energy balance of the surface.
Incident radiation is one of the main drivers of LST and also affects
the stomatal resistance to transpiration (Sandholt et al., 2002). Atmos-
pheric forcing controls the flux of heat from surface to the atmos-
phere, and hence, the LST. Also, surface roughness and mixing level
influence the heat conductivity into the atmosphere and the LST/VI
space (Nemani and Running, 1997). In spite of the multiple interacting
processes, root zone soil moisture is a key variable determining crop
water stress and the mechanisms involved.

However, possible error sources in estimation of TVDI should be
considered:

(1) LSTmax should be obtained taking into account pixels with min-
imum (theoretically, zero) evapotranspiration (transpiration from
vegetation and evaporation from bare soil), with LST reaching
a physical maximum when no evaporative cooling occurs. Con-
versely, LSTmin should reflect potential evapotranspiration over
vegetated surfaces, where maximum evaporative cooling occurs.
These model parameters have to be estimated on the basis of LST/
VI space of a region with uniform atmospheric forcing. Otherwise,
the sensitivity of the method decreases and it is not useful to de-
tect crop water scarcity.

(2) The triangular shape is evident if different conditions of frac-
tional vegetation and soil moisture are taken into account and
if medium resolution images are used (e.g. 250m–1km). Other-
wise, the LSTmax and LSTmin can be underestimated and overesti

(1)

(2)

(3)
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mated, respectively. On the other hand, these resolutions allow
considering large areas and hence, the probability of local parame-
terization is minimized.

(3) Cloud cover restricts the calculation of TVDI because of fluctua-
tions in net radiation or the lack of data.

Using this model we found a significant yield loss (wheat, soybean
and corn) in the Argentine Pampas. Also, yield loss due to water ex-
cess was evident, although this point needs more analysis than has cur-
rently been done.

Given that evapotranspiration largely controls crop productivity, a
more generalized model that considers water deficit and excess can be
proposed:

where SM is a factor that considers root zone soil moisture. ETp is
mainly controlled by the available energy (Bhattacharya et al., 2011;
Stisen et al., 2008) and represents the radiative factor. Thus, ETp is
proportional to Rs:

where Rsa is the incoming solar radiation at surface in all-sky condi-
tions and Rsmax is the theoretical incoming clear-sky solar radiation
(Carmona et al., 2014, 2017).

In Holzman et al. (2014b) we showed that TVDI is suitable to eval-
uate root zone soil moisture over cultivated areas, whereby SM factor
can be expressed in function of such index. Thus, considering Eqs. (4)
and (5), a new approach considering yield loss due to limited soil wa-
ter and incoming solar radiation can be expressed as:

where CC expresses the attenuation of solar radiation due to cloud

cover. To obtain yield estimates (e.g. kgha−1), this model should be
calibrated analyzing the relationship between TVDI, CC and field data
of yield at regional or landscape scales during normal, humid and dry
periods. This model considers the coupled effect of water availability
and Rs on the final crop yield. The amount of absorbed solar radia-
tion determines the amount of energy available and crop growth rate
and, also influences the atmospheric evaporative demand. On the other
hand, water scarcity (and consequently high TVDI) influences the wa-
ter and carbon fluxes with the atmosphere. This condition may shorten
the growing period determining the effective amount of radiation cap-
tured by the crop, which in turn reduces the final yield. In addition,
water excess may be associated with waterlogging, reduced drainage,
reduction of total root and canopy development (low intercepted solar
radiation).

3. Study area and data sets

3.1. Agro-climatic regions

The Argentine Pampas is a large plain (with slopes of less than
1%) covering more than 50 million hectares of land suitable for crop
production and livestock raising and is characterized by a subhumid
temperate climate. Argiudoll is the main soil great group with organic
matter content of the A horizon varying approximately between 2%
and 5% (Holzman et al., 2017). The land cover of this region corre-
sponds mainly to rainfed crops and a mosaic of cropland and vegeta-
tion (grassland, shrubland, forest) (Arino et al., 2008). Cultivated ar-
eas are highly dominated by rainfed crops, being soybean, corn and
wheat the most important. Rainfall decreases from the eastern humid
to the western semi-arid areas. Also, the interannual variability de-
termines occasional droughts and floods, producing noticeable crop
yield fluctuations (Holzman et al., 2014a). The joint assessment of
SM and radiative factors to estimate crop yield was carried out in
four agro-climatic regions (Fig. 1 and Table 1). Together with North-
ern Hills, Endorreic Pampas is the most productive region, given the
high organic matter content of soils (≈3.5–5%) and abundant rain-
fall (occasional water deficit occurs during summer months and wa-
ter excess during winter and autumn, overall in Northern hills). Also,
Northern Hills is characterized by soils with high water retention ca-
pacity. On the other hand, Sandy Pampas has sporadic limitations for

Fig. 1. The study area, the four analyzed agro-climatic regions of Argentine Pampas and meteorological stations. Rectangles show the areas used for LSTmin and LSTmax calculation
(EVI image, October 2010).

(4)

(5)

(6)
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Table 1
Characterization of the four analyzed regions.

Agro-climatic zones Dominant soil type Mean annual temperature Main crop (summer/winter) R/ETp April–Sepa R/ETp Oct–Marcha R/ETp Annuala

Endorreic Pampas Hapludoll and Haplustol 18°C Soybean/wheat 0.60 0.80 0.75
Sandy Pampas Udipsament 18°C Soybean/wheat 0.93 0.85 0.87
Northern Hills Typic Argiudoll 16°C Soybean/wheat 1.32 0.83 0.96
Semi-arid Plains Haplustoll 20°C Sunflower/wheat 0.69 0.81 0.78

a R/ETp = rainfall (mm)/potential evapotranspiration (mm). Meteorological stations considered for the analysis: Endorreic Pampas: Laboulaye (63°22′W; 34°08′S); Sandy Pampas:
Pehuajó (61°54′W; 35°52′S); Northern Hills: Tandil (59°14′W; 37°15′S); Semi-arid Plains: General Pico (63°45′W; 35°42′S). Period: 1970–2013 (data source: Servicio
Meteorológico Nacional and Ministerio de Agroindustria).

crops due to low water retention capacity. In semi-arid Plains crop
yield reduction is common due to water deficit (December-February).

3.2. Satellite data

The SM factor of Eq. (4) was estimated as a function of monthly
TVDI. TVDI was calculated for the critical growth stage and dom-
inant crops in each region using LST and EVI data from MODIS/
AQUA. For each month, four 8-day composite LST, version 5, 1km
spatial resolution (MYD11A25) and two 16-day composite vegeta-
tion indices, version 5, 1 km spatial resolution (MYD13A25) were
averaged. In terms of the spatial resolution, in Holzman and Rivas
(2016) we found that 1km is suitable to monitor crops in most of Ar-
gentine Pampas, given the dominant monoculture with plot size ≈ 100
has. AQUA data were used to consider the period of maximum at-
mospheric evaporative demand during the day (2:00–3:00 PM). Thus,
changes in LST should be mainly caused by soil water availabil-
ity. Five campaigns were considered to include different soil water
and climatic conditions: drought (2007–2008), normal (2009–2010,
2010–2011, 2014–2015), and humid (2002–2003).

TVDI is based on semi-empirical interpretation of the LST and
vegetation indices relationship. It was obtained defining LSTmax and
LSTmin from the LST-EVI monthly triangular space (Fig. 2). As stated
in previous works (Holzman et al., 2014a; Mallick et al., 2009;
Sandholt et al., 2002), a wide range of soil water and vegetation
cover conditions is needed to determine the TVDI parameters.

LSTmax was obtained in semi-arid region to ensure that this edge
reflects minimum soil moisture and evapotranspiration (Fig. 1). “a”
and “b” parameters of LSTmax were estimated using the method of
least squares (significance level of 5%) extracting points with maxi-
mum LST for different EVI intervals. To avoid the seasonal influence
on these parameters, the extreme LSTmax (maximum slope and inter-
cept) was defined comparing monthly “a” and “b” parameters (Fig.
2). Thus, this observed edge is as closest as possible to the theoreti-
cal dry edge that shows complete stomatal closure, zero water avail-
ability and evapotranspiration (Stisen et al., 2008). LSTmin was calcu-
lated from LST-EVI scatterplot of humid area and was considered as a
horizontal line parallel to the EVI axis by averaging points with min-
imum LST for different EVI values. The minimum monthly LSTmin
was considered as the extreme edge representing potential evapotran-
spiration (Fig. 2). Finally, comparable monthly TVDI was calculated
using these extreme edges.

The radiative factor of Eq. (5) was estimated from the “CERES”
(Clouds and the Earth's Radiant Energy System) data, which are satel-
lite instruments of the NASA's Earth Observing System (EOS) that
measure both solar-reflected and Earth-emitted radiation from the
top of the atmosphere (TOA) to the Earth's surface. These data are
combined with multiple source data (e.g. MODIS, VIIRS and geo-
stationary satellites) to generate different products, including surface
fluxes. The CERES instrument provides sampling at four local times:
0130, 1030, 1330, and 2230 at the Equator. This information can
be computed at daily and monthly scales. Monthly Ed3A of

Fig. 2. Scheme of triangular LST/EVI scatter plot. Extreme LSTmin (maximum evapotranspiration) and LSTmax (minimum evapotranspiration) used to compute TVDI are included.
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CERES_SYN1deg product data were used (http://ceres.larc.nasa.gov/
), which provides downward shortwave radiation data on clear (Rsmax
of Eq. (5)) and all sky (Rsa of Eq. (5)) conditions (Synoptic Radiative
Fluxes and Clouds) at 1 degree lat/long spatial resolution (Smith et al.,
2011). Finally, CC (Eq. (6)) was estimated as a function of downward
shortwave radiation on clear and all sky conditions.

3.3. Crop yield data

Official statistics of crop yield (kg ha−1) in Argentina are avail-
able at county level. For each season of the study period, yield data
of wheat, soybean and corn were extracted. Given that soil and cli-
mate type affect crop yield (Holzapfel et al., 2009; Holzman and
Rivas, 2016), regression adjustments between remotely sensed data
and yield of dominant crops were analyzed in each agro-climatic re-
gion. Table 2 shows the analyzed counties. Based on EVI images
of MODIS/AQUA 16-day composite EVI at 250m spatial resolution
(MYD13Q1), nonagricultural lands were removed (water bodies and

Table 2
Counties evaluated for crop yield adjustments (A) and validation (V).

Agro-climatic
region County

Central coordinates
(lat/long)

Total area
(km2)

Cultivated
area (%)

Endorreic
Pampas

General Roca
(A)

64°20′W; 34°33′S 14,890 77

General Villegas
(A, V)

62°58′W; 34°47′S 7345 84

General López
(A, V)

61°47′W; 33°49′S 15,950 87

Roque Saenz
Peña (A, V)

63°22′W; 33°58′S 9418 82

Juárez Celman
(V)

63°32′W; 33°09′S 7630 96

Sandy
Pampas

Carlos Casares
(A)

61°20′W; 35°45′S 2540 85

Carlos Tejedor
(A)

62°25′W; 35°22′S 3919 68

Pellegrini (A) 63°13′W; 36°15′S 1885 88
General
Viamonte (A,
V)

61°01′W; 34°59′S 2160 88

25 de Mayo (A,
V)

60°14′W; 35°29′S 4780 85

Tres Lomas (A,
V)

62°51′W; 36°29′S 1260 95

General Arenales
(V)

60°41′W; 34°18′S 1476 80

Lincoln (V) 61°42′W; 35°03′S 5760 91
Pehuajó (V) 61°57′W; 35°53′S 4570 71
Rivadavia (V) 63°06′W; 35°35′S 4010 98
9 de Julio (V) 60°56′W; 35°30′S 4315 71
Ameghino (V) 62°24′W; 34°52′S 1840 68
Hipólito
Yrigoyen (V)

62°23′W; 34°55′S 1650 76

Trenque Lauquen
(V)

62°39′W; 36°03′S 5530 78

Northern
Hills

Azul (A, V) 59°53′W; 37°02′S 6707 44

Tandil (A, V) 59°14′W; 37°18′S 5015 50
Olavarría (A, V) 60°37′W; 36°51′S 7940 48
Balcarce (A, V) 58°25′W; 37°43′S 4200 48
Benito Juárez
(V)

59°51′W; 37°10′S 5490 56

Semi-arid
Plains

Trenel (A, V) 64°10′W; 35°34′S 1554 73

Capital (A, V) 64°08′W; 36°30′S 1775 92
Atreucó (A, V) 63°45′W; 37°03′S 3420 55
Catriló (A, V) 63°39′W; 36°36′S 2248 93
Realicó (A, V) 64°11′W; 35°12′S 1920 95
Conelo (V) 64°30′W; 36°02′S 6170 35

natural grassland) from the analysis. The cultivated pixels were aver-
aged to produce estimates of TVDI at county level.

Several authors reported that crop status during critical growth
stage (generally flowering, heading, milking or grain filling) is de-
cisive to estimate yield prior to harvest (Anderson et al., 2016;
Bhattacharya et al., 2011; Holzman et al., 2014a; Mkhabela et al.,
2005). Also, that stage coincides with maximum vegetation cover and
hence, minimum background effect of soil on TVDI. In this stage
TVDI signal comes mainly from vegetation transpiration and photo-
synthetic rate. Based on studies of the crops phenology, (Oficina de
Riesgo Agropecuario-MAGyP-Argentina, 2017) stated that this stage
can comprise from October to February, depending on crop and re-
gion. Considering the dataset used in the TVDI-Rs-yield adjustments,
a comparison between monthly TVDI-Rs and yields of each crop
was carried out to define more precisely the critical growth months.
Thus, the months with the highest coefficient of determination in
each agro-climatic region were selected as critical stage (Holzman and
Rivas, 2016). Then, yield data (dates or counties not used in the ad-
justments) were compared with yield estimated by the model to vali-
date the ability of the TVDI-Rs model to estimate crop yield (Table 2).
Validation parameters were: root mean square error (RMSE), relative
error to average yield (RE) and index of agreement d (Willmot, 1981).

4. Results and discussion

4.1. Relationship between TVDI, solar radiation and yield

Fig. 3 shows the relationship between TVDI, TVDI-solar radia-
tion and wheat yield in Northern Hills and Semi-arid Plains. After the
TVDI-Rs-yield comparison analysis, it was found that November-De-
cember and October-November were the critical months for Northern
Hills and Semi-arid Plains, respectively. Harvest usually occurs in De-
cember-January. Regarding the response of yield to TVDI, results are
consistent with the previous work shown in Holzman et al. (2014a,b),
where a generalized model was discussed. In both areas a quadratic
function represents the yield variability, reflecting that yield decreases
due to water deficit and excess with maximum yield for intermediate
cumulative TVDI (≈0.8 in Northern Hills and 1.2 in Semi-arid Plains).
It should be noted that yield losses due to water excess (minimum
and stable TVDI values would indicate water excess in flat lands as in
the Argentine Pampas) are more important in Northern Hills (humid
region) with values about 75% with respect to the maximum yield.
Adjustment for Semi-arid Plains shows the low productivity of the
region mainly due to poorer soils (pedogenetic development and or-
ganic matter content), lower technology adoption and fertilization. On
the other hand, although yield estimation through vegetation indices
has been extensively analyzed, the TVDI model shows better perfor-
mance than works which analyze only vegetation indices (Johnson,
2016; Mkhabela et al., 2011; Moriondo et al., 2007; Wall et al., 2008),
reflecting that the combination with LST provides information about
surface energy balance and improves the results.

In Northern Hills, the incorporation of solar radiation data im-
proves the coefficient of determination (Fig. 3a). The validation re-
sults (Table 3) in this region were better than those obtained with
TVDI. Also, in USA and Europe (Wu et al., 2014) showed the po-
tential of a simple greenness and radiation model, driven by EVI,
LST and global coarse resolution radiation data, to predict 8-day gross
primary production in cultivated areas. The critical growth stage of
wheat in humid and sub-humid areas of the Argentine Pampas cov-
ers months with occasional soil water excess, given that during win-
ter extensive areas are represented by bare soil and mainly fallow (es-
pecially under direct seeding and periods between summer crops har
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Fig. 3. Adjustment models of wheat yield as a function of TVDI and TVDI-solar radiation in (a) Northern Hills, (b) Semi-arid Plains.

Table 3
Validation parameters of models using TVDI and TVDI-solar radiation data for the four
analyzed regions.

Crop Agro-climatic region
Validation
parameters TVDI

TVDI
(1-CC)

Wheat Northern Hills n 10
RMSE 650 330
RE 0.17 0.15
d 0.72 0.81

Semi-arid Plains n 15
RMSE 425 440
RE 0.21 0.22
d 0.88 0.85

Soybean Sandy Pampas n 21
RMSE 460 825
RE 0.16 0.28
d 0.79 0.37

Endorreic Pampas n 17
RMSE 420 430
RE 0.15 0.15
d 0.79 0.73

Corn Sandy Pampas and Endorreic
Pampas

n 48

RMSE 1010 1000
RE 0.13 0.13
d 0.80 0.81

Northern Hills n 10
RMSE 880 990
RE 0.14 0.16
d 0.84 0.79

Semi-arid Plains n 14
RMSE 620 1300
RE 0.16 0.34
d 0.67 0.44

vest and winter crops sowing). Thus, soil water losses come mainly
from surface soil evaporation. The low atmospheric evaporative de-
mand, mainly explained by reduced incoming solar radiation, favors
infiltration and then water excess. Conversely, in Semi-arid region
the incorporation of the radiative factor did not produce improve-
ments (Fig. 3b and Table 3). In this region the most important limit

ing variable is taken into account through the soil moisture factor,
which reflects different processes such as low soil water retention,
high atmospheric evaporative demand and highly variable rainfall.

These results are in agreement with (Lollato and Edwards, 2015)
about that precipitation during critical stage would be the most im-
portant regulator of wheat yield and solar radiation a fine controller
of yield in dryland. Lollato et al. (2017) reported that cumulative pre-
cipitation accounted for the largest proportion of variation in rain-
fed wheat in U.S southern Great Plains. They found that water sup-
ply becomes an important determinant of dryland wheat yield in the
west and west-central regions. Water scarcity and high temperature
can accelerate wheat senescence and decrease grain yield (Asseng
et al., 2011). Also, Barkley et al. (2014) proposed that rainfall dis-
tribution is often the most limiting factor for wheat productivity in
Kansas. Conversely, Lollato et al. (2017) noted that in the east re-
gion, characterized by greater cumulative precipitation, solar radia-
tion becomes a stronger determinant of grain yield. In such cases,
their results indicated a positive effect of solar radiation. Our results
showed that daily average Rs (2001–2015) varied between 231 and
328w m−2 day−1, with minimum values during October and February
in Northern Hills and maximum values during December in Semi-arid
Plains (considering only October-February). The joint effect of water
excess and Rs could explain the yield loss in Northern Hills in hu-
mid periods. The amount of absorbed solar radiation determines the
amount of energy available for crop growth, but also water excess can
limit the canopy development and hence, the intercepted solar radia-
tion. Indeed, Menéndez and Satorre (2007) pointed out that future hy-
pothetical scenarios involving radiation reduction suggest that grain
number would be the most affected component of wheat grain yield in
the Argentine Pampas.

The adjustments between soil moisture, radiative factors and soy-
bean yield in Sandy and Endorreic Pampas are shown in Fig. 4. Jan-
uary-February were found as the critical months and usually harvest
date is March-April. In both regions the TVDI and yield are strongly
correlated with linear adjustments and R2 values consistent with pre-
vious works that analyze LST, NDVI, rainfall estimates or crop water
stress indices (Holzman et al., 2014a; Marti et al., 2007; Mkhabela et
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Fig. 4. Adjustment models of soybean yield as a function of TVDI and TVDI-solar radiation in (a) Sandy Pampas, (b) Endorreic Pampas.

al., 2005; O’Shaughnessy et al., 2011; Rhee et al., 2010). The linear
adjustments considering TVDI were similar in both regions, show-
ing that yield losses at regional scale are mainly explained by soil
water deficit. Although the inclusion of the radiative factor increased
slightly the R2 in Sandy Pampas (Fig. 4a), the validation parameters
(Table 3) show a poorer performance than the one obtained by TVDI
model. These results suggest that soil moisture is the decisive factor
determining soybean yield in these regions. These findings are consis-
tent with (Johnson, 2014), that reported positive and negative correla-
tion between soybean yield and MODIS NDVI (250 m) and daytime
LST (1 km), respectively (correlation coefficient between 0.5 and 0.7).
Also, in Brazil Gusso et al. (2014) found high correlation (R2 = 0.82)
between canopy LST during grain filling and soybean yield.

On the other hand, Xin et al. (2016) reported a non-linear response
of leaf photosynthesis of soybean and corn to absorption of direct and
diffuse radiation. They proposed that during clear days, the photosyn-
thetic rates of sunlit leaves are often near light saturation due to direct
beam components. On cloudy days, the photosynthetic rates of canopy
leaves are near linearly related to radiation absorption. They measured
light use efficiency 1.50 and 1.70 times higher during cloudy days
than clear-sky days. Although they conclude that differences between
these conditions are almost insignificant on an 8-day basis, the cumu-
lative process could contribute to compensate lower incoming radia-
tion. This may explain the low influence of radiation attenuation in
Sandy and Endorreic Pampas on yield. This point needs further de-
tailed analyses for the study area.

Fig. 5 shows the adjustments between TVDI, solar radiation and
corn yield in three study regions. Considering the similarity between
adjustments for Sandy and Endorreic Pampas, these regions were
jointly analyzed. In both regions, January and February were the crit-
ical months for corn yield (Fig. 5a). About soil moisture, the linear
adjustment indicates that water deficit is the regional limiting factor
causing yield losses up to 60% (2007–2008 campaign) in relation to
the maximum yield. Adjustment and validation parameters indicate
that the inclusion of radiative factor does not produce significant im-
provements of the model, with an estimation error about 13% in rela

tion to the average yield (Table 3). These results are comparable with
the ones reported in Holzman and Rivas (2016) using TVDI. In North-
ern Hills and Semi-arid Plains, the critical month was December. Dif-
ferences are noticeable in relation to the lower production capacity in
the semi-arid area (4500 kgha−1 vs 8000kgha−1) and higher TVDI val-
ues (0.85 vs 0.61) (Fig. 5b and c). Linear adjustment indicates that
water deficit is crucial in the semi-arid region. The quadratic model
shows that, although corn is a summer crop, the effect of water excess
is noticeable in Northern Hills producing around 40% of yield loss
with respect to optimum values.

In Northern Hills, the radiative factor produces improvements
(R2 = 0.82) in relation to the use of TVDI alone (R2 = 0.72) (Fig. 5b).
However, validation parameters do not show the advantage of us-
ing solar radiation data in this region. These results may indicate
that limitation for corn yield during humid campaigns (2002–2003)
is due to water excess rather than due to reduction of incoming so-
lar radiation. In this region, the source of root zone soil moisture
excess in spring-early summer months is frequently explained by
shallow groundwater level (1m depth during early December 2002,
36°46′00.44″S; 59°52′51.57″W) (Varni et al., 1999). In this sense, pre-
vious works have shown that shallow water table can significantly re-
duce corn yield (Kanwar et al., 1988). Shrestha et al. (2017) found im-
portant effects of flood on corn yield in the major corn production re-
gion of US, with linear relation between the NDVI and yield. Other
works explained the processes related to water excess and corn yield
loss: inhibition of plants to retain nutrition required for its develop-
ment, reduction of total root volume and air exchange between soil
and atmosphere, less transport of water and nutrients through the roots
to the shoot (Sakamoto et al., 2011; Wesseling, 1974). In Semi-arid
Plains, the inclusion of the radiative factor deteriorates the results
(Fig. 5c and Table 3), indicating that the incorporation of root zone
soil moisture deficit provides good results, even in comparison with
more complex approaches based on remotely sensed data (Ines et al.,
2013; Xin et al., 2013). Also, the Rs was more uniform in Semi-arid
Plains than in the other analyzed regions, being less useful for yield
estimation. The lower performance of the model in Semi-arid Plains
may be explained by the effect of subpixel heterogeneity, given the
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Fig. 5. Adjustment models of corn yield as a function of TVDI and TVDI-solar radiation in (a) Sandy Pampas and Endorreic Pampas, (b) Northern Hills, (c) Semi-arid Plains.

sparse cultivated fields and the coexistence of different crops
(Atzberger and Rembold, 2013). Finally, considering that harvest usu-
ally occurs in late-February in Semi-arid Plains and late-March in
Northern Hills, the model gives corn yield estimates 2–3months prior
to harvest.

According to the adjustments obtained in the study area, a general
model depending on soil moisture and incoming solar radiation can
be discussed (Fig. 6). This model can be proposed as a quadratic ap-
proach with three domains:

– A: is defined by optimum soil moisture and incoming solar radia-
tion conditions. Crops are grown under non-limiting conditions, in-
cluding no limited soil water (the actual evapotranspiration meet-
ing crops requirements) and solar radiation (the rate of photosyn-
thesis is close to the photosynthetic capacity), and all biotic stresses
properly managed (Van Ittersum et al., 2013). For example, for
wheat crop in humid region as Northern Hills, monthly CC val-
ues around 13–23% and TVDI 0.30–0.45 during critical stage are
representative of this domain. According to a validation of TVDI
carried out in Northern Hills, these values correspond to ap
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Fig. 6. General model for yield estimation based on TVDI and incoming solar radiation.

proximately 18–25% relative soil moisture at 40cm depth
(Holzman et al., 2014a,b). In Semi-arid Plains, these values are:
CC ≈ 12–20% and TVDI ≈ 0.55–0.65. It should be noted that these
values are indicative, given that the final yield will be a combina-
tion of SM and radiative factors. This is in agreement with (Lollato
et al., 2017), who found in U.S. Great Plains that the highest rainfed
wheat yield was achieved with abundant cumulative solar radiation
and precipitation and intermediate/cool temperature. This effect al-
lows extend crop cycle and grain filling periods. It should be noted
that optimum yield can be variable depending on different factors
such as genotype improvement, technological development, fertil-
ization and irrigation.

– B: yield loss increases mainly due to water excess and, secondly,
owing to incoming solar radiation shortage. This can be especially
expected in humid areas and winter crops. In these environments,
waterlogging during wetter years can be a reason of yield loss.
Also, a reduced drainage due to dense subsoils (e.g. Bt horizon)
can produce agricultural chemicals accumulation and generate algal
blooms and other toxicities (Passioura, 2006). However, it should
be noted the joint effect of soil moisture and solar radiation, given
that water excess limits the canopy development and hence, the in-
tercepted solar radiation. Passioura (2006) suggested that solar radi-
ation is an important limiting factor for wheat yield when cumula-
tive seasonal precipitation is higher than 500mm, as in the case of
humid region in our study area.

– C: yield loss is mainly explained by soil water deficit. This is ex-
pected in soils with low water retention capacity (e.g. sandy soils)
and summer crops. Under these conditions, crops may fail to fill
their grain adequately because of the low soil water content. They
may be exposed to the heat and aridity of late spring and sum-
mer (Richards, 1991). Passioura (2006) reported that water deficits
during critical stages can severely damage seed set through pollen
sterility or premature end grain filling. This author stated that wa-
ter deficits in maize can lead to lack of fertilization. In semi-arid
and arid environments, water lost by direct evaporation from the
soil can be important, especially during early stages of vegetative
phases, decreasing water availability for subsequent phases (e.g.
critical growth stages). Also, these environments are usually char-
acterized by highly variable rainfall. A preponderance of small falls
of rain can lead to large water losses by direct evaporation from
the soil. Conversely, heavy rain events can favor losses of wa-
ter by runoff. In sandy soils, water losses by soil evaporation and
drainage beyond the crop roots reach can be important. This process
is expected to be more noticeable in cases of soils with physical
limitations to deep root development (e.g. saline, sodic or dense
subsoils). In addition, water stress (and hence high canopy tem-
perature) frequently depresses yield by causing accelerated crop
development with the consequent shorter season and less cu

mulative radiation interception. In this case, crop yield could be
mainly explained by TVDI during the critical growth stage. For ex-
ample, a typical condition is represented by TVDI ≥ 0.65 (wheat and
corn) and TVDI ≥ 0.55 (soybean and corn), for Semi-arid Plains and
Sandy Pampas, respectively. The latter value corresponds to a soil
moisture content lower than 12% at 60cm depth (Holzman et al.,
2014b).

4.2. Estimating spatial crop yield variability

Based on TVDI and radiation model, maps of expected wheat and
soybean yield are presented as an example for Northern Hills and En-
dorreic Pampas, respectively (Fig. 7). We assumed that cultivated ar-
eas are represented by wheat and soybean, respectively, given that
in the study area masks of crop type are not currently available. On
the other hand, the CERES product was resampled to match up with
the 1km resolution of TVDI. Large spatial yield variability is notice-
able in both regions, with maximum yield coexisting next to minimum
yield. In Northern Hills, maximum yields are observed in most of the
area during normal periods (Fig. 7c). During the dry period, highest
yields are located on the southeast probably due to the oceanic influ-
ence (Fig. 7e). In Endorreic Pampas the model reflects an east–west
gradient consistent with rainfall and soil quality decreases westward.
Also, in this region maximum soybean yields are predominant in nor-
mal period (Fig. 7d). It should be noted that CERES product has 1
degree spatial resolution and incoming solar radiation is not as vari-
able as soil moisture. In this sense, the high yield spatial variability
is mainly explained by TVDI, which reflects depressions, soils with
limited water content and areas with vigorous vegetation cover where
evapotranspiration is high (Holzman et al., 2014a).

5. Conclusions

Argentina produces the 18% of global soybean production (≈53
million tonnes per year) and is the thirteenth wheat producer (≈14 mil-
lon tonnes per year). In addition, the Argentine Pampas is the most
productive region in Argentina (≈90% of total production). In this
work, a model based on remotely sensed incoming solar radiation and
proxy of root zone soil moisture to forecast wheat, soybean and corn
yield was evaluated in Argentine Pampas. This approach represents
a simplification of the functioning of soil-vegetation atmosphere sys-
tem and crop productivity according to water and energy availability.
TVDI from MODIS/Aqua EVI and LST was calculated as a soil mois-
ture proxy in the study area. Solar radiation data were obtained from
CERES product. Results indicate that solar radiation data is a signif-
icant variable for yield estimation in humid regions and winter crops.
In this case, the combination of the two variables provides improved
results in comparison with the model based solely on TVDI. On the
other hand, crop water stress is essential in semi-arid areas and sum-
mer crops, providing good results (RMSE = 400–1000kgha−1, depend-
ing on crop and region) and simplifying the method.

Although meteorological data are not required for TVDI calcula-
tion, its parameters should be adequately defined at large region level
with uniform atmospheric forcing. Also, the specific parameters of
TVDI-radiation-yield adjustments shown may vary in other regions,
depending on the prevalence of water deficit or excess. However, af-
ter a calibration process using reliable crop yield dataset, the general
TVDI-solar radiation proposed model can be spatially applicable in
other productive regions in the world (e.g. Ukraine, USA, Canada).
In case of poor ground data availability for calibration, the proposed
general model can be used to evaluate conditions of optimum pro-
ductivity and yield losses at regional/landscape scales as a part of
a drought/water excess monitoring system. In addition, information
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Fig. 7. Maps of estimated yield based on the TVDI-solar radiation model. Wheat in Northern Hills: (a) humid (2002–2003), (c) normal (2009–2010), (e) dry (2007–2008) periods.
Soybean in Endorreic Pampas: (b) humid (2002–2003), (d) normal (2009–2010), (f) dry (2007–2008) periods. White areas indicate no data due to cloud cover, water bodies or values
out of analyzed range.

about interannual variability of planting dates should be needed in
other regions to determine the critical growth stages of crops.

The results obtained are promising at regional scales, although fu-
ture studies can test the model at finer resolution (e.g. 250m). In this
sense, the sub-pixel heterogeneity could be a reason of the lower per-
formance in the semi-arid region with sparse cultivated areas and dif-
ferent crops. Also, crop types mask can improve the results and less

important crops could be analyzed. Nevertheless, the approach
showed good performance in Argentine Pampas (RE ≤ 13%), allow-
ing crop estimation 1–3months prior to harvest. Moreover, the results
obtained are comparable with those obtained by more complex meth-
ods based on remotely sensed data, which suggest the potential of this
approach as an early indicator of expected yield. Thus, the proposed
method can be useful for decision makers. Finally, this work is in
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agreement with global trends about crop yield estimation using easy
accessible data and products.
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