
Brief note
DOI 10.1007/s00158-004-0403-2
Struct Multidisc Optim 28, 221–227 (2004)

Structural shape optimisation using boundary elements
and the biological growth method

C. Wessel, A. Cisilino and B. Sensale

Abstract A numerical evolutionary procedure for
the structural optimisation for stress reduction of two-
dimensional structures is presented in this paper. The
proposed procedure couples the biological growth
method (BGM) with the boundary element method
(BEM). The boundary-only intrinsic characteristic of
BEM together with its accuracy in the boundary dis-
placement and stress solutions make BEM especially
attractive for solving shape-optimisation problems. Two
formulations of BEM are used in this work: the standard
for two-dimensional elastostatics for the stress analysis
and the dual reciprocity method (DRM), which is used
to model the swelling or shrinking of the material. Two
examples are analysed to illustrate the proposed method-
ology and to demonstrate its versatility and robustness.

Key words biological growth method, boundary elem-
ents method, dual reciprocity method, shape optimisa-
tion

1
Introduction

The failure of structures under service conditions fre-
quently takes place at highly stressed points. Therefore,
it is crucial for designers to avoid stress peaks in order
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1 Facultad de Ingenieŕıa, UniversidadAustral, Garay 125, Ciu-
dad Autónoma de Buenos Aires, Argentina
e-mail: cwessel@fi.mdp.edu.ar
2 Facultad de Ingenieŕıa, Universidad Nacional de Mar del
Plata – CONICET, Av. Juan B. Justo 4302 (7600) Mar del
Plata, Argentina
3 Instituto de Estructuras y Transporte, Facultad de Inge-
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to maximise a component service life, a fact that justifies
the importance given to the subject so far. The determin-
istic strategies for the solution of the structural optimi-
sation problems are, on the one hand, the mathematical
programming methods and, on the other, the optimality
criterion-based methods.
In the former, well-established mathematical tools are

used, like direct search (Trosset 1997), derivative-free
methods (Lucidi et al. 2002; Lewis et al. 2000) and gradi-
entless methods (Schnack 1988; Schnack et al. 1988; Iancu
and Schnack 1989; Schnack and Iancu 1989).
The latter, that is, optimality criterion-basedmethods,

take advantage of the knowledge on the physics and me-
chanics of the particular problem (Sauter et al. 1996),
providing a necessary condition for a minimum of the ob-
jective function. The physical and mechanical knowledge
put to use in optimality criterion-based methods is also
their principal drawback, as it limits their application to
certain definite areas.
Biological structures, such as bones and trees, provide

a simple example for shape optimisation, as they change
their contour to adapt to external loads while reducing
stress peaks. In this line, Mattheck (1990) introduced an
optimality criterion method called the biological growth
method (BGM), related to Schnack’s gradientlessmethod
(Iancu 1991; Schnack et al. 1988; Spörl 1985; Schnack
1978). Based on his observations in Nature, Mattheck
posits that biological structures always self-optimise their
geometry to attain a state of constant stress at part of
or the whole of the surface of the structure. The process
of self-optimisation is carried out through the swelling or
shrinking of the soft outermost layer of material, which
yields the levelling of local stresses.
Since the original work by Mattheck and Burkhardt

(1990) was published, some papers have appeared coup-
ling the BGM with the finite element method (FEM)
for structural shape optimisation (Chen and Tsai 1993;
Sauter 1993; Tekkaya and Güneri 1998). At the same
time, the boundary element method (BEM) has become
a popular alternative in structural shape optimisation
(Baron and Yang 1988; Kane and Saigal 1988; Mellings
and Aliabadi 1995) due to its accuracy in the bound-
ary displacement and stress solutions, as well as the
fact that remeshing is simpler for BEM than for FEM.
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These intrinsic characteristics of BEM, together with the
idea behind BGM that the swelling of the soft outer-
most layer of material governs the optimisation pro-
cess, make BEM especially attractive for solving shape-
optimisation problems using Mattheck’s approach. To
the authors’ knowledge, there is only one published pa-
per dedicated to coupling BGM and BEM, i.e., Cai et al.
(1998). However, in that work, the authors extended
the swelling of the material to the complete model do-
main, not only to the boundary layer as proposed by
Mattheck.
The swelling of the soft, thin, outermost layer of ma-

terial is modelled in the present work by using the so-
called dual reciprocity formulation of the BEM. The im-
plementation proposed in this work, then, makes use of
two BEM formulations: the standard for two-dimensional
elastostatics, which is used for the stress analysis of the
problem; and dual reciprocity method (DRM) to model
swelling. Both formulations are coupled in an evolution-
ary algorithm. Splines provide the model remeshing. The
algorithm is presented in this paper together with two ex-
amples that illustrate the methodology and demonstrate
its versatility and robustness.

2
The biological growth method

The biological growth method (BGM) was first intro-
duced by Mattheck (1990). Based on his observations of
nature (tree butts, branch joints, deer antlers, etc.), he
proposed that biological structures always self-optimise
their shapes according to natural external loads. He de-
fined optimum shape as the one that shows a state of
constant stress at part of or the whole of the surface of the
component. The process of self-optimisation consists in
the swelling or the shrinking of the soft, outermost layer
of material, following the law

ε̇v = k (σvm−σref) , (1)

where ε̇v is the volumetric swelling strain rate, which is
stated to be proportional to a driving function given by
the difference between von Mises stress (σvm) and a refer-
ence stress (σref), an expected value.
Equation (1) holds for each point in the optimisa-

tion domain. It simply expresses the fact that, for each
point, if the von Mises stress is bigger than the refer-
ence stress (σvm−σref > 0), the thin layer swells, while,
if the von Mises stress is lower than the reference stress
(σvm−σref < 0), the thin layer shrinks.
An elegant method to implement (1) is by means of

a thermal expansion, as described by Tekkaya and Güneri
(1998). After applying an Euler integration scheme to (1)
for a time span of ∆t, the volumetric swelling strain can
be expressed as

εv = k(σvm−σref)∆t (2)

Besides, the generalised Hooke’s law is given by

εx =
1

E
[σx−ν(σy+σz)]+αθ

εy =
1

E
[σy−ν(σx+σz)]+αθ

εy =
1

E
[σz−ν(σx+σy)]+αθ , (3)

where εx, εy and εy are the normal infinitesimal strain
components, σx, σy and σz are the normal components
of the Cauchy stress tensor, ν is the Poisson ratio, α is
the thermal expansion coefficient, E is the Young modu-
lus and θ is the temperature field. Now, if E is reduced
considerably in the optimisation domain, as proposed by
Mattheck, mechanical strains can be neglected even if the
boundary conditions of the real problem are kept, so that

εx ≈ εy ≈ εz ≈ αθ . (4)

If the thermal expansion is only defined to be nonzero in
the optimisation domain, then, in that particular zone,

εsw = αθ . (5)

Considering that both σvm and θ are functions of pos-
ition, the comparison of (2) and (5) gives

∆t⇔ α

k(σvm−σref)⇔ θ . (6)

Consequently, (1) can be expressed as

αθ = γk(σvm−σref) , (7)

where γ is a units conversion factor.
Special attention should be taken to choose suitable

values of σref. Otherwise, and as pointed out by Mattheck
and Moldenhauer (1990), the whole process of optimisa-
tion may not converge.

3
The boundary element method

In what follows, a brief description of the boundary elem-
ent method (BEM) is given in order to point out the dif-
ferent formulations used in this work. For further details
on BEM, the reader should refer to the books by Brebbia
and Dominguez (1992) and Partridge et al. (1992).

3.1
BEM for two-dimensional elasticity

The starting point of the formulation of BEM for two-
dimensional elasticity is the Navier equation,

Guj,kk+
G

1−2ν
uk,kj + bj = 0 , (8)
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where j, k denote Cartesian components, G is the shear
modulus, bj are the components of body forces and uk are
the displacements.
Following Brebbia and Dominguez (1992), the corres-

ponding boundary integral equation for a domain Ω(x)
confined by the boundary surface Γ (x) is

cilk(x
′)uik(x

′)+

∫

Γ

p∗lk(x
′, x)uk(x)dΓ (x) =

∫

Γ

u∗lk(x
′, x)pk(x)dΓ (x)+

∫

Ω

u∗lk(x
′, x)bk(x)dΩ(x) , (9)

where u∗lk(x
′, x) is the fundamental solution of (8) and

p∗lk(x
′, x) is its corresponding traction; uk and pk are the

displacements and tractions in the boundary Γ , respec-
tively, and clk(x

′) is a jump term related to boundary
geometry.
If there are no body forces present, (9) is reduced to

the boundary-only equation,

cilk(x
′)uik(x

′)+

∫

Γ

p∗lk(x
′, x)uk(x) =

∫

Γ

u∗lk(x
′, x)pk(x)dΓ (x) . (10)

The basic idea behind BEM is to solve (10) numerically.
To accomplish this, the model contour is discretized into
N elements, where displacements uk(x) and tractions
pk(x) are expressed in terms of the nodal values u

i
k and p

i
k

by means of isoparametric interpolation functions. This
process results in an algebraic system of equations from
which the unknown nodal values of uik and p

i
k can be re-

covered.
It should be noticed that (10) only involves integrals

on Γ (x). Consequently, a typical BEM formulation re-
quires merely a boundary discretization and no domain
discretization, the main advantage over FEM.

3.2
The dual reciprocity BEM (DRM)
for two-dimensional thermoelasticity

Thermal effects (as much as body forces) were initially
a restriction in the use of BEM, as they must be in-
cluded in the formulation by means of a domain integral
(see (9)), thus losing the method its original boundary-
only character. Many different approaches have been de-
veloped to overcome this problem, among which DRM
has become widely used. The basic idea behind this ap-
proach is to employ fundamental solutions and global ap-
proximation functions, as described in what follows.
Following Partridge and Sensale (1997), the effects

produced by changes in temperature θ in elastic bodies
can be represented by initial stresses σ0jk such that

σ0jk = χθδjk , (11)

where χ=−2G 1+ν1−2να, so that (9) becomes

cilk(x
′)uik(x

′)+

∫

Γ

p∗lk(x
′, x)uk(x)dΓ (x) =

∫

Γ

u∗lk(x
′, x)pk(x)dΓ (x)+

∫

Ω

χθ,k(x)u
∗
lk(x

′, x)dΩ(x)−

∫

Γ

χu∗lk(x
′, x)θ(x)nk(x)dΓ (x) . (12)

In DRM, changes in temperature θ(x) are expressed in
terms of known coordinate functions f j , which are also
temperature fields:

θ ≈
N+L+A∑
j=1

f jβj , (13)

where βj is a set of initially unknown coefficients,
N points are placed on the contour and L in the domain
and A augmentation functions are used to improve the
approximation.
Next, a particular solution, ûjmk, to (8) corresponding

to the generic function f j , is found. Then, replacing (13)
into (12) results in a boundary-only equation,

cilku
i
k+

∫

Γ

p∗lkukdΓ −

∫

Γ

u∗lk(pk−χθnk)dΓ =

N+L+A∑
j=1


cilkûijmk+

∫

Γ

p∗lkû
j
mkdΓ −

∫
u∗lk

(
p̂jmk−χf

jnmk

)
dΓ


βjm , (14)

where p̂jmk are the particular tractions corresponding to
particular displacement solutions ûjmk. The procedure for
numerical solution of (14) follows that described for (10).
The choice of approximation functions in (13) is some-

what arbitrary. Generally, a radial basis function is used,
such as r, r2, r3 or r2 log(r). These have shown to interpo-
late only in the neighbourhood of a particular point (local
behaviour), so that global functions are also needed. For
these last, terms in the Pascal triangle or global sine Pas-
cal triangle are often employed.

4
Implementation

The devised optimisation algorithm sticks to the follow-
ing sequence:

i. An appropriate BEM mesh is generated for a rea-
sonable initial design using quadratic isoparametric
elements. In addition to the boundary nodes, inter-
nal points are also set. These are evenly distributed
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Fig. 1 Square plate with a circular hole under biaxial tension: (a) Model geometry and dimensions; (b) Discretization of the
boundary element model: • boundary node, ◦ internal point (note the concentration of internal points in the optimization layer)

over the complete model domain and over a thin layer
along the optimisation boundary. Typically, 3–4 rows
of optimisation internal points are used for this pur-
pose (see Fig. 1).

ii. An appropriate stress reference value (σref) is chosen.
iii. A stress analysis is performed using the elastic BEM
formulation described in Sect. 3.1. Von Mises stresses
are computed on the model boundary nodes and in-
ternal points.

iv. A thermal expansion analysis is performed using
DRM (described in Sect. 3.2), with a temperature
field θ given by (7). A nonzero temperature field is
specified only on the optimisation boundary nodes
and the internal points at the optimisation layer. This
computation supplies the displacements at the opti-
misation boundary.

v. The geometry of the optimisation domain is updated
using exponential spline interpolation. The spline
interpolation of the new positions of the boundary
nodes serves two purposes: to smooth the resultant
geometry in order to avoid local wrinkles, which could
act as artificial stress raisers; and to generate a good-
quality BEM discretization (boundary nodes and in-
ternal points) for the new geometry.

Steps iii–v are repeated until von Mises stresses are re-
duced to the reference value or design limitations restrain
further changes in the geometry.

5
Examples

5.1
Square plate with circular hole

This first example is that of a square plate with a circular,
centred hole with remote loads applied in both directions,

σx = 45MPa and σy = 22.5MPa (see Fig. 1). The aim of
the process is to optimise the shape of the hole (note the
thin layer of internal points parallel to the edge of the
hole). Due to symmetry conditions, only one quarter of
the problem is considered. The same problem was solved
by Tekkaya and Güneri (1998) using BGM and FEM.
Following their analysis, the reference stress was set to
σref = 40MPa (nominal von Mises stress in the plate far
from the hole). The adopted value for Young modulus was
525MPa.
The evolution of the normalised von Mises stresses

(σvm/σref) obtained in this work is plotted for each loop
in Fig. 2 as a function of the angle Θ (degrees) in the
quarter of the hole. Also included as a reference are the
results by Tekkaya and Güneri (1998) for the original
circular geometry. It can be observed that, for the ini-
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Fig. 2 Evolution of the normalized von Mises stresses along
the quarter of a hole
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tial geometry, the peak value corresponds to the ver-
tical edge (Θ = 0◦), while the minimum coincides with
the horizontal edge (Θ = 90◦), as the applied load in
the y-direction is half the applied load in the x-direction
(σx/σy = 2).
The optimum was achieved after five optimisation

loops, similar performance to that of Tekkaya and Güneri
(1998), who reached the optimal configuration after six
loops using FEM. For the optimum configuration, the
von Mises stresses are roughly uniform and equal to
70MPa. It is worth mentioning that Muskhelishvili (in
Savin 1961) analytically inferred that the minimum von
Mises stress attainable in an infinite plate with a circu-
lar hole under biaxial tension is σminimumvm = σx+σy, that
is, σminimumvm = 67.5MPa for this example. This theoret-
ical prediction is in very close agreement with the results
shown in Fig. 2.
The legend in Fig. 2 includes the quotients of max-

imum over minimum dimensions of the hole, a/b, ob-
tained after each loop. The value a/b = 2.00058 results
after completion of the optimisation process. It is worth
mentioning that Savin (1961) analytically predicted that,
for the case of an infinite plate under biaxial tension, the
circular hole would become elliptical and that the optimal
geometry would be attained if and only if the quotient of
maximum over minimum ellipse axis equals σx/σy, that
is, 2 in this case. Once again, there is an excellent agree-
ment between the results shown in Fig. 2 and the theoret-
ical predictions.
It is easy to see in Fig. 2 that the initial peak stress

at Θ = 0◦ is lowered through the swelling of that re-
gion, while the zone in which stresses were initially lower
than the reference value (i.e. Θ = 90◦) shrinks, and conse-
quently the stress level is increased.

5.2
Weld fillet

The second example consists of a weld fillet, illustrated
in Fig. 3. A uniform stress σ= 10MPa is applied in the
horizontal direction. The optimisation boundary is in-
dicated with a dotted line. Reference stress was chosen
as σref = 10MPa. Thirty-six elements and a 198 inter-
nal points were used for the model discretization. The
adopted value for Young modulus was 525MPa. The
same problem was solved by Li et al. (1999) by means of
sensibility analysis with FEM.
Twenty-six loops were necessary in this case to at-

tain an optimum configuration. Figure 4 illustrates the
evolution of normalised von Mises stresses along the opti-
misation boundary, where the origin of the abscissas cor-
responds to position A, and 1 to position B (see Fig. 3).
Note that, except in point A, the stress level on most of
the optimisation boundary is below σref for the original
configuration. As the optimisation progresses, the struc-
ture shrinks, resulting in a general increase of the stress
level. Except in the region close to pointB, where stresses

Fig. 3 Weld fillet: model geometry and boundary conditions,
and evolution of the model geometry with the optimization
process

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0  original
 loop 4
 loop 7
 loop 26

σ V
M

/ σ
re

f

normalized position

Fig. 4 Evolution of normalized von Mises stresses as a func-
tion of the normalized position in the optimization domain

.

.

.

.
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as a function of the loop number
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Fig. 6 (a) Distribution of von Mises stresses in the weld fillet for the initial and final configurations. (b) Qualitative results
reported by Li et al.

can only be null, the final configuration shows a roughly
uniform stress (approximately equal to reference stress),
a fact that confirms that the optimisation procedure has
been fulfilled.
Figure 5 presents maximum normalised von Mises

stresses as a function of loop number. It shows how con-
vergence is achieved after the optimisation has been car-
ried out.
The evolution of the model shape is shown in Fig. 3

for selected loops. Consequently, Fig. 6 presents the stress
maps corresponding to the initial and final geometries to-
gether with the results reported by Li et al. (1998). Note
that both methods generate approximately the same fi-
nal geometry. Unfortunately, Li et al. do not report the
number of loops required to attain the optimum state;
therefore, comparison of the performance of the methods
is not possible.

6
Conclusions

A numerical evolutionary procedure for the structural
shape optimisation of two-dimensional problems is pre-
sented in this work. The proposed procedure is based in
BGM and was implemented using BEM. Two BEM for-
mulations were employed in this work: the standard for
two-dimensional elastostatics for the stress analysis, and
DRM, which was used to model the swelling or shrinking
of the material.
BEM has proven to be an excellent analysis technique

in this kind of problem. The optimisation of a shape

problem by BEM, as described in this work, did not re-
quire the discretization of the model domain, either for
the stress or the swelling/shrinking analyses. This feature
made the remeshing an easy task. In addition, BEM pro-
vided a continuum modelling of the interior of the prob-
lem domain without interior discretization. Very accurate
values of both domain stresses and displacements could
also be obtained when using BEM.
BGM has proven to be a simple and effective method

to obtain homogeneously distributed surface stresses. Be-
sides, the optimisation method based on it was easy to
implement. The versatility of the proposed methodology
was illustrated by a series of examples, and results were
compared with those reported in the bibliography. Ex-
cellent results were obtained for all cases, showing the
efficiency and effectiveness of the implementation.
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