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Abstract 
 

This article reviews multi-criteria QSAR applications on Acetylcholinesterase inhibitors as 

palliative drugs for Alzheimer’s Disease, published in the period 2001-2011. It includes 

QSAR models for different series of compounds, comparative studies, and advances in 

methodologies. This period is marked by a shift in focus from palliative treatment to 

pathogenesis. However, we believe that research into palliative treatment should continue. 

More comparative studies are desirable. In order to facilitate comparative and general studies 

on Acetylcholinesterase inhibitors, a standard experimental protocol for measuring an 

inhibitor’s potency is needed. Finally, we recommend chemists to work closely with system 

and molecular biologists. 
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1. Background 
 

Alzheimer’s Disease (AD) is a neurodegenerative process characterized by a progressive 

memory loss, decline in language skills and other cognitive abilities [1]. It is common among 

the elderly, affecting around 7 % of the population above 65 years old [2]. Currently, this is 

an incurable disease without an effective therapeutic approach [3], and it is not surprising that 

research has been performed on both its palliative treatment and potential cure between 2001 

and 2011. In this review, the focus is on the inhibition of the Acetylcholinesterase (AChE) 

enzyme as a palliative treatment for patients with Alzheimer’s disease [4]. 

Patients with AD experience a selective loss of cholinergic neurons in the brain and 

decreasing levels of Acetylcholine [5]. The AChE enzyme is responsible for the termination 

of impulse signaling at cholinergic synapses by catalyzing the hydrolysis of Acetylcholine, a 

neurotransmitter [6]. As defined by the cholinergic hypothesis [7, 8], a palliative strategy 

works by enhancing cholinergic transmission. This should be achieved by inhibition of AChE. 

Tacrine has been approved by the US Food and Drug Administration as the first drug for 

the treatment of AD in 1993. However, it is only one of many Acetylcholinesterase Inhibitors 

(AChEI), such as Donepezil, Rivastigmine, or Galantamine [9]. Fig. (1) includes the scaffold 

of these common AChEIs, which have different structural features. In order to facilitate the 
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design of new and even more potent AChEIs, the use of mathematical frameworks linking 

specific molecular structures to potency is essential. The Quantitative Structure-Activity 

Relationships (QSAR) is a branch of Theoretical Chemistry which provides such frameworks 

[10]. 
Figure 1 should be inserted around here. 

The QSAR Theory depends on the main assumption that the biological activity of a 

chemical compound is solely determined by its molecular structure. This theory does not offer 

specific details on the usually complex mechanism/path of action involved. However, it is 

possible to get some insight on the underlying mechanism by means of the QSAR-based 

predicted activities [11, 12]. 

In the realms of QSAR, the molecular structure is quantified by using a set of suitable 

molecular descriptors, which are numbers carrying information on the constitutional, 

topological, geometrical, hydrophobic, and/or electronic aspects of the chemical structure [13-

16]. A set of descriptors can then be statistically correlated to different experimental 

biological activities, resulting in a model which can be used to find out useful parallelisms.  

Altogether, QSAR analyzes are effected by various factors from which the most important 

are: (a) the selection of molecular descriptors that should include maximum information of 

structures and minimum colinearity between them; (b) the use of suitable multi-criteria 

modeling methods; (c) the number of descriptors to be included in the model; (d) the 

composition of the training and test sets; and (e) the employment of validation techniques to 

verify the predictive performance of the developed models [17-24]. The QSAR approach is an 

important tool in Medicinal Chemistry, which makes drug design more rational by 

minimizing the number of expensive, time consuming experiments. 

 

2. Multi-criteria QSAR Studies on AChEI by Various Chemical Structures  

 

In the last decade, many multi-criteria QSAR models have been built for various types of 

AChEIs using different modeling approaches. This section summarizes such studies and is 

categorized into subsections according to the involved chemical structures. 

2.1 Tacrine Analogues 

Although Tacrine is the oldest palliative drug designed based on the cholinergic hypothesis, 

new Tacrine derivatives are still being designed to treat AD. 

In 2006, Akula et al. [25] have published 3D-QSAR studies on bis-tacrine compounds by 

using molecular docking scores calculated by FlexX [26], Flexidock [27] and Cscore [28], in 
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addition to Comparative Molecular Field Analysis (CoMFA). The Sybyl [29] and Mopac [30] 

programs are both used in the optimization of structures and molecular alignment. The 

docking scores are used as molecular descriptors along with the steric and electrostatic field 

values obtained from CoMFA, and 16 molecules are set aside in the training set. The 

structure-activity model is validated on a test set having only 3 molecules, which we think it 

would not be able to describe the real predictive power of the QSAR model developed due to 

the limiting information used for validating it.  

In another study of the same year, Fernández et al. [31] have applied Bayesian-Regularized 

Genetic Neural Networks (BRGNNs) to 136 Tacrine analogues. Their 3D structures are 

geometrically optimized using the semi-empirical quantum chemical method PM3 

implemented in Mopac [30]. Here, the Bayesian-regularization avoids overtraining, while the 

Genetic Algorithm (GA) approach allows exploring an ample pool of 3D descriptors 

generated by the software Dragon [32]. The algorithms are implemented and the models are 

built in the Matlab environment [33]. The resulting model is evaluated by averaging multiple 

validation sets generated as members of diverse-training set Neural Network Ensembles 

(NNEs). When considering forty assembled members, the NNE provides reliable statistics. 

The employment of Artificial Neural Networks constitutes a common practice in QSAR 

studies for modeling non-linear relationships between the chemical structure and the 

considered biological property. 

Jung et al. [34] have also worked in 2007 on the Tacrine scaffold: they build QSAR models 

using variable selections based on Multivariable Linear Regression (MLR): Genetic 

Algorithm (GA)-MLR and Simulated Annealing (SA)-MLR. For doing this, they place 68 

molecules in the training set and leave 12 in the test set. The molecules are geometrically 

optimized using the Titan Pro software [35], and their molecular descriptors are calculated 

using PreADME on the web [36] and BioMedCAChe [37]. The stepwise multiple linear 

regression procedure is performed by the software package SPSS [38]. Simulated annealing 

and genetic algorithms are performed using the R statistical software package, Subselect [39]. 

The best model is obtained by SA-MLR with greater explanatory and prediction capability, 

and thus a smaller standard deviation (S). Based on their models, the authors suggest 

important roles for hydrophobic and electrostatic interactions in increasing the structure’s 

AChE activity. They also suggest opposite effects for hydrophilic and topological features of 

molecules. 

In 2008 Saracoglu et al. [40] have performed QSAR analyses of AChEIs related to Tacrine 

and 11 H-Indeno-[1,2-b]-quinolin-10-ylamine tetracyclic Tacrine analogues. The Electron-
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Topological Method (ETM) is applied with the ETM software [41] on a training set of 44 

compounds, which we consider it as a valuable QSAR tool as this technique takes into 

account both geometrical and electronic characteristics of the molecules. Based on 

pharmacophores and anti-pharmacophores calculated as sub-matrices containing spatial and 

quantum chemistry characteristics, a system for the activity prognostication is developed. 

Some molecular fragments specific for active and inactive compounds are also revealed. 

In another work published in 2010 [42], Chen et al. have studied multi-target-directed 

AChEIs of Tacrine-Nimodipine dihydropyridines. They establish 3D-QSAR models using 

CoMFA and Comparative Molecular Similarity Index Analysis (CoMSIA) methods. The 

compounds employed are very potent and selective AChEIs, and show an excellent 

neuroprotective profile and a moderate Ca2+ channel blockage effect. A training set of 60 

compounds is used, and the resulting models are validated on a test set of 12 compounds. The 

structures of the investigated ligands are built and optimized using Sybyl [29], while the 

lowest energy structures are used during the alignment. The partial atomic charges required to 

estimate the electrostatic interaction are computed by semi-empirical molecular orbital 

methods using MOPAC [30] with an AM1 Hamiltonian. The AutoDock program [43] is used 

for docking. CoMFA and CoMSIA are performed on Sybyl. For the CoMSIA approach, 

descriptors of five physicochemical field properties are used to correlate with changes of 

ligands affinities, which explicitly define hydrophobic, hydrogen-bond donor and acceptor 

descriptors (in addition to the steric and electrostatic fields used in CoMFA).  

2.2 Carbamates 

Compounds related to carbamates (see Fig. (2)) have drawn a lot of attention from QSAR 

researchers in the last decade as well. G. Lin have published an article in 2004 [44] about 

substituted phenyl-N-butyl carbamates (1) and p-nitrophenyl-N-substituted carbamates (2). 

The author model virtual inhibition constants ( '
iK ) of the protonated inhibitors from the 

equation, 'log log 14i i aK K pK− = − − +  in pH 7.0 buffer solution, where iK  is the inhibition 

constant. The 'log iK−  and log ck  values ( ck  is the carbamylation constant) for AChE 

inhibitions by carbamates (1) correlate with the Hammett equation ( 0log .k k ρ σ= ); 

moreover, those by carbamates (2) correlate with the Taft equation ( * *
0log .k k ρ σ= ). With 

modified Hammett-Taft cross-interaction variations, MLR models of the 'log iK−  and log ck  

values of carbamates (1) and (2) give good correlations, and the cross-interaction constants 

( (XR)ρ ) are 0.5 and 0.0, respectively. The (XR)ρ  value of 0.5 indicates that the carbamate 
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moiety of the inhibitors stretches along the active site gorge of the enzyme but does not bind 

in the acyl binding site pocket of the enzyme. The (XR)ρ  value of 0.0 suggests that the 

transition states that lead to the carbamyl enzymes are breaking C-O bonds and are excluding 

the leaving groups, substituted phenols. In the same year, Lin et al. [45] have published their 

work on ortho effects in QSAR for acetylcholinesterase inhibition by a series of nine ortho-

substituted phenyl-N-butyl carbamates, for which they model the virtual inhibition constants 

of the protonated inhibitors. 
Figure 2 should be inserted around here. 

In a project published in 2008, Roy et al. [46] have studied structurally diverse carbamates 

for acetylcholinesterase inhibition. QSAR models are built and validated using a total of 78 

molecules, using CoMFA, advanced CoMFA and CoMSIA on Sybyl [29]. The authors 

conclude that steric, electrostatic and hydrophobic interactions are important for describing 

the variation in binding affinity of the different structures. For a better inhibitory activity, the 

carbamoyl nitrogen should be more electropositive. Substitutions on it should have high steric 

bulk and hydrophobicity. The amino nitrogen, on the other hand, should be electronegative. 

The work of Chadhaery et al. of 2009 [47] have carried out CoMFA and CoMSIA, using 

two different alignment methods, namely pharmacophore and maximum common 

substructure-based alignments. They place 52 structurally diverse carbamates covering a good 

range of AChE inhibitory activity in the training set, and resort to steric, electrostatic, 

hydrophobic, donor and acceptor field descriptors. All compounds are built using ISIS Draw 

[48], imported to Accelry’s Discovery Studio window [49], and optimized using CHARMm 

force field. Pharmacophore modeling is performed using the Hip-Hop module in the software 

CATALYST [50], while the 3D-QSAR studies are done using Sybyl [29]. The resulting 

CoMFA and CoMSIA models with pharmacophore-based alignment are found to be in good 

agreement with each other. Additionally, the authors demonstrate that pharmacophore-based 

alignment has a significant superiority over maximum common substructure-based alignment 

in terms of leave-one-out statistical values. The best CoMFA and CoMSIA models based on 

pharmacophore-based alignment are then validated on a test set of 17 compounds. From the 

models, it is inferred that the hydrophobic factor has a major contribution to the AChE 

inhibitory activity modulation.  

In 2010, another study of the same group [51] have developed a systematic virtual 

screening procedure, including development of 3D-pharmacophore, screening of virtual 

library, synthesis and pharmacology. Using a training set of 24 carbamates as AChEIs, these 
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researchers develop a predictive pharmacophore model with one hydrogen-bond donor and 

three hydrophobic features. All molecular modeling analyzes are accomplished using the 

Window-based Accelerys Discovery Studio [49]. The Catalyst software [50] is used for 

pharmacophore modeling and virtual screening. Validation on a test set of 40 carbamates 

proves the model’s significant predictive power, and therefore it provides a tool for searching 

new carbamates having specific properties. 

2.3 Benzylpiperidine and Physostigmine Derivatives 

In 2005, Kandermirli et al. [52] have applied electronic-topological and neural network 

methods for developing QSAR of AChE inhibition by a series of Physostigmine and N-

benzylpiperidine derivatives (Fig. (3)). They calculate molecular fragments specific for active 

compounds and breaks of activity for human AChE (HuAChE), formulating requirements for 

a compound to behave as active. 
Figure 3 should be inserted around here. 

In a publication of 2009, Haq et al. [53] have applied 3D-QSAR studies based on CoMFA 

and CoMSIA to a training set of 40 Physostigmine derivatives. All 3D structures are 

constructed on Gaussian software [54]. 3D-QSAR calculations are performed using the Sybyl 

package [29]. The study is conducted to obtain a highly reliable and extensive dynamic 

QSAR model based on the alignment procedure, for which the co-crystallized Ganstigmine is 

used as a template. The resulting QSAR is statistically significant and validated by an external 

test set composed of 8 compounds. Here again, we consider that the test set´s size employed is 

the limiting factor for the validation of the model. 

In 2011 Araújo et al. [55] have built several receptor-dependent 3D-QSAR models using 60 

Benzylpiperidine structures. A combined GA and Partial Least Squares (PLS) approach, 

available in the Wolf program [56], is used as computational methodology to develop and 

validate such models. The training set includes 47 molecules and the test set the remaining 13 

ones. The 3D structures are built using the Spartan software [57]. In building the model of 

Human AChE, the program Modeller [58] is used for geometry optimization and Procheck 

[59] is used for validation. In complexes building and optimization, Sybyl is used. In 

molecular dynamics simulations of the complexes, each ligand/HuAChE complex is 

submitted to a preliminary optimization in the Gromacs program [60] then the molecular 

topologies of the ligands are generated by the Prodrg server [61]. The descriptors employed 

are steric (Lennard-Jones) and electrostatic (Coulomb) interaction energies, calculated 

between each ligand and the HuAChE residues within radii 10 Å around the ligand. 

According to the two best calculated models, the Lennard-Jones and the sum of Lennard-
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Jones and Coulomb contributions are more important than the Coulomb ones to the 

relationship between structure and activity. The authors also conclude that the hydrophobic 

residues of the active site of HuAChE are more important than the polar residues for this 

series of inhibitors. 

2.4 Phosphate-Containing Compounds 

In the last decade, much research on Alzheimer’s Disease has been carried out on 

compounds containing the phosphate group. For instance, Yazal et al. [62] have applied in 

2001 a combination of conformational analysis and 3D-pharmacophore models on a 

collection of organophosphorous AChEIs (Fig. (4)), in order to rationalize their inhibitory 

potencies against the enzyme. The compounds are drawn in 2D and converted to 3D using the 

Sketch-and-Converter module in Insight 2000 [63]. The structures are optimized using 

Cerius2 [64]. Conformational analyses of the 6 inhibitors in the training set are carried out in 

the Catalyst package [50], generating pharmacophore models. The resulting 3D 

pharmacophore models are characterized by at least one hydrogen bond acceptor site and 2-3 

hydrophobic sites. The models demonstrate a high degree of correlation between the 

calculated and experimentally measured inhibitory potencies. However, from our point of 

view, little information is used during the model’s calibration. 
Figure 4 should be inserted around here. 

Zhao et al. have published an article in 2004 [65] about their 3D-QSAR studies on the acute 

toxicity of 35 dialkyl phenyl phosphate compounds to houseflies. Aided by the software 

Sybyl [29], they use CoMFA and CoMSIA methods, which provide more comprehensive and 

accurate perspectives on the reaction mechanism between organophosphate compounds and 

AChE than classical QSAR methods. They find that steric and electronic properties of the 

substituent on the phenyl of an organophosphate compound, like the length of alkyl and the 

electronegativity, respectively, have a dominant influence on its potency against AChE. 

Hydrophobicity has little influence. 

A 2009 study of Kuzmin et al. [66] have performed consensus QSAR modeling of AChE 

inhibition by various organophosphate compounds. Simplex representation of molecular 

structure (SiRMS) and Lattice Model (LM) techniques are used to generate the molecular 

descriptors. In order to avoid chance correlations, 1000 rounds of Y-scrambling are 

performed. Leverage and Ellipsoid Applicability Domain (DA) approaches estimate the 

quality of prognosis. A successful consensus model is obtained which is applied to predict 

AChE inhibition of new compounds. It is revealed that both the atom's individuality and 

stereochemistry of chiral surroundings of the asymmetric atom of phosphorus are vital for 
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AChE inhibition. Thus, the (R)-isomers are always less active than the (S) isomers and the 

racemate. The quantum chemical calculations are carried out using the Gaussian-03 package 

[54]. Dragon software is also used in this work [32]. 

2.5 Ketones 

Our bibliographic search identifies four QSAR studies about the inhibitory potency of 

ketones during the last decade (Fig. (5)). A study published by Liu et al. in 2007 [67] has 

analyzed 26 compounds with the phenyl pentenone scaffold to construct a 3D-QSAR model 

using CoMFA, performed with the QSAR module of Sybyl for each combination of steric and 

electrostatic molecular fields. The molecular docking program Dock [68] is used to determine 

the conformation of the active compound 5 in the active pocket of AChE. This model 

possesses an ability to predict the activities of new inhibitors, and would be useful for the 

future design of new AChE inhibitors. 
Figure 5 should be inserted around here. 

In 2007, Sheng et al. [69] have conducted 3D-QSAR studies using CoMFA and CoMSIA 

[29], on 2-phenoxy-indan-1-one derivatives bearing AChE inhibitory activities. The results 

show that the contributions to the activity of steric fields are greater than that of electrostatic 

fields. Addition of CoMSIA has elucidated the role of hydrophobic and hydrogen bonding 

along with the effect of steric and electrostatic properties revealed by CoMFA. In conclusion, 

the two models demonstrate a good fit, the analysis of CoMFA and CoMSIA contour maps 

provide insight into the possible modification of the molecules with better activity.  

Another study of the same year have seen Shen et al. [70] to explore the binding mode of 2-

substituted 1-indanone derivatives with AChE. The 3D structures of these compounds are 

sketched and optimized with the molecular modeling software package Sybyl [29]. Aided by 

Gold [71], they employ the Gold-docking conformations of the compounds in the active site 

of AChE. Highly reliable and predictive 3D-QSAR models are established by CoMFA and 

CoMSIA methods, which are afterwards successfully validated with an external test set. As a 

result of such mathematical models, a better understanding of the interaction between the 

inhibitors and AChE is provided. 

In their work published in 2010, Sharma et al. [72] have applied QSAR on indanone and 

aurone derivatives by using various physicochemical parameters calculated with the software 

ChemOffice [73]. The structure-activity relationship is established by means of sequential 

multiple linear regression analysis, resorting to the Valstat program [74]. A set of 23 

compounds is used in the training set, and the validation is performed with 9 compounds. The 

best model found includes the Lowest Unoccupied Molecular Orbital (LUMO) energy, 
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diameter and the Gibbs Free Energy as molecular descriptors, and it is found to be statistically 

significant. 

2.6 Other Chemical Structures 

In 2001, Sippl et al. [75] have modeled aminopyridazine derivatives (Fig. (6)) by 

threedimensional analyses using Sybyl [29], Grid [76] and Golpe [77] programs. They 

initially use four X-ray structures of AChE complexed with small, non-specific inhibitors to 

create a model of the binding of some recently developed aminopyridazine derivatives. 

Combined automated and manual docking methods are applied to dock the co-crystalized 

inhibitors into the binding pocket, using AutoDock [43]. The ionization states of the protein 

residues are determined from pKa calculations using the UHBD program [78]. The program 

Grid [76] is used to study the interaction potentials of the protein and inhibitor structures. A 

training set of 42 aminopyridazine compounds derived by the docking procedure is used to 

build a 3D-QSAR model, using the Grid/Golpe method. A test set of 7 designed molecules is 

used to validate the model. The modeling process is validated by comparing the predicted 

enzyme-bound conformation with the known conformation in the X-ray structure. The 

successfully validated model is then used to evaluate the binding conformation of the 

aminopyridazine compounds under consideration.  
Figure 6 should be inserted around here. 

In another study of the same year, Spassova and Singh [79] have analyzed Methamidophos 

(Met), which is a weak inhibitor of housefly head AChE. Acephate (Ace), like Met, is a poor 

inhibitor of AChE in vitro and has a comparable to Met insect toxicity in vivo. Contrary to 

Met, though, Ace has much lower mammalian toxicity. Understanding the structural 

properties which make insecticides toxic to insects but not to mammals is of great importance, 

since mammals (including humans) are inadvertently exposed to these compounds. The 

QSAR results found are consistent with the model in which both the in vitro and in vivo 

toxicity of Met depends on the inhibition of the active center of AChE by the unchanged Met. 

An optimal susceptibility to hydrolysis is needed for Met and its analogs to have high 

insecticidal activity since in order to phosphorylate AChE they need to be hydrolyzed and at 

the same time their stability is of great importance in vivo for accumulating at the site of 

action. The insecticidal activity of Ace analogs may be due to direct interaction with the 

active center of the AChE. The mammalian toxicity of Ace analogs may be due to interaction 

with an 'allosteric' reaction center in the AChE. In terms of computational tools, the 2D 

structures of the molecules are transformed into 3D structures in a conformational analysis by 

the 3DGEN sub-program of Oasis [80]. After the conformational analysis, the geometry of 
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each conformer is optimized using Mopac [30]. The hydrophobic parameters are calculated 

using Molecular Modeling Pro [81]. 

In 2003, Haq et al. [82] have derived a comprehensive structure-activity relationship model 

for a series of natural AChEIs isolated from Sarcococca saligna. All structures are initially 

generated by Gaussian View [83] and minimization is performed with the Austin Model 1. 

The statistically significant CoMFA models are established by atom-based alignment, using 

Sybyl [29]. The training set consists of 28 previously isolated and tested pregnane-type 

steroidal alkaloids inhibitors, while 4 molecules form the test set. In our opinion, the accuracy 

of this model should be further verified using more experimental data. 

In 2005, Chiou et al. [84] have carried out a QSAR analysis for Acetylcholinesterase and 

Butyrylcholinesterase inhibition by cardiovascular drugs and benzodiazepines, including 

Lovastatin, Simvastatin, Amlodipine Besylate, Nifedipine, Hydralazine hydrochloride, 

Diazepam and Chlordiazepoxide hydrochloride. The ipK  values for Acetylcholinesterase and 

Butyrylcholinesterase inhibitions by these drugs are linearly correlated with the molecular 

weights, with slopes of 0.005 and 0.0021, respectively. Therefore, van der Waals’ interactions 

between Acetylcholinesterase and these drugs are stronger than those between 

Butyrylcholinesterase probably due to a small active site gorge and a significant peripheral 

anionic site for Acetylcholinesterase. The fact that the ipK  values for both cholinesterase 

inhibitions are linearly correlated with each other suggests that both enzyme inhibitions 

proceed via a common mechanism. Since Amlodipine Besylate is a very potent inhibitor of 

both cholinesterases, Amlodipine Besylate may, like Donepezil, be useful in AD treatment.  

In 2009, Solomon et al. [85] have studied the QSAR of a series of 88 N-aryl derivatives 

which display varied inhibitory activity towards both Acetylcholinesterase and 

Butyrylcholinesterase. All the N-aryl derivatives are built using Insight-II software [86]. The 

QSAR model for AChE inhibition is derived for a training set of 53 compounds, with the aid 

of the GA technique using topological, molecular shape, electronic and structural descriptors. 

Here, a test set of 26 compounds is used to successfully validate the resulting model. 

 

3. Integrative Studies on Different Classes of Molecules 

 

As summarized in Section 2, there are numerous, structurally diverse AChEIs. Specialized 

QSAR models for individual classes of inhibitors are quite common, although an integration 

of these models is the logical next step. Instead of focusing on specific structures like Tacrine 
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derivatives, Carbamates or Benzylpiperidines, such an integrative study should identify 

common and different physicochemical properties leading to the inhibitory activity. This 

would help researchers to design novel drugs. A couple of studies in this direction have been 

published recently in 2011. 

Gupta et al. [87] have developed comparative QSAR models for 42 AChE inhibitors 

binding at the catalytic and peripheral anionic site, identified on the basis of the molecular 

docking approach. The compounds under study are built using Sybyl [29]. Molecular docking 

at the dual site of AChE is performed using the Gold software [71], while Cerius2 [64] is used 

to compute the molecular descriptors. They select the dataset from diverse chemical classes 

such as piperidines, tetra hydro acridines, tetrahydroazepines and carbamates instead of 

focusing on any particular series. QSAR models are developed using GA, Genetic PLS, 

Support Vector Machine (SVM) and Artificial Neural Network (ANN) techniques, using a 

training set that includes 31 molecules. The robustness and significance of each model is 

critically assessed on an external test data set of 11 molecules. In conclusion, the generated 

models using thermodynamic, electrotopological and electronic descriptors show that 

nonlinear methods are more robust than linear ones. 

In their work, Lu et al. [88] have developed both qualitative and quantitative 3D-

pharmacophore models based on AChEIs, collected from nine publications reported by the 

same laboratory. This covers a range of molecules including polyamines, ketones, Donezil-

based inhibitors, Tacrine and benzofuran-based hybrid compounds. Pharmacophore modeling 

correlates activities with the spatial arrangement of various chemical features in a set of active 

analogues. From the diverse compounds, 62 are selected as part of the training set, and the 

test set contains 26 compounds. The 2D chemical structures of these AChE inhibitors are 

sketched using CS ChemDraw Ultra [73]. The resulting files are imported into Discovery 

Studio [49] and converted into the corresponding standard 3D structures. Aided by the same 

software, two different methods, HipHop and HypoGen, are used to generate ligand based 

pharmacophore models. The best five-features pharmacophore model includes one hydrogen 

bond donor and four hydrophobic features, and is applied to identify nine novel inhibitors. 

 

4. Advances in Relevant Methodologies Between 2001 and 2011 

 

Research into methodologies used to establish QSAR models for AChE inhibition potency 

is reviewed in this section. Interestingly, these studies have been performed recently in the 

last three years. 
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A study performed by Asadabadi et al. [89] in 2009 extracts the most effective structural 

features of AChEIs from a large number of molecular descriptors. An efficient feature 

selection method is emphasized in such approach, which uses the confirmative results of 

different routines and novel feature selection methods. The proposed methods generate quite 

consistent results ensuring the effectiveness of the selected structural features. In this study, 

all structures are drawn and optimized in HyperChem [90]. Statistical analyses are performed 

using the statistical software SPSS [38]. The programming and implementation of the 

algorithms is performed in Matlab environment [33]. 

In 2010, Tsai et al. [91] have performed a comparative study on different methods 

employed for assigning electrostatic potentials to atoms in a molecule. This choice of 

methodology is critical for QSAR studies although, however, no systematic comparison of the 

effects of electrostatic potentials on the model’s quality has previously been done. Twelve 

semiempirical and empirical charge-assigning methods, AM1, AM1-BCC, CFF, Del-Re, 

Formal, Gasteiger, Hückel, Gasteiger-Hückel, MMFF, PRODRG, Pullman, and VC2003 

charges are compared for their performances in CoMFA and CoMSIA modeling, using 

several standard datasets. Del-Re, PRODRG and Pullman are excluded from the study 

because they are specific to certain atom and bond types. The commonly used Gasteiger-

Hückel charge performs poorly in prediction accuracy. The AM1-BCC method is better than 

most charge-assigning methods based on prediction accuracy but unsuccessful in yielding 

overall higher cross-validation correlation coefficient values than others. The CFF charge 

model is found to work best in prediction accuracy when the cross-validation correlation 

coefficient is used as the evaluation criterion. The programs used for assigning charges and 

modeling include QuACPAC [92], Sybyl [29], Discovery Studio [49] and Dundee PRODRG2 

online server [61]. 

 

5. Beyond Inhibiting AChE: Other Functions of the Same Molecules 
 

In the course of reviewing the current topic, we come across with many theoretical and 

experimental studies on molecules other than AChE, but which are still related to Alzheimer’s 

Disease. As far as the authors are aware, specific QSAR studies on the inhibition of 

Acetylcholinesterase by AChEIs form a relatively small part of AD research. This reflects a 

shift in focus in the field of neurodegenerative disease. This shift can even be seen in some 
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AChEI studies which focus on the inhibitors’ effect on the pathogenetic cascade leading to 

AD instead of their palliative functions. 

One such function is the modulation of Amyloid Precursor Protein (APP) processing. The 

brain tissue of AD patients shows the presence of neuropathologic markers such as 

neurofibrillary tangles and neurotic or senile plaques. The latter are characterized by the 

accumulation of proteins in the form of β-pleated sheet fibrils, which consist mainly of a 39-

43 amino acids peptides called β-Amyloid (Aβ) [9]. The Amyloid hypothesis of AD is 

focused on the toxic effect of excessive Aβ on neurons and suggests the aberrant mechanism 

of the APP processing is a central pathogenetic mechanism for AD [93, 94].  

In a 2004 review, Racchi et al. [9] have explored the experimental evidence which suggest 

a role for AChEIs in APP processing. They conclude that evidence pointed to a mechanism of 

interaction of AChEIs and the mechanism of APP. Multiple complex mechanisms are 

suggested to modulate APP processing, involving cholinergic agonist effect, coupled to 

multiple signal transduction pathways, or post-transcriptional effects modulating the 

expression of cellular APP. 

Fu et al. [95] have carried out one such study on AChEIs in 2008. α-, β- and γ-Secretase are 

involved in the processing of APP to form Aβ. This group experimentally shows that Bis(7)-

Tacrine could substantially reduce the generation of Aβ by inhibiting β-Secretase (BACE-1) 

and activating α-Secretase activity. Citing the group’s previous study showing bis(7)-

Tacrine’s role in attenuating Aβ -induced neuronal apoptosis [96], the authors argue that this 

inhibitor has multiple targets in the Amyloid pathological cascade of AD. 

An extension of this shift in focus from Acetylcholinesterase inhibition to other aspects of 

AD is the emergence of multi-target drugs. The use of multi-potent drugs to treat AD has 

been reviewed by Zhang in 2005 [97]. The idea behind this strategy is that most human 

diseases involve multiple pathogenetic factors and therefore, a one-drug-one-target paradigm 

in drug discovery is flawed [98, 99]. For the case of AD, important factors include 

aggregation of amyloid-β and tau proteins, excessive metal ions, oxidative stress and reduced 

level of acetylcholine [100-103]. As reviewed by Zhang, there are various natural and 

synthetic structures which influence different combinations of these factors. Details about 

such individual hybrid molecules or natural structures can be found in Zhang’s review and 

will not be iterated here. However, some examples include dual AChE and monoamine 

oxidase (MAO) inhibition, simultaneous AChE inhibition and AChE-induced Aβ aggregation, 

or metal chelators with radical scavenging potential. When multiple structure dependent 

factors are under consideration, experiments become more costly and time consuming, if they 
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are feasible at all. Therefore, techniques used in computer-aided drug design such as QSAR 

are essential in this paradigm shift. 

 

 

6. Future Research Directions 

 

It is understandable that the focus on AD research has shifted away from the inhibition of 

Acetylcholinesterase. It is just a palliative, symptomatic treatment which does not stop the 

progression of neurodegeneration. However, there are a few reasons why research into this 

branch of research should continue. 

First, the pathogenesis and progression of Alzheimer’s disease remain partially understood 

at best. Therefore, it is unwise and premature to abandon effort to develop more effective 

symptomatic drugs before substantial results are obtained in the discovery of a cure which 

attacks the root of AD. Second, any emerging cure does not necessarily supersede palliative 

drugs. They are still needed while neurodegeneration is being stopped and perhaps reversed in 

a patient. The third case is the complexity of the nervous system. It is regulated by multiple, 

interwoven pathways which consist of many and sometimes common biomolecules and 

receptors. The AChEIs may play a role in other pathways involved in AD too, some of which 

may be behind the onset of the disease. There is also evidence which suggests that multi-

functional compounds may provide greater therapeutic benefits by concurrently targeting 

different sites in the brain [97, 104]. 

The two comparative studies reviewed in Section 3 are both published in 2011. We 

encourage this new trend in AD research. Considering there are so many specialized multi-

criteria QSAR studies in the literature, each modeling a specific class of inhibitors, there is a 

need to integrate these separate studies. It helps designing the most potent AChEI. QSAR 

studies covering diverse structures allow researchers to pick out molecular features which 

play important roles in Acetylcholinesterase inhibition, but which are found in separate 

classes of inhibitors. Then, researchers can design and synthesize new compounds with 

different combinations of these separate features. 

In order to facilitate QSAR studies into AChE inhibition in general, and comparative 

studies of different types of inhibitors in particular, we call for the establishment of a standard 

experimental protocol to measure the inhibitory activity of AChEIs. Like all multi-criteria 

QSAR models, the predictive ability of a QSAR model of AChEIs strongly depends on the 
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size and quality of datasets of inhibitors’ biological activity. In most experimental studies 

measuring the inhibitory activity, the number of structures measured does not exceed twenty 

or so. Furthermore, although the general experimental method is largely consistent in different 

studies, parameters like concentration and amount of chemicals used, or temperature vary 

slightly. This lack of consistency makes combination of datasets problematic. This problem is 

particularly relevant to comparative studies because datasets are often obtained by combining 

data collected by different researchers. 

Finally, we call for multi-criteria QSAR chemists to work more closely with system 

biologists and molecular biologists. As reviewed by Katayam et al. [105], several authors 

have reported that neuronal death has its origin in the Endoplasmic Reticulum (ER). 

Accumulation of unfolded proteins in the ER due to genetic mutations or exogenous factors 

leads to ER stress. Normal cells respond to ER stress in a mechanism called the Unfolded 

Protein Response (UPR). Dysfunction of ER down regulates UPR. This leads to vulnerability 

to ER stress and hence neuronal apoptosis and neurodegeneration. This development is a step 

forward in the understanding of AD and the search for a cure. Nevertheless, like many 

biological system, UPR and its associated bioCical and physiological responses are highly 

complex. They involve many interdependent components, forming a dynamic network. They 

span across many spatial and temporal levels. A holistic approach is more appropriate than 

scientific reductionism in its study.  

Through multi-scale modeling of interactions between the components of AD, system 

biologists can identify emergent properties. This leads to hypotheses about AD. Just as 

molecular biologists are needed to prove these hypotheses experimentally, chemists’ expertise 

in QSAR is needed to design drugs once their targets are identified by the other two groups.  

Therefore, better communication between all three parties is called for. It allows theoretical 

chemists to be more selective and efficient in the use of multi-criteria QSAR, facilitating the 

discovery of a cure for Alzheimer’s Disease. 

 

Acknowledgements 

 

PRD, AGM and EAC thank the financial support by the Research Council of Argentina 

(Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), 

PIP11220100100151 project. KW is grateful to a fellowship from the International 

Association for the Exchange of Students for Technical Experience (IAESTE). 

 

16 
 



References 

 

[1] Goedert, M., Spillantini, M. G. A Century of Alzheimer's Disease. Science, 2006, 314, 

777-781. 

[2] McDowell, I. Alzheimer’s Disease: Insights from Epidemiology. Aging: Milano, 2001, 13, 

143-162. 

[3] Schmidt, R., Neff, F., Lampl, C., Benke, T., Anditsch, M., Bancher, C., Dal-Bianco, P., 

Reiseker, F., Marksteiner, J., Rainer, M., Kapeller, P., Dodel, R. Therapy of Alzheimer's 

disease: current status and future development. Neuropsychiatrie, 2008, 22, 153-171. 

[4] Haq, Z.u., Uddin, R. In: Alzheimer’s Disease Pathogenesis-Core Concepts, Shifting 

Paradigms and Therapeutic Targets. De La Monte, S., Ed.; InTech, 

http://www.intechweb.org/, 2011. 

[5] Alcala, M.D.M., Vivas, N. M., Hospital, S., Camps, P., Munoz-Torrero, D., Badia, A. 

Characterisation of the anticholinesterase activity of two new tacrine-huperzine A hybrids. 

Neuropharmacology, 2003, 44, 749-755. 

[6] Quinn, D.M., Feaster, S. R., Nair, H. K., Baker, N. A., Radic, Z., Taylor, P. Delineation 

and decomposition of energies involved in quaternary ammonium binding in the active site of 

acetylcholinesterase. J. Am. Chem. Soc., 2000, 122, 2975-2980. 

[7] Bartus, R.T., Dean III, L. D., Beer, B., Lippa, A. S. The cholinergic hypothesis of geriatric 

memory dysfunction. Science, 1982, 217, 408-417. 

[8] Gualtieri, F., Dei, S., Manetti, D., Romanelli, M. N., Scapecchi, S., Teodori, E. The 

medicinal chemistry of Alzheimer's and Alzheimer-like diseases with emphasis on the 

cholinergic hypothesis. Farmaco, 1995, 50, 489-503. 

[9] Racchi, M., Mazzucchelli, M., Porrello, E., Lanni, C., Govoni, S. Acetylcholinesterase 

inhibitors: novel activities of old molecules. Pharmacol. Res., 2004, 50, 441-451. 

[10] Hansch, C., Leo, A. Exploring QSAR. Fundamentals and Applications in Chemistry and 

Biology. American Chemical Society: Washington, D. C., 1995. 

[11] Kubinyi, H. QSAR: Hansch Analysis and Related Approaches. Wiley-Interscience: New 

York, 2008. 

[12] Puzyn, T., Leszczynski, J., Cronin. M. T. Recent Advances in QSAR Studies: Methods 

and Applications. First Edition ed. Springer: New York, 2009. 

[13] Trinajstic, N. Chemical Graph Theory. CRC Press: Boca Raton (FL), 1992. 

17 
 

http://www.intechweb.org/


[14] Katritzky, A.R., Lobanov, V. S., Karelson, M. QSPR: the correlation and quantitative 

prediction of chemical and physical properties from structure. Chem. Soc. Rev., 1995, 24, 

279-287. 

[15] Diudea, M.V. QSPR/QSAR Studies by Molecular Descriptors. Nova Science Publishers: 

New York, 2001. 

[16] Todeschini, R., Consonni, V. Molecular Descriptors for Chemoinformatics. Wiley-VCH: 

Weinheim, 2009. 

[17] Golbraikh, A., Tropsha, A. Beware of q2! J. Mol. Graphics Modell., 2002, 20, 269-276. 

[18] Hawkins, D.M., Basak, S. C., Mills, D. Assessing Model Fit by Cross Validation. J. 

Chem. Inf. Model., 2003, 43, 579-586. 

[19] Goodarzi, M., Duchowicz, P. R., Wu, C. H., Fernández, F. M., Castro, E. A. New Hybrid 

Genetic Based Support Vector Regression as QSAR Approach for Analyzing Flavonoids-

GABA(A) Complexes. J. Chem. Inf. Model., 2009, 49, 1475-1485. 

[20] Chicu, S.A., Putz, M. V. Köln-Timişoara Molecular Activity Combined Models toward 

Interspecies Toxicity Assessment Int. J. Mol. Sci., 2009, 10, 4474-4497. 

[21] Putz, M.V., Putz, A. M., Lazea, M., Lenciu, L., Chiriac, A. Quantum-SAR Extension of 

the Spectral-SAR Algorithm. Application to Polyphenolic Anticancer Bioactivity Int. J. Mol. 

Sci., 2009, 10, 1193-1214. 

[22] Lacrămă, A.M., Putz, M. V., Ostafe, V. A Spectral-SAR Model for the Anionic-Cationic 

Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity. Int. J. Mol. Sci., 2007, 

8, 842-863. 

[23] Putz, M.V., Ionaşcu, C., Putz, A. M., Ostafe, V. Alert-QSAR. Implications for 

Electrophilic Theory of Chemical Carcinogenesis. Int. J. Mol. Sci., 2011, 12, 5098-5134. 

[24] Putz, M.V. Residual-QSAR. Implications for Genotoxic Carcinogenesis. Chem. Cent. J., 

2011, 5, doi: 10.1186/1752-1153X-1185-1129. 

[25] Akula, N., Lecanu, L., Greeson, J., Papadopoulos. V. 3D QSAR studies of AChE 

inhibitors based on molecular docking scores and CoMFA. Bioorg. Med. Chem. Lett., 2006, 

16, 6277-6280. 

[26] FlexX, BioSolveIT, www.biosolveit.de/FlexX. 

[27] Flexidock, Tripos, http://www.tripos.com/index.php. 

[28] CScore, Tripos,  

http://tripos.com/index.php?family=modules,SimplePage,,,&page=CScore 

[29] Sybyl, Tripos,  

http://www.tripos.com/index.php?family=modules,SimplePage,,,&page=SYBYL-X 

18 
 

http://www.biosolveit.de/FlexX
http://www.tripos.com/index.php
http://tripos.com/index.php?family=modules,SimplePage,,,&page=CScore
http://www.tripos.com/index.php?family=modules,SimplePage,,,&page=SYBYL-X


[30] Mopac, Stewart Computational Chemistry, www.openmopac.net 

[31] Fernández, M., Carreiras, M. C., Marco, J. L., Caballero, J. Modeling of 

acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized Genetic 

Neural Networks and ensemble averaging. J. Enzym. Inhib. Med. Ch., 2006, 21, 647-661. 

[32] Dragon Milano Chemometrics and QSAR Research Group,  

http://michem.disat.unimib.it/chm 

[33] Matlab, The MathWorks, Inc., http://www.mathworks.co.uk/products/matlab/index.html 

[34] Jung, M., Tak, J., Lee, Y. N., Jung, Y. G. Quantitative structure-activity relationship 

(QSAR) of tacrine derivatives against acetylcholinesterase (AChE) activity using variable 

selections. Bioorg. Med. Chem. Lett., 2007, 17, 1082-1090. 

[35] Titan, Wavefunction, Inc., http://www.wavefun.com 

[36] PreADME, BMDRC, http://www.bmdrc.org/04_product/01_preadme.asp 

[37] BioMedCAChe, Fujitsu Ltd, http://www.cache.fujitsu.com/biomedcache/index.shtml 

[38] SPSS for Windows, standard version, SPSS, Inc., http://www-

01.ibm.com/software/analytics/spss 

[39] Subselect, R Project for Statistical Computing, http://www.r-project.org 

[40] Saracoglu, M., Kandemirli, F. The Investigation of Structure-Activity Relationships of 

Tacrine Analogues: Electronic-Topological Method. Open Med. Chem. J., 2008, 2, 75-80. 

[41] Dimoglo, A.S., Shvets, N. M., Tetko, I. V., Livingstone, D. J. Electronic-topological 

investigation of the structure-acetylcholinesterase inhibitor activity relationship in the series 

of n-benzylpiperidine derivatives. Quant. Struct.-Act. Rel., 2001, 20, 31-45. 

[42] Chen, N., Liu, C. K., Zhao, L. Z., Zhang, H. B. 3D-QSAR study of multi-target-directed 

AchE inhibitors based on autodocking. Med. Chem. Res., 2010, 1-12 doi:10.1007/s00044-

00010-09516-x Key: citeulike:8597115. 

[43] AutoDock, http://autodock.scripps.edu 

[44] Lin, G. Structure-reactivity Relationships as Probes to Acetylcholinesterase Inhibition 

Mechanisms by Aryl Carbamates. II. Hammett-Taft Cross-interaction Correlations. J. Chin. 

Chem. Soc.-Taip, 2004, 51, 423-429. 

[45] Lin, G., Liu, Y. C., Lin, Y. F., Wu, Y. G. Ortho Effects in Quantitative Structure-activity 

Relationships for Acetylcholinesterase Inhibition by Aryl Carbamates. J. Enzym. Inhib. Med. 

Ch., 2004, 19, 395-401. 

[46] Roy, K.K., Dixit, A., Saxena, A. K. An investigation of structurally diverse carbamates 

for acetylcholinesterase (AChE) inhibition using 3D-QSAR analysis. J. Mol. Graphics 

Modell., 2008, 27, 197-208. 

19 
 

http://www.openmopac.net/
http://michem.disat.unimib.it/chm
http://www.mathworks.co.uk/products/matlab/index.html
http://www.wavefun.com/
http://www.bmdrc.org/04_product/01_preadme.asp
http://www.cache.fujitsu.com/biomedcache/index.shtml
http://www-01.ibm.com/software/analytics/spss
http://www-01.ibm.com/software/analytics/spss
http://www.r-project.org/
http://autodock.scripps.edu/


[47] Chadhaery, S.S., Roy, K. K., Saxena, A. K. Consensus Superiority of the 

Pharmacophore-Based Alignment, Over Maximum Common Substructure (MCS): 3D-QSAR 

Studies on Carbamates as Acetylcholinesterase Inhibitors. J. Chem. Inf. Model., 2009, 49, 

1590-1601. 

[48] ISIS Draw, MDL Information Systems, Inc., http://www.mdli.com 

[49] Discovery Studio, Accelrys, http://accelrys.com 

[50] Catalyst, Accelrys, http://accelrys.com 

[51] Chadhaery, S.S., Roy, K. K., Shakya, N., Saxena, G., Sammi, S. R.,  Nazir, A., Nath, C., 

Saxena, A. K. Novel Carbamates as Orally Active Acetylcholinesterase Inhibitors Found to 

Improve Scopolamine-Induced Cognition Impairment: Pharmacophore-Based Virtual 

Screening, Synthesis and Pharmaycology. J. Med. Chem., 2010, 53, 6490-6505. 

[52] Kandemirli, F., Saraçoglu, M., Kovalishyn, V. Human Acetylcholinesterase Inhibitors: 

Electronic-Topological and Neural Network Approaches to the Structure-Activity 

Relationships study. Mini Rev. Med. Chem., 2005, 5, 479-487. 

[53] Haq, Z.u., Mahmood, U., Jehangir, B. Ligand-based 3D-QSAR Studies of Physostigmine 

Analogues as Acetylcholinesterase Inhibitors. Chem. Biol. Drug. Des., 2009, 74, 571-581. 

[54] Gaussian, http://www.gaussian.com 

[55] Araújo, J.Q., de Brito, M. A., Hoelz, L. V., de Alencastro, R. B., Castro, H. C., 

Rodrigues, C. R., Albuquerque. M. G. Receptor-dependent (RD) 3D-QSAR approach of a 

series of benzylpiperidine inhibitors of human acetylcholinesterase (HuAChE). Eur. J. Med. 

Chem., 2011, 46, 39-51. 

[56] Rogers, D., Hopfinger, A. J. Application of genetic function approximation to 

quantitative structure-activity-relationships and quantitative structure-property relationships. 

J. Chem. Inf. Comput. Sci., 1994, 34, 854-866. 

[57] Spartan ’06, Wavenfunction, Inc, http://www.wavefun.com 

[58] Modeller, Sali lab, http://salilab.org/modeller 

[59] Procheck, Thornton Group, http://www.ebi.ac.uk/thornton-srv/software/PROCHECK 

[60] Gromacs, ScalaLife Competence Center, http://www.scalalife.eu 

[61] PRODRG, GlycoBioChem, http://www.glycobiochem.com/Site/Home.html 

[62] Yazal, J.E., Rao, S. N., Mehl, A., Slikker Jr., W. Prediction of Organophosphorus 

Acetylcholinesterase Inhibition Using Three-Dimensional Quantitative Structure-Activity 

Relationship (3D-QSAR) Methods. Toxicol. Sci., 2001, 63, 223-232. 

[63] Insight 2000, Molecular Simulations Inc., San Diego. 

[64] Cerius2, Accelrys Inc., http://accelrys.com 

20 
 

http://www.mdli.com/
http://accelrys.com/
http://accelrys.com/
http://www.gaussian.com/
http://www.wavefun.com/
http://salilab.org/modeller
http://www.ebi.ac.uk/thornton-srv/software/PROCHECK
http://www.scalalife.eu/
http://www.glycobiochem.com/Site/Home.html
http://accelrys.com/


[65] Zhao, J.S., Wang, B., Dai, Z. X., Wang, X. D., Kong, L. R., Wang, L. S. 3D-quantitative 

structure-activity relationship study of organophosphate compounds. Chinese Sci. Bull., 2004, 

49, 240-245. 

[66] Kuzmin, V.E., Muratov, E. N., Artemenko, A. G., Varlamova, E. V., Gorb, L., Wang, J., 

Leszczynski, J. Consensus QSAR Modeling of Phosphor-containing Chiral AChE Inhibitors. 

QSAR Comb. Sci., 2009, 28, 664-677. 

[67] Liu, A., Guang, H. M. , Zhu, L. Y. , Du, G. H. , Lee, S. M. Y. , Wang, Y. T. 3D-QSAR 

analysis of a new type of acetylcholinesterase inhibitors. Sci. China Ser. C 2007, 50, 726-730. 

[68] Dock, http://www.cmpharm.ucsf.edu/kuntz/dock.html 

[69] Sheng, R., Shen, Y. H., Lin, X., Luo, Y., Fan, Y. J., Li, J. Y., Xia, H. R., Hu, Y. Z. 3D-

QSAR studies on AChE inhibitory activities of 2-phenoxy-indan-1-one derivatives. Chin. J. 

Med. Chem., 2007, 17, 348-353. 

[70] Shen, L.L., Liu, G. X., Tang, Y. Molecular docking and 3D-QSAR studies of 2-

substituted 1-indanone derivatives as acetylcholinesterase inhibitors. Acta Pharm. Sinic., 

2007, 28, 2053-2063. 

[71] Gold, CCDC, http://www.ccdc.cam.ac.uk/about_ccdc 

[72] Sharma, A., Mishra, A., Prajapat, R. P., Jain, S., Bhandari, A. QSAR analysis of 

indanone and aurone derivatives as acetylcholinesterase inhibitors. J. Chem. Pharm. Res., 

2010, 2, 682-689. 

[73] ChemOffice, CambridgeSoft, http://www.cambridgesoft.com 

[74] Valstat, http://www.ijpsonline.com/article.asp?issn=0250-

474X;year=2004;volume=66;issue=4;spage=396;epage=402;aulast=Gupta;type=0 

[75] Sippl, W., Contreras, J. M., Parrot, I., Rival, Y. M., Wermuth, C. G. Structure-based 3D 

QSAR and design of novel acetylcholinesterase inhibitors. J. Comput. Aided Mol. Des., 2001, 

15, 395-410. 

[76] Grid, Molecular Discovery, http://www.moldiscovery.com/index.php 

[77] Golpe, Multivariate Informetric Analysis S.R.L., http://www.miasrl.com/index.htm 

[78] UHBD, McCammon Group, http://mccammon.ucsd.edu 

[79] Spassova, D.P., Singh, A. K. QSAR for acetylcholinesterase inhibition and toxicity of 

two classes of phosphoramidothioates. SAR QSAR Environ. Res., 2001, 11, 453-471. 

[80] Oasis, Burgas University of Technology, Bulgaria. 

[81] Molecular Modeling Pro, ChemSW, http://www.chemsw.com 

[82] Haq, Z.u., Wellenzohn, B., Tonmunphean, S., Khalid, A., Choudhary, M. I., Rode, B. M. 

3D-QSAR Studies on Natural Acetylcholinesterase inhibitors of Sarcococca saligna by 

21 
 

http://www.cmpharm.ucsf.edu/kuntz/dock.html
http://www.ccdc.cam.ac.uk/about_ccdc
http://www.cambridgesoft.com/
http://www.ijpsonline.com/article.asp?issn=0250-474X;year=2004;volume=66;issue=4;spage=396;epage=402;aulast=Gupta;type=0
http://www.ijpsonline.com/article.asp?issn=0250-474X;year=2004;volume=66;issue=4;spage=396;epage=402;aulast=Gupta;type=0
http://www.moldiscovery.com/index.php
http://www.miasrl.com/index.htm
http://mccammon.ucsd.edu/
http://www.chemsw.com/


comparative molecular field analysis (CoMFA). Bioorg. Med. Chem. Lett., 2003, 13, 4375-

4380. 

[83] Product View, Gaussian, http://www.gaussian.com/index.htm 

[84] Chiou, S.Y., Lai, G. W., Tsai, Y. H., Lin, L. Y., Lin, G. Qsar for Acetylcholinesterase 

and Butyrylcholinesterase Inhibition by Cardiovascular Drugs and Benzodiazepines. Med. 

Chem. Res., 2005, 14, (5), 297-308. 

[85] Solomon, K.A., Sundararajan, S., Abirami, V. QSAR Studies on N-aryl Derivative 

Activity Towards Alzheimer's Disease. Molecules, 2009, 14, 1448-1455. 

[86] Insight-II, AFRL DSRC, http://www.afrl.hpc.mil/index.php 

[87] Gupta, S., Fallarero, A., Vainio, M. J., Saravanan, P., Puranen, J. S., Järvinen, P., 

Johnson, M. S., Vuorela, P. M., Mohan, C. G. Molecular Docking Guided Comparative GFA, 

G/PLS, SVM and ANN Models of Structurally Diverse Dual Binding Site 

Acetylcholinesterase Inhibitors. Mol. Inf., 2011, 30, 689-706. 

[88] Lu, S.H., Wu, W. J., Liu, H. L., Zhao, J. H., Liu, K. T., Chuang, C. K., Lin, H. Y., Tsai, 

W. B., Ho, Y. The discovery of potential acetylcholinesterase inhibitors: A combination of 

pharmacophore modeling, virtual screening, and molecular docking studies. J. Biomed. Sci., 

2011, 18, doi:10.1186/1423-0127-1118-1188. 

[89] Asadabadi, E.B., Abdolmaleki, P., Barkooie, S. M. H., Jahandideh, S., Rezaei, M. A. A 

combinatorial feature selection approach to describe the QSAR of dual site inhibitors of 

acetylcholinesterase. Comput. Biol. Med., 2009, 39, 1089-1095. 

[90] HyperChem, Hypercube, Inc., http://www.hyper.com 

[91] Tsai, K.C., Chen, Y. C., Hsiao, N. W., Wang, C. K., Lin, C. L., Lee, Y. C., Li, M. Y., 

Wang, B. H. A comparison of different electrostatic potentials on prediction accuracy in 

CoMFA and CoMSIA studies. Eur. J. Med. Chem., 2010, 45, 1544-1551. 

[92] QuACPAC, OpenEye Scientific Software, http://www.eyesopen.com 

[93] Gasparini, L., Racchi, M., Binetti, G., Trabucchi, M., Solerte, S. B., Alkon, D. Peripheral 

markers in testing pathophysiological hypotheses and diagnosing Alzheimer's disease. Faseb 

J., 1998, 12, 17-34. 

[94] Racchi, M., Govoni, S. Rationalizing a pharmacological intervention on the amyloid 

precursor protein metabolism. Trends. Pharmacol. Sci., 1999, 20, 418-423. 

[95] Fu, H.J., Li, W. M., Luo, J. L., Lee, N. T. K., Li, M. T., Tsim, K. W. K., Pang, T. P., 

Youdim, M. B. H., Han, Y. F. Promising anti-Alzheimer's dimer bis(7)-tacrine reduces β-

amyloid generation by directly inhibiting BACE-1 activity. Biochem. Biophys. Res. Commun., 

2008, 366, 631-636. 

22 
 

http://www.gaussian.com/index.htm
http://www.afrl.hpc.mil/index.php
http://www.hyper.com/
http://www.eyesopen.com/


[96] Fu, H., Li, W., Lao, Y., Luo, J., Lee, N. T., Kan, K. K., Tsang, H. W., Tsim, K. W., 

Pang, Y., Li, Z., Chang, D. C., Li, M., Han, Y. Bis(7)-tacrine attenudates beta amyloid-

induced neuronal apoptosis by regulating L-type calcium channels. J. Neurochem., 2006, 98, 

1400-1410. 

[97] Zhang, H.Y. One-compound-multiple-targets strategy to combat Alzheimer's disease. 

FEBS Lett., 2005, 79, 5260-5264. 

[98] Buehler, L.K. Advancing drug discovery-beyond design. PharmaGenomics, 2004, 4, 24-

26. 

[99] Keith, C.T., Borisy, A. A., Stockwell, B. R. Multicomponent therapeutics for networked 

systems. Nat. Rev. Drug Discov., 2005, 4, 71-78. 

[100] Barnham, K.J., Masters, C. L., Bush, A. I. Neurodegenerative diseases and oxidative 

stress. Nat. Rev. Drug Discov., 2004, 3, 205-214. 

[101] Cummings, J.L. Alzheimer’s Disease. N. Engl. J. Med., 2004, 351, 56-67. 

[102] Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature, 2004, 

430, 631-639. 

[103] Brown, D.R., Kozlowski, H. Biological inorganic and bioinorganic chemistry of 

neurodegeneration based on prion and Alzheimer diseases. Dalton Trans., 2004, 13, 1907-

1917. 

[104] Youdim, M.B., Buccafusco, J. J. Multi-functional drugs for various CNS targets in the 

treatment of neurodegenerative disorders. Trends Pharmacol. Sci., 2005, 26, 27-35. 

[105] Katayama, T., Imaizumi, K., Manabe, T., Hitomi, J., Kudo, T., Tohyama, M. Induction 

of neuronal death by ER stress in Alzheimer's disease. J. Chem. Neuroanat., 2004, 28, 67-78. 

 

 

 

Captions for Figures 

 

Fig. (1). Some common Acetylcholinesterase inhibitors. 

 

Fig. (2). Scaffold for AChEI of the carbamate type. 

 

Fig. (3). Molecular structures of 2-Benzylpiperidine and Physostigmine. 

 

Fig. (4). Scaffold for AChEI compounds having the phosphate group. 
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Fig. (5). Scaffold for AChEI containing the ketone group.  

 

Fig. (6). Other chemical structures involved during the Acetylcholinesterase inhibition.   

24 
 


	QSAR Applications During Last Decade on Inhibitors of Acetylcholinesterase in Alzheimer’s Disease
	Kai Y. Wong a, Pablo R. Duchowicz a,*, Andrew G. Mercader b and Eduardo A. Castro a
	a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA (UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, 1900 La Plata, Argentina
	b PRALIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina

	Abstract
	1. Background
	2. Multi-criteria QSAR Studies on AChEI by Various Chemical Structures
	2.1 Tacrine Analogues
	2.2 Carbamates
	2.3 Benzylpiperidine and Physostigmine Derivatives
	2.4 Phosphate-Containing Compounds
	2.6 Other Chemical Structures

	3. Integrative Studies on Different Classes of Molecules
	4. Advances in Relevant Methodologies Between 2001 and 2011
	5. Beyond Inhibiting AChE: Other Functions of the Same Molecules
	6. Future Research Directions

