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Abstract

We study the emission of neutral massless (1, 2)~-spin bosons during power-law inflation using

unified spinor field theory. We shows that during inflation gravitons and photons were emitted

with wavelengths (on physical coordinates) that increase as the Hubble radius: λPh ∼ a/H. The

quantised action related to these bosons is calculated and results to be a fraction of the Planck

constant.
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I. INTRODUCTION

It is known that the early universe suffered a quasi-exponential expansion that is called

inflationary epoch[1–4]. This expansion washed away the inhomogeneities of the universe at

large scales (or cosmological scales). Inflationary cosmology is the current paradigm of the

early universe that describes this primordial cosmological epoch. According to this scenario,

the almost constant potential energy V (φ) of a minimally coupled scalar field φ, called

inflaton field, leads to accelerated expansion of space-time. This accelerated expansion of

space redshifts all initial matter, leaving a vacuum stated behind. Inflation helps explain the

observed large-scale smoothness of the universe, as well as the absence of unwanted relics such

as magnetic monopoles. Most excitingly, quantum fluctuations during the inflationary period

can be amplified to density perturbations[5] that seed the formation of galaxies and large-

scale structure in the universe. These scales correspond today between 108 and 1010 light

years, but at that time were bigger than the size of the observable universe. Inflation is now

supported by many observational evidences, in particular, by the discovery of temperature

anisotropies present in the cosmic microwave background (CMB) [6, 7]. In fact, in recent

years there has been an extraordinary development on observational tests of inflationary

models [8]. On the theoretical side, among the most popular and pioneering models of

inflation we would like to mention the supercooled chaotic inflation model [9]. In this

proposal, as we know, the expansion of the universe is driven by a scalar field known as the

inflaton field.

It is expectable that in the inflationary epoch, coherent radiation of bosons with spin s = ~

and s = 2~ has been emitted and the possibility that can be detected today becomes more

close because of the last advances in the detection of gravitational waves[10]. In this work we

study the emission of both kinds of radiation during a power-law inflationary expansion using

the recently introduced formalism called Unified Spinor Fields (USF)[11, 12]. It is expected

that a fraction of the energy density in the universe is given by this kind of coherent radiation,

with wavelengths of the order of cosmological scales. They should be a condensate of bosons

which should be an important part of dark energy in the universe. In this work we calculate

the action due to the both kinds of radiation, and we demonstrate that this action can be

quantised. The paper is organised as follows: In Sect. II we describe the Einstein-Hilbert

action and the quantum structure of space-time. In Sect. III we revisited the dynamics
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of bosons. In Sect. IV we introduce the quantised action. In Sect. V we study power-law

inflation and we obtain the frequency of photons and gravitons in physical coordinates during

inflation. The quantised action for massless neutral boson fields is calculated. Finally, in

Sect. VI we develop some final comments.

II. EINSTEIN-HILBERT ACTION AND QUANTUM STRUCTURE OF SPACE

TIME

If we deal with an orthogonal basis, the curvature tensor will be written in terms of the

connections: Rα
βγδ = Γα

βδ,γ−Γα
βγ,δ+Γǫ

βδΓ
α
ǫγ−Γǫ

βγΓ
α
ǫδ). The Einstein-Hilbert (EH) action

for an arbitrary matter lagrangian density L

I =

∫

d4x
√−g

[

R

2κ
+ L

]

, (1)

after variation, is given by

δI =

∫

d4x
√−g

[

δgαβ (Gαβ + κTαβ) + gαβδRαβ

]

, (2)

where κ = 8πG, G is the gravitational constant and gαβδRαβ = ∇αδW
α, such that δW α =

δΓα
βγg

βγ − δΓǫ
βǫg

βα. When the flux of δW α that cross the Gaussian-like hypersurface defined

on an arbitrary region of the spacetime, is zero, the resulting equations that minimize the

EH action, are the background Einstein equations: Gαβ + κTαβ = 0. However, when this

flux is nonzero, one obtains in the last term of the eq. (2), that ∇αδW
α = δΘ(xα), such

that δΘ(xα) is an arbitrary scalar field. This flux becomes zero when there are no sources

inside this hypersurface. Hence, in order to make δI = 0 in Equation (2), we must consider

the condition: Gαβ + κTαβ = Λ gαβ, where Λ is the cosmological constant. Additionally, we

must require the constriction δgαβΛ = δΘ gαβ, in order to be complied the gauge-invariant

transformations: ¯δW α = δWα−∇αδΘ, where the scalar field δΘ complies �δΘ = 0[13]. On

the other hand, we can make the transformation

Ḡαβ = Gαβ − Λ gαβ, (3)

and the transformed Einstein equations with the equation of motion for the transformed

gravitational waves, hold

Ḡαβ = −κTαβ. (4)
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The Equation (4) provides us with the Einstein equations with cosmological constant in-

cluded. Notice that the scalar field δΘ(xα) appears as a scalar flux of the 4-vector with

components δW α through the closed hypersurface ∂M. This arbitrary hypersurface must

be viewed as a 3D Gaussian-like hypersurface situated in any region of space-time. Further-

more, since δΘ(xα) gαβ = Λ δgαβ, the existence of the cosmological constant Λ, is related to

the existence of the Gaussian hypersurface, where gαβδRαβ = δΘ.

In this work we shall use a recently introduced extended Weylian manifold[11, 12] to

describe quantum geometric spinor fields Ψ̂α, where the connections are

Γ̂α
βγ =







α

β γ







+ Ψ̂α gβγ. (5)

Here

δ̂Γ
α

βγ = Ψ̂α gβγ, (6)

describes the quantum displacement of the extended Weylian manifold with respect to the

classical Riemannian background, which is described by the Levi-Civita symbols in (5).

A. Quantum structure of space-time

In order to describe the quantum structure of space time we consider a the variation δX̂µ

of the quantum operator X̂µ:

X̂α(xν) =
1

(2π)3/2

∫

d3k γ̄α
[

bk X̂k(x
ν) + b†k X̂

∗
k(x

ν)
]

,

such that b†k and bk are the creation and destruction operators of space-time, such that
〈

B
∣

∣

∣

[

bk, b
†
k′

]∣

∣

∣
B
〉

= δ(3)(~k − ~k′)and γ̄α are 4 × 4-matrices that comply with the Clifford

algebra. Moreover, we shall define in the analogous manner the variation δΦ̂µ of the quantum

operator Φ̂µ that describes the quantum inner space:

Φ̂α(φν) =
1

(2π)3/2

∫

d3s γ̄α
[

cs Φ̂s(φ
ν) + c†s Φ̂

∗
s(φ

ν)
]

,

such that c†s and cs are the creation and destruction operators of the inner space, such that
〈

B
∣

∣

∣

[

cs, c
†
s′

]∣

∣

∣
B
〉

= δ(3)(~s−~s′). In our case the background quantum state can be represented

in a ordinary Fock space in contrast with LQG[14], where operators are qualitatively different

from the standard quantization of gauge fields. These operators can be applied to some
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background quantum state, and describes a Fock space on an arbitrary Riemannian curved

space time |B〉, such that they comply with

δX̂µ |B〉 = dxµ |B〉 , δΦ̂µ |B〉 = dφµ |B〉 , (7)

where φα are the four compact dimensions related to their canonical momentum components

sα that describe the spin. The states |B〉 do not evolves with time because we shall consider

the Heisenberg representation, in which only the operators evolve with time so that the

background expectation value of the manifold displacement is null:
〈

B
∣

∣

∣
δ̂Γ

α

βγ

∣

∣

∣
B
〉

= 0. In

order to describe the effective background space-time, we shall consider the line element

dl2δBB′ = dS2δBB′ + dφ2δBB′ = 〈B| ˆδXµ
ˆδX

µ |B′〉+ 〈B| δ̂Φµδ̂Φ
µ |B′〉 . (8)

The variations and differentials of the operators X̂µ and Φ̂µ on the extended Weylian man-

ifold, are given respectively by

δX̂µ |B〉 =
(

X̂µ
)

‖α
dxα |B〉 , δΦ̂µ |B〉 =

(

Φ̂µ
)

‖α
dφα |B〉 , (9)

dX̂µ |B〉 =
(

X̂µ
)

,α
dxα |B〉 , dΦ̂µ |B〉 =

(

Φ̂µ
)

,α
dφα |B〉 , (10)

with covariant derivatives

(

X̂µ
)

‖β
|B〉 =

[

∇βX̂
µ + Ψ̂µX̂β −

(

1− ξ2
)

X̂µΨ̂β

]

|B〉 , (11)
(

Φ̂µ
)

‖β
|B〉 =

[

∇βΦ̂
µ + Ψ̂µΦ̂β −

(

1− ξ2
)

Φ̂µΨ̂β

]

|B〉 . (12)

B. Bi-vectorial structure of inner space

We shall consider the squared of the δ̂Φ-norm on the bi-vectorial space, and the squared

ˆδX-norm on the vectorial space, are

δΦ←→
←→
δΦ ≡

(

δ̂Φµδ̂Φν

)

(γ̄µγ̄ν) , (13)

δX−→
−→
δX ≡ ˆδXα

ˆδX
α
. (14)

such that Φ̂α = 1
2
φ γ̄α and X̂α = 1

2
x γ̄α are respectively the components of the inner and

coordinate spaces. Furthermore, γ̄µ are the (4×4) Dirac matrices that generate the vectorial
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and bi-vectorial structure of the space time

〈

B
∣

∣

∣
X̂µX̂

µ
∣

∣

∣
B
〉

= x2
I4×4, (15)

〈

B
∣

∣

∣

(

Φ̂µΦ̂ν

)

(γ̄µγ̄ν)
∣

∣

∣
B
〉

=

〈

B

∣

∣

∣

∣

1

4

{

Φ̂µ, Φ̂ν

}

{γ̄µ, γ̄ν} − 1

4

[

Φ̂µ, Φ̂ν

]

[γ̄µ, γ̄ν ]

∣

∣

∣

∣

B

〉

= φ2
I4×4.

The γ̄α = Eµ
αγµ matrices which generate the background metric are related by the vielbein Eµ

α

to basis γµ in the Minkowsky spacetime (in cartesian coordinates). In this paper we shall

consider the Weyl basis, such that:
{

γa, γb
}

= 2ηabI4×4. They comply with the Clifford

algebra

γ̄µ =
I

3!
(γ̄µ)2 ǫµαβν γ̄

αβγ̄ν , {γ̄µ, γ̄ν} = 2gµν I4×4,

where I = γ0γ1γ2γ3, I4×4 is the identity matrix, γ̄αβ = 1
2

[

γ̄α, γ̄β
]

.

γ0 =





0 I

I 0



 , γ1 =





0 −σ1

σ1 0



 ,

γ2 =





0 −σ2

σ2 0



 , γ3 =





0 −σ3

σ3 0



 ,

such that the Pauli matrices are

σ1 =





0 1

1 0



 , σ2 =





0 −i
i 0



 , σ3 =





1 0

0 −1



 .

III. DYNAMICS OF SPINOR FIELDS REVISITED

To obtain the relativistic dynamics of the spinor fields Ψα on the extended Weylian

manifold, we must calculate the variation of the extended Ricci tensor δRα
βγα = δRβγ:

δRβγ =
(

δΓα
βα

)

‖γ
−

(

δΓα
βγ

)

‖α
, which result to be:

δ̂Rβγ = ∇γΨ̂β − 3

(

1− ξ2

3

)

gβγ

(

Ψ̂νΨ̂ν

)

− gβγ

(

∇νΨ̂
ν
)

+

(

1− ξ2

3

)

Ψ̂βΨ̂γ = Ûβγ + V̂βγ , (16)
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Ûβγ , and V̂βγ being respectively the symmetric and antisymmetric parts of δ̂Rβγ[11]:

Ûβγ =
1

2

(

∇βΨ̂γ +∇γΨ̂β

)

− gβγ

(

∇νΨ̂
ν
)

− 3

(

1− ξ2

3

)

gβγ

(

Ψ̂νΨ̂
ν
)

+ 3

(

1− ξ2

3

)

{

Ψ̂β, Ψ̂γ

}

,

V̂βγ = −1
2

(

∇βΨ̂γ −∇γΨ̂β

)

+
3

2

(

1− ξ2

3

)

[

Ψ̂β, Ψ̂γ

]

.

Notice that the symmetric and anti-symmetric parts of ˆδRβγ are due to the algebra described

by the quantum operator components Ψ̂β. It is easy to show that ˆδR
α

βαγ = − ˆδRβγ, so that

this tensor gives us redundant information.

On the other hand, the purely antisymmetric tensor δ̂R
α

αβγ ≡ Σ̂βγ , is

Σ̂βγ =
(

∇βΨ̂γ −∇γΨ̂β

)

−
(

1 + ξ2
)

[

Ψ̂β , Ψ̂γ

]

. (17)

It is possible to obtain the varied Einstein tensor on the extended Weylian manifold: ˆδGβγ =

Ûβγ − 1
2
gβγÛ , where Û = gαβÛαβ:

ˆδGβγ =
1

2

(

∇βΨ̂γ +∇γΨ̂β

)

+
1

2
gβγ

[(

1− ξ2

3

)

(

Ψ̂αΨ̂α

)

+
(

∇νΨ̂
ν
)]

+
1

2

(

1− ξ2

3

)

{

Ψ̂β, Ψ̂γ

}

. (18)

In certain cases, it may be useful to describe separately massless and matter spinor fields.

To do it we can make a linear combinations to define the tensors[11] N̂βγ = 1
2
V̂βγ − 1

4
Σ̂βγ

and M̂βγ = 1
2
V̂βγ +

1
4
Σ̂βγ

N̂βγ = −1
2

(

∇βΨ̂γ −∇γΨ̂β

)

+
[

Ψ̂β, Ψ̂γ

]

, (19)

M̂βγ =
1

2

(

1− ξ2
)

[

Ψ̂β, Ψ̂γ

]

, (20)

such that the symmetric tensor ˆδGβγ, with the antisymmetric ones N̂βγ and M̂βγ, describe

all the dynamics of possible spinor fields, which must be conserved on the extended Weylian

manifold:
(

ˆδG
βγ
)

‖γ
= 0,

(

M̂βγ
)

‖γ
= 0,

(

N̂ βγ
)

‖γ
= 0. (21)

Taking into account the gauge-transformations: ˆ̄δGαβ = ˆδGαβ − gαβΛ̂[11], we obtain that

Λ̂ = −3
4

[

∇αΨ̂
α +

(

1− ξ2

3

)

Ψ̂αΨ̂α

]

. (22)
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In this paper we are interested only in the last equation in (21). This equation can be

developed in term of the spinor fields, which in our case are massless bosons

�Ψ̂α − ∇β

(

∇αΨ̂β
)

+ 2
(

∇βΨ̂
α
)

Ψ̂β − 2
(

∇βΨ̂
β
)

Ψ̂α −
(

∇αΨ̂γ
)

Ψ̂γ + 2Ψ̂α
(

∇γΨ̂
γ
)

+
(

∇γΨ̂α
)

Ψ̂γ − 2Ψ̂γ
(

∇γΨ̂
α
)

− 2
[

Ψ̂µ, Ψ̂α
]

Ψ̂µ = 0, (23)

where bosons must comply[11]

〈

B
∣

∣

∣

[

Ψ̂µ(x, φ), Ψ̂ν(x
′, φ′)

]∣

∣

∣
B
〉

=
s2 L2

p

2~2
[γ̂µ, γ̂ν]

√

η

g
δ(4) (x− x′) δ(4) (φ− φ′) . (24)

The ratio
√

η
g
, describes the inverse of the relative volume of the background manifold (with

metric gµν), with respect to the Minkowski one (with metric ηµν). The Fourier expansion

for the spinor field Ψ̂α is

Ψ̂α =
i

~(2π)4

∫

d4k

∫

d4s
δ
(

S←→
←→
Φ
)

δ̂Φ
α

[

As,k e
iK
←→

.
←→
X e

i

~
S
←→
←→
Φ

− B†k,s e
−iK
←→

.
←→
X e−

i

~
S
←→
←→
Φ
]

, (25)

where
δ
(

S←→
←→
Φ
)

δ̂Φ
α = Ŝα, (26)

such that γ̄α are the 4× 4 matrices that generate the hyperbolic background (Riemannian)

space-time and comply with the Clifford algebra, Ŝα = 1
2
sγ̄α, K̂α = 1

2
kγ̄α, Φ̂

α = 1
2
φγ̄α and

X̂α = 1
2
xγ̄α. We define the operatorial products

K←→.
←→
X =

1

4

{

K̂α, X̂β

}

{

γ̄α, γ̄β
}

,

S←→
←→
Φ =

1

4

{

Ŝµ, Φ̂ν

}

{γ̄µ, γ̄ν} − 1

4

[

Ŝµ, Φ̂ν

]

[γ̄µ, γ̄ν] , (27)

such that in order for quantize the spin, we shall propose the universal invariant (n-integer):

〈

B
∣

∣

∣
S←→
←→
Φ
∣

∣

∣
B
〉

= sφ I4×4 = (2πn~) I4×4. (28)

In this work we shall deal only with bosons, in which the creation and destruction operators

must comply[11]

4s2 L2
p

~2

(

|Ak,s|2 − |Bk,s|2
)

= 0, ±
(

c3M3
p

~

)2

, (29)
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where c is the speed of light, Mp is the Planck mass and h = 2π~ the Planck constant.

The conditions (24) are required for scalar bosons (the first equality) and vector, or tensor

bosons (the second equality). On the other hand, in order for the expectation value of

the energy to be positive: 〈B |H|B〉 ≥ 0, we must choose the negative signature in the

second equality of (24). Furthermore, conditions (24) are required for scalar bosons (the

first equality) and vector, or tensor bosons (the second equality). On the other hand, in

order for the expectation value of the energy to be positive: 〈B |H|B〉 ≥ 0, we must choose

the negative signature in the second equality of (24). The expectation value for the local

particle-number operator for bosons with wave-number norm k and spin s, N̂k,s, is given by1

〈

B
∣

∣

∣
N̂k,s

∣

∣

∣
B
〉

= −nk,s

(

~

c3M3
p

)2 ∫

d4x
√−g

∫

d4φ

〈

B

∣

∣

∣

∣

[

/̂Ψ(x, φ), /̂Ψ
†

(x, φ)

]∣

∣

∣

∣

B

〉

= nk,s I4×4,

(30)

where the slashed spinor fields are: /̂Ψ = γ̄µΨ̂µ, /̂Ψ
†

=
(

γ̄µΨ̂µ

)†

. Furthermore, these fields

comply with the algebra

〈

B

∣

∣

∣

∣

[

/̂Ψ(x, φ), /̂Ψ
†

(x′, φ′)

]∣

∣

∣

∣

B

〉

=
4s2 L2

p

~2

(

|Ak,s|2 − |Bk,s|2
)

√

η

g
δ(4) (x− x′) δ(4) (φ− φ′) ,

(31)

which must be nonzero in order to particles can be created. Notice that this is the case

for bosons with spin non-zero, but in the case of scalar bosons, which have zero spin, one

obtains that (|Ak,s|2 − |Bk,s|2) = 0, and

〈

B

∣

∣

∣

∣

[

/̂Ψ(x, φ), /̂Ψ
†

(x′, φ′)

]∣

∣

∣

∣

B

〉

= 0. This result is

valid in any relativistic scenario.

As was demonstrated in a previous work, massless neutral bosons, with ξ = 0, that

describes the dynamics (23) with (24) and (29), and propagate in an arbitrary background

1 To connect the Fock-space theory and the ordinary quantum mechanics one can introduce the wave

function in position space by using the definition of a kind of nk,s-particle state vector that describes a

system of nk,s particles that are localized in coordinate space at the points x1;φ1...xn;φn:

|x1,x2, ...,xn;φ1, φ2, ..., φn〉 =
1

√

nk,s!
/̂Ψ
†

(x1;φ1)... /̂Ψ
†

(xn;φn) |B〉 ,

where here |B〉 is our reference state. This state is not a vacuum state because it describes a curved

background state, but describes the Riemannian (classical) reference with respect to which we describe

the quantum system.
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space-time, must comply following equation for the wave-numbers of bosons[12]:

[

γ̄β, γ̄θ
]

,θ
− 1

2
gβθ (γ̄ν),θ γ̄ν − 2i kβ

I4×4 +
1

2
gνθ

(

γ̄β
)

,θ
γ̄ν +

i

2
γ̄β k←→

=
s2

2~2







ν

θ ν







[

γ̄θ, γ̄β
]

+
1

2
gβθ







µ

ν θ







γ̄ν γ̄µ −
1

2
gµθ







β

ν θ







γ̄ν γ̄µ, (32)

where k←→ = kαγ̄α and γ̄α = Eµ
αγµ are the components of the basis on the background metric,

which are related by the vielbein Eµ
α with the 4×4 matrices γµ on the Minkowski spacetime.

In our case we shall use cartesian coordinates to describe spacial coordinates. In this paper

we shall use the Weyl representation of the γ-matrices to generate the hyperbolic space-time.

IV. QUANTUM ACTION

In order to describe the quantum action due to photons and gravitons, we shall propose

IQ =
c4

16πG

∫

d4x

∫

d4φ
√−g

〈

B
∣

∣

∣
γ̄µγ̄ν

(

ˆδR
α

µνα + δ̂R
α

αµν

)∣

∣

∣
B
〉

, (33)

where

γ̄µγ̄ν =
1

2
{γ̄µ, γ̄ν} − 1

2
[γ̄µ, γ̄ν ] . (34)

The expression (33) can be written as[11]

IQ =
c4

16πG

∫

d4x

∫

d4φ
√−g

〈

B

∣

∣

∣

∣

1

2
{γ̄µ, γ̄ν} Ûµν −

1

2
[γ̄µ, γ̄ν ] V̂µν −

1

2
[γ̄µ, γ̄ν ] Σ̂µν

∣

∣

∣

∣

B

〉

,

(35)

where the tensor Ûµν is purely symmetric and the tensors V̂µν and Σ̂µν are purely antisym-

metric. By defining the new antisymmetric tensors[11]

N̂µν =
1

2
V̂µν −

1

4
Σ̂µν , M̂µν =

1

2
V̂µν +

1

4
Σ̂µν , (36)

se obtain that the quantum action (35) can be written as

IQ =
c4

16πG

∫

d4x

∫

d4φ
√−g

〈

B

∣

∣

∣

∣

1

2
{γ̄µ, γ̄ν} Ûµν −

1

2
[γ̄µ, γ̄ν ]

(

3M̂µν − N̂µν

)

∣

∣

∣

∣

B

〉

, (37)

that provides all the information about the geometrical quantum nature of the action. In

this work we are interested only in the contributions due to photons and gravitons, which are

given by the last term in (37). In particular we shall study this contribution in a power-law

inflationary model.

10



V. POWER-LAW INFLATION

We are interested in studying the emission of bosonic spinor field particles during inflation.

In particular, we shall consider the case of an inflationary universe where the scale factor

of the universe describes a power-law expansion, and the line element related with the

background semi-Riemannian curvature, is

dŜ2 = ĝµνdx̂
µdx̂ν = dt̂2 − a2(t)η̂ijdx̂

idx̂j , (38)

where the hat denotes that the metric tensor is defined over a semi-Riemannian manifold.

We shall define the action I on this manifold, so that the background action describes the

expansion driven by a scalar field, which is minimally coupled to gravity

I =

∫

d4x
√

−ĝ
[

R̂
2κ

+

[

1

2
φ̇2 − V (φ)

]

]

, (39)

In power-law inflation the scale factor of the universe and the Hubble parameter, are given

respectively by[5]

a(t) = β tp, H(t) =
p

t
, (40)

where β = a0
tp
0

, a0 is the initial value of the scale factor, t0 is the initial value of the cosmic

time, and the background solution for the inflaton field dynamical equation

φ̈+ 3
ȧ

a
φ̇+ V ′(φ) = 0, (41)

is

φ(t) = φ0

[

1− ln

(

α

4πφ2
0G

t

)]

, (42)

where p = (κ/2)φ2
0, β = a0

tp
0

and α = Hf is the value of the Hubble parameter at the end of

inflation. The scalar potential can be written in terms of the scalar field

V (φ) =
3

κH2
f

(

1− 2

3κφ2
0

)

e2(φ/φ0), (43)

which decreases with φ ≥ φ0, such that φ0 is the value of the inflaton field when inflation

starts.

In order to describe the dynamics of the spinor fields, we shall use a metric conformal to

a Minkowski one

dŜ2 = a2(τ)
[

dτ̂ 2 − δ̂ijdx̂
idx̂j

]

, (44)

11



where the conformal time, τ < 0, is related to the cosmic time t, as

τ =
−c tp0

t(p−1)(p− 1)
. (45)

Here, c is the speed of light and the scale factor written in terms of the conformal time, is

a(τ) =
[(p− 1)t0

p]
p

p−1

t0
p

(−c
τ

)
p

p−1

, (46)

and the nonzero Levi-Civita connections, are

4







0

0 0







= 4







0

1 1







= 4







0

2 2







= 4







0

3 3







=







θ

0 θ







=
−4p

(p+ 1)

c

τ
. (47)

A. DYNAMICS OF NEUTRAL MASSLESS, s = ~-BOSONS (PHOTONS) IN

POWER-LAW INFLATION

In this section we shall study the dynamics of arbitrary neutral massless bosons with

unitary spin. We shall make use of the equation (32), which in the case of s = ~ can be

decomposed in two equations

[

γ̄β, γ̄θ
]

,θ
=

s2

2~2







ν

θ ν







[

γ̄θ, γ̄β
]

, (48)

1

2
gβθ (γ̄ν),θ γ̄ν + 2i kβ

I4×4 −
1

2
gνθ

(

γ̄β
)

,θ
γ̄ν −

i

2
γ̄β k←→ = −1

2
gβθ







µ

ν θ







γ̄ν γ̄µ +
1

2
gµθ







β

ν θ







γ̄ν γ̄µ.

(49)

In our case γ̄µ = Eµ
a γ

a, where the vielbein are given by: Eµ
a = a−1(τ) δµa . With the

connections (47), the equations (48) and (49), hold

[

γ̄i, γ̄0
]

,0
=

1

2







ν

0 ν







[

γ̄0, γ̄i
]

, (50)

kj
I4×4 =

1

6

[

γj , γα
]

kα − i

6

1

a(τ)

d [a−1(τ)]

dτ

[

γj, γ0
]

, (51)

k0
I4×4 =

1

6

[

γ0, γα
]

kα. (52)

where subscripts i, j can take values from 1 to 3. The wave-numbers take the values

k0 = −
(

i

4

)

f(τ), k1 = k2 = 0, k3 = ±
(

3i

4

)

f(τ), (53)
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where

f(τ) = −p [(p− 1)tp0c]
2p

p−1 t−2p0

(p− 1)
(−τ) p+1

p−1 . (54)

The squared-norm of massless s = ~-bosons on physical coordinates is

|k|2
a2

=
f 2(τ)

2
> 0, (55)

which tends to zero, as (−τ)→ 0. The reason by which this value is nonzero is because we

are describing massless particles that propagate in the z-direction in an isotropic universe

which is accelerating expanding. However, due to the fact we are dealing with photons,

the k-squared-norm must be null on physical coordinates. Therefore, the effective frequency

and the z-component of the wave-number on physical coordinates should be altered in the

following manner:

(ω

c

)2

≡
(

k̃0
)2

=

[

ℑ
(

k0

a(τ)

)]2

+
|k|2
a2

=

(

3

4

)2

f 2(τ),
(

k̃3
)2

=

(

3

4

)2

f 2(τ), (56)

such that gαβ k̃αk̃β = 0. Therefore, the redefined physical values k̃α, should be the values

experimentally measured.

B. DYNAMICS OF NEUTRAL MASSLESS, s = 2~-BOSONS (GRAVITONS) IN

POWER-LAW INFLATION

In order to study the emission of gravitons during power-law inflation, we shall use the

equation (32), for the case s = 2~. In this case such that equation can be decomposed in

the equations

[

γ̄β, γ̄θ
]

,θ
=

s2

8~2







ν

θ ν







[

γ̄θ, γ̄β
]

, (57)

1

2
gβθ (γ̄ν),θ γ̄ν + 2i kβ

I4×4 −
1

2
gνθ

(

γ̄β
)

,θ
γ̄ν −

i

2
γ̄β k←→ = −1

2
gβθ







µ

ν θ







γ̄ν γ̄µ +
1

2
gµθ







β

ν θ







γ̄ν γ̄µ

+
3 s2

8~2







ν

θ ν







[

γ̄θ, γ̄β
]

.

(58)
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Using the connections (47), we obtain the wave-numbers values during power-law inflation

kj
I4×4 =

1

6

[

γj, γα
]

kα − i

6 a(τ)

d [a−1(τ)]

dτ

[

γj, γ0
]

+
4 i

a(τ)

d [a−1(τ)]

dτ

[

γ0, γj
]

, (59)

k0
I4×4 =

1

6

[

γ0, γα
]

kα. (60)

The resulting wave-number values are

k0 =

(

23 i

4

)

f(τ), k1 = k2 = 0, k3 = ∓
(

69 i

4

)

f(τ), (61)

with f(τ) given by (54). On physical coordinates, the squared-norm for gravitons, is

|k|2
a2

=
529

2
f 2(τ) > 0, (62)

which tends to zero, as (−τ) → 0. Here, we have the same problem that in the case of

photons; the reason by which this value is nonzero is because we are describing particles

that propagate in the z-direction in an isotropic universe which is accelerating expanding.

Therefore, in order for the k-squared-norm be null, the frequency and z-wave number must

be altered on physical coordinates, k̃αk̃
α ≡ gαβ k̃αk̃β = 0:

(ω

c

)2

≡
(

k̃0
)2

=

[

ℑ
(

k0

a(τ)

)]2

+
|k|2
a2

=

(

69

4

)2

f 2(τ),
(

k̃3
)2

=

(

69

4

)2

f 2(τ). (63)

These should be the values measured in an experiment.

C. Quantum action of photons and gravitons

In order to calculate the quantum action (37) due to gravitons and photons, we must

take into account the expression (24). If we consider only massless bosons with spin s = ~

(photons), we obtain

IQ|pho =
3

64
h. (64)

On the other hand, for s = 2~-bosons (gravitons), the action (37) results to be

IQ|grav =
3

16
h. (65)

Notice that in both cases the action is a fraction of the Planck constant h.
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VI. FINAL COMMENTS

We have studied the emission of photons and gravitons during power-law inflation, taking

into account the recently introduced formalism for spinor fields. Our calculations show that

during inflation both kind of bosons were emitted with a frequency decreasing with the

expansion of the universe as H(τ)/a(τ). Therefore the wavelengths on physical coordinates

related to these frequencies λPh = 2π/ω ∼ a/H , increase, as expected, as the Hubble radius.

If we consider that wavelengths at the beginning of inflation were of the order of the Planck

length, at the end of inflation it should be at least e60 times bigger than the Planck length.

As was shown in (30), bosons with s = (1, 2)~ can be created in any relativistic scenario,

and therefore can be created during inflation. Because the wavelengths of photons and

gravitons, are of the order of the Hubble horizon, the present day frequency should be

very low, of the order of the inverse of the edge of the universe. However, they should

be responsible for very large-scale gravitational en electromagnetic primordial fundamental

wavelengths, which are coherent, and could be detected in the future on the extreme (low-

frequencies) range of the primordial electromagnetic and gravitational spectrum. The source

of these kinds of quantum radiation is in the last term of the action (37), which in the case

of neutral massless bosons result to be a fraction of the Planck constant. This result is

independent of the inflationary stage. In other words, this result is the same in any curved

background. In the case of s = ~-bosons is IQ|pho = (3/64) h, and for gravitons it is

IQ|grav = (3/16) h.

Our approach is something different than others recently propossed[15][16] where gravi-

tational waves appears as tensor fluctuations of the background metric tensor. In our case,

an unified description of quantum spinor fields is developed and all these fields are vectorial.

Therefore, photons and gravitons describe a vector (massless) field dynamics (23) on an

extended manifold, and they are distinguished by their spin value. In our case, we have con-

sidered these fields as massless, but it is possible to describe massive photons and gravitons

using ξ 6= 0 in the dynamics for bonsons[the reader can see [11]]. The existence of massive

gravitons would be responsible for deviations of the Newton’s gravitational potential, which

lead to Yukawa-like corrections that were calculated in[16] for the bound on a graviton mass
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derived by LIGO-VIRGO, is[17]: mg < 1.2× 10−12 eV .
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