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Abstract

In this paper a general procedure for the analysis of three-dimensional multiple fatigue crack growth is presented. The crack propagation is

simulated using an incremental crack extension analysis based on the strain energy density criterion and the Paris law. For each crack

extension the dual boundary element method is used to perform single region analysis of the cracked component. Stress intensity factors are

computed along the crack fronts using a displacement-based method. Crack extensions are automatically modelled with the introduction of

new boundary elements along the crack fronts and a localized rediscretization in the area where the cracks intersect the free surfaces. The

capability of the procedure is demonstrated by solving a number of multiple edge-crack examples. Results are compared with experimental

observations.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Fatigue crack growth; Dual Boundary Element Method

1. Introduction

The problem of fatigue crack propagation is of major

concern in the design of structures for use in engineering

applications, making the prediction of crack growth a

challenging problem for structural engineers It is important

to give an accurate estimate of the life expectancy of

mechanical and structural components that can be expressed

in a number of fatigue cycles. Normally, trained technicians

can detect cracks. Cracks up to a certain size are accepted

and are, in fact, allowed in the initial design of the

component by making use of the concept of damage

tolerance.

The problem is further complicated if crack interaction is

considered. Weld joints are typical cases in which the

fatigue crack interaction phenomena arise. In welded

components initial defects are associated with the fusion

and solidification process (cracking, metallurgical trans-

formations, residual stress, inclusions, etc.) and they are

located in a zone which usually has a high level of stress

induced y the geometric discontinuity of the weld toe. Due

to the periodicity in the geometry of the weld toe (specially

for automatic welding), crack initiation points are regularly

distributed along the weld toe, resulting in the formation of

similar periodic arrays of cracks. Experimental and

theoretical results demonstrate that the rate at which small

cracks initiate and propagate is strongly dependent on crack

interaction, microstructural characteristics and residual

stress [1,2]. Propagation and coalescence of these initial

cracks could lead to the formation of a dominant crack, such

that subsequent propagation could result the failure or

instability of the component.

The different ways in which cracks interact depend

primarily on their spatial distribution, applied stresses and

the problem geometry. Although there have been some

advances in the fracture mechanics theory of crack

interaction, it appears that there is still insufficient knowl-

edge to treat this problem with confidence. To simplify

assessment of such defects, a hypothetical simplified

bounding shape is often used. This is known as ‘rechar-

acterization’. The ASME Code Section XI [3] and the BSI

PD6493 Code [4] propose a number of rules for the

recharacterization and the analysis of crack interaction and

coalescence problems. However, these recharacterization
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procedures follow mostly empirical rules which can vary

significantly among different codes, as it was shown by Tu

and Dai [5].

While it is absolutely vital to perform experiments

and mathematical analysis in order to assess the problem

of multiple fatigue crack interaction, it is also necessary

to develop numerical schemes, which allow the engineer

to apply the devised methods to real problems. During

the last decades numerical methods have emerged as

powerful and reliable tools to assess problems involving

cracks. In this sense its is worth to mention the inclusion

of numerical modelling as recommended analysis tool in

the recent Fitness-for-Purpose assessment procedure of

the API 579 [6].

The simulation of general mixed-mode crack growth

using numerical techniques requires the capability of

predicting the direction and amount of crack growth, as

well as the robustness to update the numerical model to

account for the changing crack geometry. It is in this last

aspect of the problem that the BEM presents an important

advantage when compared to domain methods as FEM. An

intrinsic feature common to all domain formulations is the

need for continuous internal remeshing to follow the crack

propagation, sometimes making automatic remeshing a

difficult task. On the other hand the BEM, and in particular

its dual formulation (the Dual Boundary Element Method or

DBEM), dramatically facilitates the remeshing task, as it is

limited to the crack front only.

In this paper the DBEM is presented to model fatigue

crack propagation using an incremental crack extension

analysis based on the strain energy density criterion and the

Paris law. Also presented is an automatic remeshing

procedure, which accommodates model changes in the

original system matrices and allows important savings in

computing time.

2. The dual boundary element method

for three-dimensional problems

2.1. Boundary element formulation

The mathematical degeneration of the BEM when

applied to crack problems, where the two crack surfaces

are considered coplanar was shown by Cruse [7]. Some

special techniques have been devised to overcome this

difficulty. Among these, the most general is the DBEM

introduced by Portela et al. [8]. The DBEM incorporates

two independent boundary integral equations, with the

displacement equation applied for collocation on one of the

crack surfaces and the traction equation on the other.

Consider a body with domain VðXÞ surrounded by a

boundary GðxÞ which in general can be divided into three

surfaces: G þðxÞa and G 2ðxÞ; which are the two coincident

crack surfaces, and G eðxÞ; which is the remaining surface

such that GðxÞ ¼ G eðxÞ þ G þðxÞ þ G 2ðxÞ (see Fig. 1).

The displacement boundary integral equation relating the

boundary displacements ujðxÞ with the boundary tractions

tjðxÞ in the absence of body forces can be written as,

cijðx
0Þuiðx

0Þ þ OGtpijðx
0
; xÞujðxÞ dGðxÞ ¼

ð
G

up
ijðx

0
; xÞtjðxÞ dGðxÞ

ð1Þ

where i; j denote Cartesian components; and ttpijðx
0; xÞ and

up
ijðx

0; xÞ represent the traction and displacement fundamen-

tal solutions at a boundary point x due to a unit load placed at

location x0: The symbol O denotes Cauchy principal value

integral, and its existence is guaranteed if the displacement

field is Hölder continuous. The term cijðx
0Þ is generally a

function of the geometry variation at the boundary point x0:

Providing that x0 is a smooth boundary point, that is, the

outward normal vector to the boundary is continuous at x0;

then it can be shown that cijðx
0Þ ¼ 1=2dij [9]. Expression for

the fundamental solutions tpijðx
0; xÞ and up

ijðx
0; xÞ are given in

the Appendix A.

Assuming continuity of both strains and tractions at x0 on

a smooth boundary, the boundary traction integral equation

is obtained by differentiating Eq. (1) and applying the

material constitutive relationships [9]

1

2
tiðx

0Þ þ niðx
0Þ
ð
y
G

Tp
ijkðx

0
; xÞukðxÞ dGðxÞ

¼ niðx
0ÞO

G

Up
ijkðx

0
; xÞtkðxÞ dGðxÞ ð2Þ

where niðx
0Þ denotes the component of the outward unit

normal to the boundary at x0: The kernels Tp
ijkðx

0; xÞ and

Up
ijkðx

0; xÞ contain derivatives of tpijðx
0; xÞ and up

ijðx
0; xÞ

together with elastic constants. The symbol
Ð
y denotes

Hadamard principal value integral. The factor 1/2 multi-

plying the traction component tiðx
0Þ corresponds to the jump

on the displacement derivatives and on the tractions due to

the limiting process. This factor is the traction counterpart to

the term cijðx
0Þ appearing in the displacement integral

equation. The boundary integral Eqs. (1) and (2) constitute

the DBEM. Expressions for the fundamental solutions

Tp
ijkðx

0; xÞ and Up
ijkðx

0; xÞ can be found in the Appendix.

The number of unknowns involved in the DBEM

formulation can be reduced by writing Eqs. (1) and (2)

Fig. 1. Model boundary division.
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in terms of the crack opening and sliding displacements (see

Aliabadi and Rooke [10]). Thus, the displacement Eq. (1) can

be re-written using a simplified notation as

cijðx
0Þuiðx

0Þ þ O
G e

tpijuj dGþ O
G þ

tpijuj dGþ O
G 2

tpijuj dG

¼
ð
G e

up
ijtj dGþ

ð
G þ

up
ijtj dGþ

ð
G 2

up
ijtj dG ð3Þ

For the case of traction-free crack surfaces and considering

the property of the traction kernel that t
pþ
ij ¼ 2t

p2
ij ;

expression (3) results in

cijðx
0Þuiðx

0Þ þ O
G e

tpijuj dGþ O
G þ

tpijDuj dG ¼
ð
G e

up
ijtj dG ð4Þ

where the new unknowns are given by Duj ¼ uþ
j 2 u2

j : A

similar expression can be obtained for the traction Eq. (2),

considering in this case that T
pþ
ijk ¼ 2T

p2
ijk :

1

2
tiðx

0Þ þ niðx
0Þ
ð
y
G e

Tp
ijkuk dGþ niðx

0Þ þ
ð
y
G þ

Tp
ijkDuk dG

¼ niðx
0Þ O

G e

Up
ijktk dG ð5Þ

Eqs. (4) and (5) constitute the expressions of the EPDBEM

when the relative displacements between the crack surfaces

are introduced as unknowns.

2.2. Modelling and discretization strategy

Because of the continuity requirements in the

displacement and traction fields for the existence of the

traction boundary integral equation, special consider-

ations have to be taken into account regarding the

modeling and discretization strategies The one used in

this work is similar to that proposed initially proposed

for two dimensional problems by Portela et al. [8] and

later extended to three-dimensional problems by Mi and

Aliabadi [11] and Cisilino and Aliabadi [12]. It can be

summarized as follows (see Fig. 2):

† Only one of the crack surfaces is discretized, and the

traction boundary integral Eq. (5) is applied for colloca-

tion. The discretization is done using discontinuous 9-

noded quadratic elements (see Fig. 3(a)). Special elements

are placed on the crack front to reproduce the r variation in

the displacement field at the crack tip.

† Continuous 9-noded quadratic elements are used over

the remaining boundary of the model, except at the

intersection of a crack and a boundary surface. In these

regions edge discontinuous elements (see Fig. 3(b)) are

employed to avoid a common node at the intersection.

The displacement integral Eq. (4) is used to collocate in

both cases.

† Discontinuous 6-noded triangular elements are used

during the propagation process for the rediscretization of

those regions of the boundary where cracks intersect free

surfaces. In order to do this a local automatic remeshing

strategy has been devised. A detailed description of the

remeshing procedure will be given in Section 4.2.

This simple strategy is robust and allows the DBEM

effectively to model general edge crack problems. Crack

tips, crack edge corners and crack kinks o not require special

treatment since they are not located at nodal points here

collocation is carried out. The expressions for the shape

functions for the different elements can be found in Ref. [13]

2.3. Discretized DBEM Expressions

Following the standard procedures the expressions for

the discretized equations for the DBEM can be obtained

from Eqs (4) and (5). In a compact form they are given by

cðx0Þuðx0Þ þ
XNe

n¼1

ð
Gn

tpCT dG

� �
un þ

XNc

n¼1

ð
Gn

tpCT dG

� �
Dun

¼
XNe

n¼1

ð
Gn

upCT dG

� �
tn ð6Þ

for the displacement boundary integral Eq. (4) and

tðx2Þþ
XNe

n¼1

nðx2Þ
ð
Gn

TpCT dG

� �
un

þ
XNc

n¼1

nðx2Þ
ð
Gn

TpCT dG

� �
Dun

¼
XNe

n¼1

nðx2Þ
ð
Gn

UpCT dG

� �
tn ð7Þ

for the traction integral Eq. (5). In these equations Ne and Nc

are the number of elements used in the discretization of the

external boundary Ge and the crack surface Gc; respectively,

while c; u* ;U* and T* denote 3 £ 3 submatrices resulting

from the consideration of the Cartesian components; u;Du;
ant t are 3 £ 1 vectors, and c is a vector containing the

shape functions. The dimension of vector c is 6 £ 1 or 9 £ 1

depending on whether the element under consideration is

triangular or quadrilateral.

Fig. 2. Discretization strategy.

A.P. Cisilino, M.H. Aliabadi / Engineering Analysis with Boundary Elements 28 (2004) 1157–1173 1159



After the collocation point passes through all the

collocation nodes, Eqs. (6) and (7) give a system of linear

equations, which can be expressed in a matrix form as

Hu ¼ Gt ð8Þ

where matrix H contains integrals involving tpij and Tp
ij ; and

matrix G contains integrals involving up
ij and Up

ij: Vectors u

and t consist of all nodal displacements and traction

components on the boundary. Rearranging Eq. (8) according

to the boundary conditions results in

Ax ¼ By ¼ f ð9Þ

where x is the vector containing the boundary unknowns

ui; ti and Dui; and f is the vector for known components

(boundary conditions). All boundary nodal values of ui; ti
and Dui become known after solving Eq. (9).

2.4. Treatment of the Integrals

The problem of the evaluation of singular integrals has

been encountered since the beginning of the BEM Efficient

and accurate evaluation of singular integrals is critical for

the performance of the boundary element formulation.

According to the nature of the kernel, and the relative

position of the collocation point with respect to the element

on which the integration is carried out, four kinds of

integrals can be identified in the DBEM presented in this

work:

† Nearly singular integrals: This term is used to define

integrals which are not singular, but have integrands

which vary sharply as the source point approaches the

integration element. This applies to all kernel functions,

provided that the collocation point does not lie within the

integration element. They are evaluated using standard

Gauss quadrature formulae with an element subdivision

technique as in Lachat and Watson [14].

† Singular integrals: This type of singular integral appears

when the collocation node lies within the integration

element and the singularity of the kernel is of order 1=r:

This applies to kernel the function up
ijðx

0; xÞ: Effective

methods for the evaluation of these integrals are

those based on variable transformation, as the polar

coordinate transformation due to Rizzo and Shippy [15]

Fig. 3. Discontinuous and edge-discontinuous elements.
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and the triangle to square transformation due to Lachat

and Watson [14].

† Strongly singular integrals: Integrals involving kernel

functions presenting a singularity of order 1=r2 are

denoted as strongly singular. The kernel functions

tpijðx
0; xÞ and Up

ijkðx
0; xÞ present this type of singularity.

Two different situations have to be considered when

evaluating strongly singular integrals. The transform-

ation of variable described in the previous item can be

used to reduce the 1=r2 singularity to improve the

accuracy of the so-called off-diagonal terms, i.e. when

the collocation point x0 is on the integration element but

the shape function ci ¼ 0 at x0: On the other hand, the

strongly singular traction integral where ci ¼ 1 at x0

can be indirectly obtained from body motion consider-

ations [9].

† Hyper-singular integrals: This term is used to define

integrals of kernel functions that present singularities of

order 1=r3: This applies to the kernel function Tp
ijkðx

0; xÞ:

Hyper-singular integrals can be evaluated employing a

technique developed by Guiggiani et al. [16] who

utilized a singularity subtraction technique using series

expansions developed by Aliabadi et al. [17]. Details of

its implementation to DBEM problems can be found in

Mi and Aliabadi [18].

3. Fatigue crack propagation

The presence of cyclic loads on a flawed structure or

component can lead to an increase in crack length at each

step, even though the maximum stress intensity factor may

be much less than the critical one. By characterizing fatigue

crack growth using linear elastic fracture mechanics

parameters, it is possible to predict crack growth rates

under cyclic loading.

3.1. Crack extension

Fig. 4 is a schematic log-log plot of the rate of crack

growth per load cycle, da=dN; as a function of the applied

stress intensity factor range, DK ¼ Kmax 2 Kmin; depicted in

Fig. 5. The sigmoidal curve contains three distinct regions.

In the first region, crack growth goes asymptotically to zero

as DK approaches a threshold value DKth: This means that

for stress intensity factors below DKth there is no crack

growth, i.e. there is a fatigue limit. The threshold effect is

believed to be caused by a number of different processes,

which lead to crack blocking. In region II, the log da=dN

tends to vary linearly with respect to the log of DK;finally to

accelerate dramatically in region III as DK approaches Kc;

the fracture toughness of the material.

Paris et al. [19] developed an empirical formula which

relates the rate of growth per load cycle, da=dN; to the stress

intensity factor range DK in the linear region

da

dN
¼ CDKn ð10Þ

where C and n are empirical material constants which may

also depend on load frequency, environment and mean load.

Eq. (10) is normally called the Paris law, and has gained

acceptance in engineering practice.

3.2. Criteria for crack growth direction

There is no unique criterion regarding crack growth

direction. Many theories and hypotheses have been

suggested [20]. Among them the minimum strain energy

density criterion, or S-criterion is selected for this work.

The S-Criterion, was formulated by Sih [20]. It states that

Fig. 4. Typical fatigue crack growth behaviour in metals.

Fig. 5. Definition of stress intensity range.
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the direction of crack growth at any point along the crack

front is towards the region with the minimum value of strain

density factor S: In terms of the of the stress intensity factors

KI;KII and KIII can be written as

SðuÞ ¼ a11ðuÞK
2
I þ 2a12ðuÞKIKII þ a22ðuÞK

2
II þ a33ðuÞK

2
III

ð11Þ

where

a11 ¼
1

16pm
ð3 2 4n2 cos uÞð1 þ cos uÞ

a12 ¼
1

8pm
sin uðcos u2 1 þ 2nÞ

a22 ¼
1

16pm
½4ð12nÞð12 cos uÞþ ð3cos u21Þð1þ cos uÞ�

a33 ¼
1

4pm
ð12Þ

in which m is the shear modulus of elasticity and n the

Poisson’s ratio.

The derivative of SðuÞ with respect to u can be obtained

from expression (11), and the stationary point of SðuÞ

calculated by solving

dSðuÞ

du
¼ 0; 2p , u , p ð13Þ

Finally, Smin is obtained by comparing the values of SðuÞ at

stationary points d2SðuÞ=du 2 . 0:

3.3. Crack closure

Soon after he Paris law (10) gained wide acceptance as a

fatigue crack growth criterion, many researchers came to the

realization that this simple expression was not universally

applicable, as experimental evidence showed that fatigue

crack growth rates exhibit a dependence on the load ratio

R ¼ Kmin=Kmax:

A discovery by Elber [21] provided at least a partial

explanation for the R effect. Elber postulated that crack

closure decreased the fatigue crack growth rate by reducing

the effective stress intensity range. Fig. 5 shows the closure

concept. When a specimen is cyclically loaded between

Kmax and Kmin; the crack faces are in contact below Kop; the

stress intensity at which the crack opens. Elber assumed that

the portion of the cycle which is below Kop does not

contribute to fatigue crack growth. He defined an effective

stress intensity range as follows:

DKeff ¼ Kmax 2 Kop ð14Þ

and also introduced an effective stress intensity ratio:

U ¼
DKeff

DK
¼

Kmax 2 Kop

Kmax 2 Kmin

ð15Þ

Elber also proposed a modified Paris law equation:

da

dN
¼ CðDKeffÞ

n ð16Þ

Eq. (16) has been reasonably successful in correlating

fatigue crack growth data at various R ratios.

Since Elber’s original study, numerous researchers have

confirmed that crack closure does in fact occur during

fatigue crack propagation. Many mechanisms have been

identified for fatigue crack closure; some of them are shown

in Fig. 6. Plasticity-induced closure, Fig. (a), results from

residual stresses in the plastic wake, while roughness-

induced closure, which is shown in Fig. 6(b), is influenced

by microstructure. Oxide-induced closure, Fig. 6(c), is

usually associated with an aggressive environment. In this

mechanism, oxide debris or rather corrosion products act as

a wedge between crack faces. Another mechanism is given

by a stress-induced martensitic transformation at the tip of

the growing crack (see Fig. 6(d)), which results in a process

zone where residual compressive stresses can lead to crack

closure.

4. Crack propagation analysis

In what follows, a numerical procedure for fatigue crack

growth modeling will be introduced The proposed pro-

cedure involves an incremental crack extension analysis

Fig. 6. Fatigue crack closure mechanisms.
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based on the minimum strain energy criterion and the Paris

law. In the first stage the initial crack geometries are

defined, and the BEM is applied to perform a stress analysis

and to calculate the stress intensity factors along the crack

front. The direction of the incremental extension is then

determined using the minimum strain energy criterion,

while the Paris law is employed to calculate the size of the

extension. The incremental extension of the cracks is

modelled by adding new elements at their fronts, together

with an automatic localized remeshing in those regions

where cracks intersect free surfaces (noted here as tip areas).

A new boundary element solution is then carried out for the

new configuration and the process is repeated. The above

incremental analysis is performed until the predefined crack

length is reached.

4.1. Stress intensity factor computation

The relative displacements of the crack surfaces Du

calculated from the boundary element analysis are used in

the near crack tip stress field equations to obtain the local

mixed-mode stress intensity factors. Three sets of stress

intensity factors are computed on each element along the

crack front (points Q in Fig. 7), by using the relative

displacements DuP of the second row of collocation nodes.

These points are referred to from now on as points P (see

Fig. 7).

For any point P located on the crack surface, point Q is

given by the position where a section plane orthogonal to

the plane of the crack and containing point P is normal to the

tangent to the crack front. It is clear that the positions of

points Q depend on the local geometry of the crack front,

and have to be determined in each case. Since the crack

front geometry is given by mapping the local intrinsic

coordinates of the elements ðj1; j2Þ into the global

coordinate system, the positions of points Q cannot be

solved, and have to be found iteratively. In this work this is

done using the bisection method [22].

When the one point formula [10] is employed, stress

intensity factors at points Q can be evaluated using the

expressions:

KQ
I ¼

E

4ð1 2 n2Þ

ffiffiffiffiffi
p

2r

r
DuP

b

KQ
II ¼

E

4ð1 2 n2Þ

ffiffiffiffiffi
p

2r

r
DuP

n ð17Þ

K
Q
III ¼

E

4ð1 2 n2Þ

ffiffiffiffiffi
p

2r

r
DuP

t

where the terms DuP
n ;DuP

b and DuP
t are projections of DuP

the displacement evaluated at point P; on the local

coordinate directions (i.e. normal, binormal and tangential)

at the crack front. Computed K values are then smoothed by

using an interpolation function along the crack front. The

interpolation function KðhÞ is chosen here to be Chebyshev

polynomial [22], where h is the position along the crack

front. In this way stress intensity factors values are not only

smoothed but also determined at the geometrical points Q0

along the crack front (see Fig. 7).

It is well known that the near crack tip stress field fields

on which the expressions (17) for the stress intensity factor

computation are generally accepted in regions along the

crack front far away from any intersection with a free

surface, in other words, where it can be assumed that

a condition approximating to plane strain prevails. It has

been shown (see for example Folias [23] or Benthem [24])

that in the vicinity of the intersection of the crack front and a

free surface, the displacements are not OðrÞ: As a

consequence of this, poor results are generally obtained

when expressions (10) are used to compute K for nodes

close to free surfaces. In order to overcome this problem, K

values for points Q0 at the crack tips are obtained here from

the extrapolation of interior K-values using the same

function KðhÞ cited above.

4.2. Crack extension

The discrete amount Da corresponding to a given number

of load cycles DN at a crack front point where DK occurs

can be computed in an approximate form from Eq. (10) as

Da < CðDKeqÞ
n
DN ð18Þ

where DKeq is the cyclic value of the equivalent stress

intensity factor that accounts for the combined effects of the

mode I, II, and III cyclic loads. Employing the expression of

Keq proposed by Gerstle [25], the resultant expression for

DKeq is

DK2
eq ¼ ðDKI þ BlDKIIlÞ2 þ 2DK2

II ð19Þ

The S-criterion introduced in Section 3.2 is used to calculate

the local direction of crack growth. For each point onFig. 7. Crack front propagation vectors.
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the crack front (points Q in Fig. 7) the stationary point of SðuÞ

is calculated by solving expression (13) using the bisection

method numerically and Smin is obtained by comparing the

values of SðuÞ at stationary points d2SðuÞ=du2 . 0: The

resultant propagation directions can then be referred to the

global system of coordinates and expressed as propagation

vectors ~vQ with components (vQ
x ; v

Q
y ; v

Q
z ), as depicted in Fig. 7.

It is worth noting that the procedure for determining

propagation vectors at the crack front geometrical nodes Q0

varies according to their particular location:

† For corner nodes shared by two crack front elements the

propagation vector ~vQ0

is taken as the average of the

propagation vectors of the two closest neighbouring

points Q:

† For mid-side element nodes the propagation vector is

taken equal to that at the closest point Q:

† For nodes located at the crack tips, the values of the

components of the propagation vector (vQ0

x ; vQ0

y ; vQ0

z ) are

Fig. 10. A prismatic bar with two equal semicircular coplanar cracks under

remote tension; model geometry and predicted crack shapes.

Fig. 9. Schematic representation of the system matrix assembling.

Fig. 8. Crack tip remeshing procedure.
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taken from the extrapolated values of the components of

the propagation vectors of the interior points Q0 and then

projected onto the free surface plane.

4.3. Updating the model geometry and discretization

The strategy developed in this work for updating the

model geometry consists of two parts The first is related to

the crack extension a itself. This is simply done by adding

new elements along the crack front, whose dimensions and

orientations are, respectively, given by crack extensions Da

and propagation vectors (vQ0

x ; vQ0

y ; vQ0

z ) computed at the

geometrical points Q0:

The second part is concerned with the mesh

modification at the crack tip areas. If we consider a

crack tip area such as the one depicted in Fig. 8(a), it is

easy to see that in general, after a given crack extension

the new position of the crack tip (point B) will not

coincide with an element node. Hence the local

redefinition of boundary element mesh will be necessary.

In order to tackle this problem, a local remeshing

strategy has been devised. The remeshing strategy is

shown in Fig. 8 and can be described as follows:

† After the new position for the crack tip is determined

(point B), those elements located in the vicinity of it

(dashed circle in Fig. 8(a)) are removed from the

mesh.

† Those nodal positions defining the undiscretized patch

are identified (points C in Fig. 8(b)).

† Points C together with the previous and actual

positions of the crack tip (points A and B; respect-

ively) are employed for the discretization of the tip

area into triangles by using the Delauny algorithm

[26] (see Fig. 8(c))

† Vertices of the resulting triangles are then used to

define discontinuous triangular elements, such as those

introduced in Section 2.2. The use of discontinuous

elements makes the approach general, since no care

has to be taken regarding the common nodes at crack

edges.

Fig. 11. Crack discretization of the twin coplanar cracks.

Fig. 12. Crack growth curves predicted using FEM and BEM.
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This strategy, which accommodates the required local

mesh modifications into the existing model discretization,

minimises the extra computation necessary to solve the new

configuration; it is also suitable for the automatic simulation

of multiple cracks approaching each other.

4.4. Updating the system matrix

It is easy to see that after each crack extension analysis,

the rediscretization strategy introduced in the previous

section alters only a small portion of the model discretiza-

tion Therefore, only a few elements in the boundary element

system matrix (see Section 2.3) need to be updated in order

to solve the new configuration.

According to the sketch of the system matrix given in

Fig. 9, matrix elements can be identified as:

a: nodes belonging to quadrilateral elements that have

been unaffected by the rediscretization process,

b: nodes still present in the new discretization but which in

the previous discretization were shared with elements

that have been removed (nodes C in Fig. 8(b)),

c: nodes on the previous crack surfaces, except those

located on the crack fronts,

d: nodes located on the old crack front elements,

e: nodes belonging to the new crack front elements,

f: nodes belonging to triangular elements which have not

been affected by the rediscretization process,

g: nodes belonging to the new triangular elements

added to the model.

Of all the listed matrix entries, only those in the hatched

areas have to be updated, since they belong to elements that

have been altered during the model rediscretization. Note

that although the geometry of the old crack front elements is

not altered during crack extension (they correspond to nodes

labelled d), it is necessary to recalculate their entries since in

the new analysis they are considered as standard discon-

tinuous elements.

Fig. 13. Variation of DKI along the crack fronts for each propagation step.

Fig. 14. Evolution of Kmax=Kmin along the crack front.
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5. Examples

In this section a number of examples involving the

propagation of multiple fatigue cracks are presented in order

to demonstrate the capabilities of the proposed procedures.

For each of the examples the evolution of the crack

geometries and the stress intensity factors along the crack

fronts during the propagation process are reported. Effects

of crack interaction and coalescence are also analysed and

compared with experimental observations.

5.1. Two equal coplanar semicircular

This first example consists of a prismatic bar containing

two identical and symmetrical coplanar semicircular cracks

of radius a Specimen dimensions scaled to the original crack

radius a are shown in Fig. 10. The initial distance between

the two adjacent crack tips ðB1 and A2) in Fig. 10 was fixed

equal to 0:4a: The bar was subjected to a remote tensile

stress s at its ends, and the following Paris law was

employed to estimate the crack growth:

Da

DN
¼ 3·10211DK2:92 ð20Þ

The evolution of the crack shapes is shown in Fig. 10 for

seven propagation increments. The crack profiles in Fig.

10 are such that the same number of loading cycles, DN

was taken to develop from one contour to the next. The

reference number of cycles DN0 was fixed at 750 cycles.

Crack coalescence took place between the first and second

propagation increments, and the transition from two

cracks to one was assumed to occur when the cracks

overlapped.

Fig. 11 shows the crack discretization for the initial

configuration and the seven propagation increments. Crack

growth curves for the outer distance and maximum depth

are given in Fig. 12, where they are compared with those

obtained by Kishimoto et al. [27] using finite elements.

Very good agreement is found is general between the

computed results and those from the reference, which

differ only in for the outer distance value in the last

propagation increments.

The stress intensity factors DKI for the growing cracks

are shown in Fig. 13. For each crack, normalized values

of the stress intensity factors are plotted as a function of

the angle between the horizontal axis and a radial line

from the centre of the initial crack. It can be observed that

the value of the stress intensity factor at adjacent crack

tips increased as the cracks approached each other; it

rapidly augmented at the contact zone during the early

coalescence and it stayed high while the single crack

shape was sharply concave. Finally it started to decrease

as the crack adopted a regular front. The evolution of

Fig. 15. Crack surface and top view of the specimen.

Fig. 16. Predicted crack profiles for the second example.
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the DKmax=DKmin is plotted in Fig. 14 together with results

reported by Kishimoto et al. [27]. As can be seen, this

ratio also reached its maximum value during coalescence,

after which it started to decrease tending towards one, i.e.

an iso-K configuration.

Fig. 15 depicts crack propagation in a typical weld

specimen tested at INTEMA within the framework of the

European Community Project INCO DC 950956 ‘High

Performance Computing Simulation for Structural Integrity

Analysis’. Fig. 15(a) shows a post-mortem view of a

fracture surface in which the initial notches, as well as ink

marks showing the evolution of the crack shape can be seen,

while Fig. 15(b) corresponds to a top view of the specimen

showing the strain gauge set-up used to monitor crack

propagation [28]. Although the modelled example does not

correspond exactly to the depicted experiment, it is worth to

note that results in Figs. 10 and 15 show the same qualitative

behaviour providing further evidence to validate the

numerical model.

5.2. Two dissimilar and coplanar semicircular cracks

Consider now the analysis of two dissimilar coplanar

cracks in a specimen with the same characteristics as those

of the first example. The radii of the cracks are such that

the radius of the small crack ða1Þ is half of the large one

ða2 ¼ 2a1Þ; to which all dimensions of the example are

Fig. 17. Variation of DKI along the crack fronts for each propagation step.

Fig. 18. A prismatic bar with two semicircular, out-of-plane parallel cracks

under remote tension.
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referred. The initial distance between the closest crack tips

ðB1 and A2 in Fig. 16) was fixed to be half the initial radius

of the large crack. The same material properties and

propagation law were chosen as for the first example. Fig.

16 shows the evolution of the crack profiles for eight

propagation increments, while the evolution of the mode I

stress intensity factor along the crack fronts is presented in

Fig. 17. The general behaviour in the evolution of the crack

shape and stress intensity factor results are found to be

similar to those of the first example.

5.3. Two offset semicircular parallel cracks

In this example, the case of a prismatic bar containing

two identical offset semicircular parallel cracks is

considered. Dimensions of the bar as well as the relative

positions of the cracks scaled to the crack radius a

are shown in Fig. 18. The bar was subjected to a

remote tensile stress s at its ends and crack growth

estimated using the same Paris law as in the previous

examples.

Fig. 19 is a rear view of the specimen where some of the

boundary elements on its lateral face have been removed to

show the cracks more clearly. Crack geometries correspond

to those resulting after five propagation increments. In this

example the reference number of cycles DN0 was fixed at

3000 cycles and the propagation increments were not

constant. Also shown in Fig. 19 are the discontinuous

triangular elements introduced to the model during the

automatic model rediscretization procedure. The sub-figure

in the top right-hand corner shows the crack propagation on

the free surface.

The results obtained are in good agreement with the

general behaviour reported by Soboyejo et al. [29] in their

experiments; for a specimen of similar characteristics they

also noted a deviation of the adjacent cracks tips as they

approached each other (see Fig. 20). The same behaviour

was observed for the tests carried out at INTEMA. The

photograph in Fig. 21 depicts the propagation process of two

misaligned cracks where it is clear how the adjacent tips

pass each other before coalescence.

The evolution of the stress intensity factor components

DKI;DKII and DKIII are plotted for both cracks in Figs.

22–24. Since cracks propagated out of plane it was no

longer suitable to represent the position on the crack front

as a function of the angle u as before. In this example

position on the crack front is represented by the normalized

Fig. 19. Predicted crack profiles for the third example.

Fig. 20. Deviation of adjacent crack tips before coalescence. Schematic

illustration (after Soboyejo et al. [29]).
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distance given by the ratio of the distance h measured from

the Ai crack tips (see Fig. 18) over the total crack front

length l: Figures show that the behaviour of DKI was

almost unaffected by the presence of the second crack for

the two first propagation increments. This was not the case

after the third increment, however, when the adjacent tips

passed each other and a shielding effect took place

occasioning DKI values to dramatically decrease. In

contrast to DKI;DKII values were early influenced by the

presence of the second crack. Their absolute values

Fig. 21. Top view of specimen showing deviation of adjacent crack tips before coalescence.

Fig. 22. Variation of DKI along the crack fronts for each propagation step.

A.P. Cisilino, M.H. Aliabadi / Engineering Analysis with Boundary Elements 28 (2004) 1157–11731170



achieved a maximum to start with and decreased after the

second crack extension. Note that the asymmetric evol-

ution in the values of DKII made the cracks grow towards

each other. On the other hand the absolute value DKIII

monotonously increased throughout the propagation pro-

cess. However, these values are small when compared to

DKI and are hence not significant.

6. Conclusions

A DBEM procedure for the simulation of three-dimen-

sional multiple fatigue crack growth and interaction has been

presented in this paper. The paper has provided descriptions

of the DBEM formulation, its discretization strategy and

stress intensity factors calculation.

Fig. 23. Variation of DKII along the crack fronts for each propagation step.

Fig. 24. Variation of DKIII along the crack fronts for each propagation step.
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The DBEM single region analysis has proved to be

particularly suitable for solving multiple crack problems,

facilitating the construction of the model and its remeshing

after each crack extension. Crack propagation is modelled

using an incremental crack extension analysis based on the

strain energy criterion and the Paris law. For each crack

extension the DBEM is used to solve the model and the crack

tip stress intensity factors K are computed from the crack

opening and sliding displacements. Crack extensions are

then automatically modelled with the introduction of new

boundary elements along the crack fronts and a localized

rediscretization in the area where cracks intersect the free

surfaces. The devised localized remeshing strategy is robust

and accommodates model changes in the original system

matrices allowing for important savings in computing time.

The procedure was successfully employed to model the

interaction and coalescence of coplanar and non-coplanar

surface fatigue cracks. Obtained results are in agreement

with experimental observations.

Appendix A

The Kelvin fundamental solutions up
ijðx

0; xÞ and tpijðx
0; xÞ

for the displacement boundary integral Eq. (1) are

up
ijðx

0
; xÞ ¼

1

16pð1 2 nÞmr
½ð3 2 4nÞdij þ r;ir;j� ðA1Þ

and

tpijðx
0
; xÞ ¼

21

8pð1 2 nÞr2
½ð1 2 2nÞdij þ 3r;ir;j�

›r

›n

�

2ð1 2 2nÞðr;inj 2 r;jniÞ
o

ðA2Þ

where n ¼ ðn1; n2; n3Þ is the outward normal at the

field point x; and r ¼ rðx0; xÞ represents the distance

between the load point x0 and the field point x; and its

derivatives r;i ¼ ri=r are taken with reference to the

coordinate of x:

Expressions for the fundamental solutions Up
ijkðx

0; xÞ

and Tp
ijkðx

0; xÞ present in the traction boundary integral

Eq. (2) are

Up
ijkðx

0
; xÞ ¼

1

8pð1 2 nÞr2
½ð1 2 2nÞðdijr;k þ dikr;j

2 djkr;iÞ þ 3r;ir;jr;k� ðA3Þ

and

Tp
ijkðx

0
; xÞ ¼

m

4pð1 2 nÞr3
3
›r

›n
½ð1 2 2nÞdijr;k

�

þnðdikr;j þ djkr;iÞ2 5r;ir;jr;k�3nðnir;jr;k þ njr;ir;kÞ

þð1 2 2nÞð3nkr;ir;j þ njdik þ nidjkÞ

2ð1 2 4nÞnkdij

o
; ðA4Þ

respectively.
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