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IntroductIon
There is a large body of evidence linking feeding regimens 
and food components with the circadian system (see refs. 1,2). 
A high-fat diet, that contributes to insulin resistance and inflam-
mation (3), aggravates type 2 diabetes mellitus, stroke, and 
coronary artery disease (4) and can feed back to influence the 
biological clock (5). Indeed, circadian oscillation of many hor-
mones involved in metabolism, such as corticosterone, insulin, 
glucagon, adiponectin, leptin, and ghrelin, becomes disrupted 
in the development of the metabolic syndrome and obesity (1).

Taking high-fat diet–fed rats as a model, we recently 
reported a significant disruption of 24-h pattern of plasma 
prolactin, luteinizing hormone, thyrotropin, testosterone, and 
corticosterone (6). Concomitantly, amplitude of the noctur-
nal pineal melatonin peak decreased by about half, underly-
ing the significant effects that obesity has on the circadian 
apparatus. Indeed, via a number of secreted proteins called 
adipocytokines including hormones, cytokines, growth fac-
tors, complement factors, and matrix proteins, the adipose tis-
sue participates in the regulation of body weight homeo stasis, 
glucose and lipid metabolism, immunity and inflammation 
(see refs. 7–10). This prompted us to examine whether the 

significant disruption of 24-h hormonal pattern seen in high-
fat-fed rats coexists with changes in the daily pattern of several 
circulating adipocytokines.

Methods and Procedures
animals and experimental design
Male Wistar rats (45 days of age) were maintained under standard 
conditions with controlled light (12:12-h light/dark schedule; lights 
on at 0800 hours) and temperature (22 ± 2 °C). Rats were divided into 
two groups: (i) normal diet ad libitum and (ii) high-fat diet ad libitum. 
Both control (4% fat) and high-fat (35% fat) diets were obtained from 
Harlan Iberica, Barcelona, Spain. Diets were balanced for protein as 
a percentage of energy intake and for essential vitamins and miner-
als. The fat source in both the control and high-fat diets was corn 
oil. The high-fat diet contained 4.8 kcal/g and the 4% fat control diet, 
4.0 kcal/g. In place of fat (corn oil), the 4% fat diet contained a slightly 
greater amount of corn starch. Individual daily food intake was 
17 ± 1 g  (normal diet) and 19 ± 1 g (high-fat diet). The percentage of 
food intake at night was 71.4 ± 11.3% (normal diet) and 68.7 ± 9.4% 
(high-fat diet). No gross changes in physical activity timing were 
detected between groups.

When body weight of high-fat-fed rats attained values about 25% 
higher than controls (after 66 days of treatment), rats were killed by 
decapitation under conditions of minimal stress at six different time 
intervals (eight rats per group), every 4 h throughout a 24-h cycle, 
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 starting at 0900 hours. All experiments were conducted in accordance 
with the guidelines of the International Council for Laboratory Animal 
Science. Trunk blood was collected and plasma samples were obtained 
by centrifugation of blood at 1,500 g for 15 min. EDTA (6 g/100 ml) was 
used as an anticoagulant. Samples were stored at −70 °C until further 
analysis.

hormone and adipocytokine assays
Plasma concentrations of insulin, adiponectin, interleukin-1, leptin, 
ghrelin, plasminogen activator inhibitor 1 (PAI-1), and monocyte 
chemoattractant protein-1 (MCP-1) were measured in a multiana-
lyte profiling by using the Luminex-100 system and the XY Platform 
(Luminex, Oosterhout, the Netherlands) (11). Calibration micro-
spheres for classification and reporter readings as well as sheath fluid 
were also purchased from Luminex. Acquired fluorescence data were 
analyzed by the MasterPlex QT software (Hitachi Software Engineering 
America, MiraiBio Group, South San Francisco, CA). All analyses were 
performed according to the manufacturers’ protocols. Tumor necrosis 
factor α (TNFα) and IL-6 were measured by enzyme-linked immuno-
sorbent assays with commercially available reagent sets (Quantikine HS 
Rat TNFα and Quantikine HS Rat IL-6 Immunoassays; R&D Systems, 
Minneapolis, MN)

statistical analysis
Statistical analysis of results was performed by a Student’s t-test, a 
one-way ANOVA or a two-way factorial ANOVA, as stated. For the 
factorial ANOVA, the analysis included assessment of the group effect 
(i.e., the occurrence of differences in mean values between normal 
and high-fat-diet rats), of time-of-day effects (the occurrence of daily 
changes), and of the interaction between the two factors (diet and 
time, from which inference about differences in timing and ampli-
tude could be obtained). Post-hoc Bonferroni’s multiple comparison 
tests in a one-way ANOVA were then employed to show which time 
points were significantly different within each experimental group to 
define existence of peaks. P values <0.05 were considered evidence for 
statistical significance.

results
Table 1 summarizes progression of body weight in the two 
groups of animals. Body weight of high-fat-fed rats attained 
values 23.8% higher than controls after 66 days of treatment.

The effect of a high-fat diet on the levels of glucose and 
insulin in plasma is summarized in Figure 1. A significant 
 hyperglycemia developed in high-fat-fed rats (F = 41.7, P < 
0.00001), glucose levels showing essentially similar daily pat-
terns in both groups of animals, i.e., a nadir at the second part 
of the scotophase. A significant increase in plasma insulin 
occurred in high-fat-fed rats (F = 73.2, P < 0.00001), but this 
effect was not seen at all time points, e.g., at 0100 and 0500 
hours, insulinemia did not differ between groups. Thus, a sig-
nificant interaction “time × diet” was detectable in the factorial 
ANOVA (F = 4.76, P < 0.001).

Figure 2 shows the daily changes of plasma adiponectin, IL-1, 
IL-6, and TNFα in the two groups of animals. When analyzed 
as main factors in the factorial ANOVA, mean levels of adi-
ponectin, IL-1, IL-6, and TNFα augmented in high-fat-fed rats 
(F = 47.4, P < 0.00001; F = 4.68, P < 0.04; F = 8.66, P < 0.005; 
and F = 11.6, P < 0.001, respectively). The daily pattern of adi-
ponectin and TNFα differed significantly between groups as 
shown by a significant interaction “time × diet” in the facto-
rial ANOVA (adiponectin: F = 2.59, P < 0.04; TNFα: F = 8.38, 
P < 0.001), i.e., the maximum adiponectin levels found in the 
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Figure 1 Twenty-four-hour changes in circulating levels of glucose and 
insulin in Wistar male rats fed with normal or high-fat diet, as described in 
Methods and Procedures. Groups of eight rats were killed by decapitation 
at six different time intervals throughout a 24-h cycle. Bars indicate 
scotophase duration. Shown are the means ± s.e.m. Letters indicate 
the existence of significant differences between time points within each 
experimental group after a one-way ANOVA followed by a Bonferroni’s 
multiple comparison test. AP < 0.05 vs. 0500 hours. BP < 0.01 vs. 0900 
hours, P < 0.05 vs. 1700 and 0100 hours. CP < 0.01 vs. 0500 hours. 
DP < 0.02 vs. 2100, 0100, and 0500 hours, P < 0.05 vs. 1300 hours. 
EP < 0.01 vs. 1300 hours. For further statistical analysis, see text.

table 1 Body weight (g) in Wistar male rats fed with normal 
or high-fat diet, as described in Methods and Procedures

Days on diet Normal diet High-fat diet

1 257.5 ± 35.1 263.9 ± 38.1

3 270.1 ± 65.9 294.2 ± 61.6

10 293.9 ± 67.2 331.9 ± 65.6*

14 305.9 ± 62.6 352.2 ± 58.4*

19 325.8 ± 65.1 374.5 ± 60.6*

31 345.8 ± 79.3 407.2 ± 68.1*

38 357.1 ± 59.6 419.9 ± 60.4*

45 368.0 ± 50.1 439.2 ± 62.3*

53 377.7 ± 63.7 455.2 ± 55.6*

60 386.0 ± 63.9 473.1 ± 67.7*

66 397.5 ± 73.6 492.5 ± 60.1*

Shown are the means ± s.d. (n = 48 rats/group).
*P < 0.01 vs. normal diet (Student’s t-test).
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afternoon was phase-advanced to early morning in obese rats 
whereas the nadir in TNFα levels seen in controls at night was 
not longer observed in high-fat-fed rats (Figure 2).

As depicted in Figure 3, high-fat-fed rats showed a signifi-
cant increase in mean values of plasma leptin (expressed as total 
values or on body weight basis, Figure 3a,b, F = 79.3 and 59.9, 
P < 0.00001) and a significant decrease of mean values of total 
or active plasma ghrelin (Figure 3c,d, F = 37.7, P < 0.00001 and 
F = 7.06, P < 0.02). In rats kept under a normal diet, leptin val-
ues peaked at the middle of scotophase whereas in high-fat-fed 
rats, daily variations did not attain significance (Figure 3). The 
relatively higher values of ghrelin seen at night were not longer 
observed in high-fat-fed rats.

Figure 4 shows the daily changes of PAI-1 and MCP-1 in 
both groups of animals. Although PAI-1 levels did not show 
differences between groups, mean plasma MCP-1 levels aug-
mented in high-fat-fed rats (F = 17.8, P < 0.0001). The increase 
was observed at certain time points only (light phase and early 
scotophase). Thus, a significant interaction “time × diet” was 
detectable in the factorial ANOVA (F = 4.71, P < 0.002).

dIscussIon
As expected (12–15), in high-fat-fed rats, increased circulat-
ing levels of leptin and decreased plasma ghrelin occurred, 

together with signs of insulin resistance (i.e., hyperglycemia 
and increased insulin levels). Concomitantly, the increased 
mean levels of plasma IL-1, IL-6, TNFα, and MCP-1 suggested 
the occurrence of a moderate degree of inflammation in high-
fat-fed rats. The normal daily pattern of plasma insulin, leptin, 
ghrelin, adiponectin, TNFα, and MCP-1, and to a lesser extent, 
that of IL-1 and IL-6, became disrupted in experimentally 
obese rats.

There is impressive information indicating that  obesity 
is associated with a low-grade inflammation of the white 
adipose tissue that can subsequently lead to insulin resist-
ance, impaired glucose tolerance, and diabetes (16–18). 
Inflammation in  obesity is indicated by increased circulating 
levels of C-reactive protein and other biological markers of 
inflammation. The  adipose tissue is in obesity characterized 
by an increased production and secretion of inflammatory 
 molecules like TNFα and IL-6, which may have local and sys-
temic effects (16–18). The amounts of TNFα and IL-6 are posi-
tively correlated with body fat and decrease in obese patients 
after weight loss (19,20). Among the biological actions of TNFα 
and IL-6, induction of insulin resistance is paramount; thus, fat 
cells are both a source of and a target of TNFα and IL-6. High-
fat diets like that employed in the present study have been 
shown to produce a significant increase of TNFα, IL-1, and 

P
la

sm
a 

IL
-6

 (
pg

/m
l)

0

50

100

150

200

250

300

0900 h 1300 h 1700 h 2100 h 0100 h 0500 h 0900 h

50

40

30

20

P
la

sm
a 

ad
ip

on
ec

tin
 (

µg
/m

l)

10 A
A

B

0
0900 h 1300 h 1700 h 2100 h 0100 h 0500 h 0900 h

C C

P
la

sm
a 

IL
-1

 (
pg

/m
l)

0

20

40

60

80

100

120

140

160

180 High-fat diet

Normal diet

0900 h 1300 h 1700 h 2100 h 0100 h 0500 h 0900 h

E
F

F

P
la

sm
a 

T
N

F
α 

(p
g/

m
l)

0

100

200

300

400

500

600

700

0900 h 1300 h 1700 h 2100 h 0100 h 0500 h 0900 h

D

Time of day

Figure 2 Twenty-four-hour changes in circulating levels of adiponectin, IL-1, IL-6, and TNFα in Wistar male rats fed with normal or high-fat diet, 
as described in Methods and Procedures. Groups of eight rats were killed by decapitation at six different time intervals throughout a 24-h cycle. 
Bars indicate scotophase duration. Shown are the means ± s.e.m. Letters indicate the existence of significant differences between time points within 
each experimental group after a one-way ANOVA followed by a Bonferroni’s multiple comparison test. AP < 0.05 vs. 2100 hours. BP < 0.05 vs. 0900 
and 1300 hours. CP < 0.02 vs. 0900 and 1700 hours. DP < 0.05 vs. 2100 hours. EP < 0.05 vs. 0900, 2100, 0100, and 0500 hours. FP < 0.05 vs. 0900 
and 1300 hours. For further statistical analysis, see text. IL, interleukin; TNF, tumor necrosis factor.
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IL-6 levels (9). The increased circulating levels of leptin and 
insulin and decreased plasma ghrelin herein reported in high-
fat-fed rats confirm that excess fat accretion is associated with 
hyperleptinemia, hyperinsulinemia, and hypoghrelinemia in 
experimental  animals and humans (9,12,14,15,21,22).

Ghrelin is a 28-amino-acid gastric peptide that in order to 
be active, requires n-octanoylation at serine 3 (ref. 23). As in 
humans (24), a correlation between circulating levels of total 
and active ghrelin was found in rats, with more defined effects 
of the high-fat diet on total ghrelin levels. The relatively higher 
concentration of ghrelin seen at night was not longer observed 
in high-fat-fed rats, a finding that could not be attributed to 
changes in timing of meal intake or physical activity that was 
essentially similar in the two diet groups.

Adiponectin is known to have an important anti-
 inflammatory and antiatherogenic effect that is apparently 
mediated by inhibition of inflammatory cytokines, block-
ing the activation of macrophages and posterior transforma-
tion to foam cells (see refs. 25,26). Although several studies 
point out to a decrease in plasma concentration of adiponec-
tin in  obesity, our present results indicate an increase in mean 

 levels of adiponectin in high-fat-fed rats as well as a signifi-
cant modification in its daily pattern in circulation. The data 
agree with the observations of Naderali et al. who reported that 
after 16 weeks of a high-fat diet, rats had significantly higher 
plasma levels of adiponectin, assayed at a single time point, 
as compared to chow-fed controls (27). Therefore, in dietary 
obese rats, a decrease in adiponectin mRNA levels reported in 
fat (27,28) does not translate to a parallel decrease in plasma 
 adiponectin concentration.

In the stromovascular (nonadipocyte) fraction of adipose 
 tissue from obese rodents, there is an increased number 
of bone marrow–derived macrophages (29). Indeed, white 
adipose tissue from obese animals expresses multiple genes 
usually attributed to macrophages. The mechanism for macro-
phage recruitment to adipose tissue has not been defined in 
detail but presumably includes chemotactic molecules like 
MCP-1, that is synthesized and secreted by preadipocytes 
and mature adipocytes in diet-induced obese mice (30). Our 
present results indicate that a high-fat diet augments the 
mean levels of MCP-1 and disrupts its 24-h pattern. Because 
MCP-1 impairs insulin-stimulated glucose uptake by cultured 
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adipocytes in vitro (31), the increased MCP-1 levels may con-
tribute to the insulin resistance.

Our results on the lack of changes of circulating PAI-1 in 
obese rats were unexpected. PAI-1 is a prothrombotic fac-
tor secreted among other cells, by adipocytes that nega-
tively regulate fibrinolysis by inhibiting tissue plasminogen 
 activator (32). PAI-1 has been associated with insulin resist-
ance,  obesity, impaired glucose tolerance, and type 2 diabetes 
in cross- sectional studies (33). Perhaps the high-fat diet was 
not kept long enough to modify the mean levels or diurnal 
pattern of this adipocytokine.

Summarizing, what is novel from the present results in high-
fat-fed rats is the disruption of the 24-h pattern of some plasma 
adipocytokines, remarkably adiponectin, TNFα, and MCP-1, 
and to a lesser extent, IL-1 and IL-6. Indeed, there is a large 
body of evidence that links feeding regimens, food components, 
and adipose tissue signals with the circadian system (1,2,5). 
A high-fat diet like that employed in the present study can feed 

back to influence the biological clock. We recently reported a 
significant reduction in the nocturnal pineal melatonin peak, 
a key marker of the central oscillator located in the suprachi-
asmatic nucleus, as well as a significant disruption of the 24-h 
pattern of several hormones, in high-fat-fed rats (6).

As the most relevant changes were observed in the circu-
lating levels of adiponectin, TNFα, and MCP-1, the meas-
urement of these adipocytokines in adipose tissue could be 
helpful for further understanding of these physiological 
processes involved. Measurement of the circulating levels of 
C-reactive protein under the present experimental conditions 
could also be helpful to define the intensity of inflammation. 
Likewise, because the presence of circadian clock genes has 
been reported in fat (34), further examination of clock gene 
expression in this tissue may give information on the meta-
bolic implications of the present results.

Collectively, our previous observations and the present 
results suggest that a high-fat intake causing insulin resistance 
and signs of inflammation may disrupt the daily pattern of sev-
eral hormones and adipocytokines, an indication that obesity 
has a significant effect on circadian organization of neuroen-
docrine and immune responses. The observational nature of 
the present study precludes any inference on the mechanisms 
involved. Further studies are needed to describe the physio-
logic consequence of the disrupted pattern of circulating adi-
pocytokine levels in high-fat-fed rats.
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