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Abstract
Stomatal conductance is central for the trades‐off between hydraulics and photosynthesis. We

aimed at deciphering its genetic control and that of its responses to evaporative demand and

water deficit, a nearly impossible task with gas exchanges measurements. Whole‐plant stomatal

conductance was estimated via inversion of the Penman–Monteith equation from data of

transpiration and plant architecture collected in a phenotyping platform.We have analysed jointly

4 experiments with contrasting environmental conditions imposed to a panel of 254 maize

hybrids. Estimated whole‐plant stomatal conductance closely correlated with gas‐exchange

measurements and biomass accumulation rate. Sixteen robust quantitative trait loci (QTLs) were

identified by genome wide association studies and co‐located with QTLs of transpiration and

biomass. Light, vapour pressure deficit, or soil water potential largely accounted for the

differences in allelic effects between experiments, thereby providing strong hypotheses for

mechanisms of stomatal control and a way to select relevant candidate genes among the 1–19

genes harboured by QTLs. The combination of allelic effects, as affected by environmental

conditions, accounted for the variability of stomatal conductance across a range of hybrids and

environmental conditions. This approach may therefore contribute to genetic analysis and

prediction of stomatal control in diverse environments.
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1 | INTRODUCTION

The genetic and environmental controls of stomatal conductance are

essential for the maintenance of leaf water potential at values

compatible with plantmetabolism and for the trade‐off between photo-

synthesis and transpiration (Blatt, 2000; Buckley, 2005). Stomatal

conductance is usually estimated via gas‐exchange measurements at

single‐leaf level, most often under controlled light and vapour pressure

deficit (VPD). Because this method is time‐consuming, it is hardly com-

patible with the analysis of hundreds of genotypes required for precise

genetic dissections (Koester, Nohl, Diers, & Ainsworth, 2016; Stinziano

et al., 2017). Furthermore, even if environmental conditions are main-

tained stable in the gas‐exchange chamber during measurements, the
wileyonlinelibrary.com/jo
light and VPD sensed by plants before measurements largely affect sto-

matal conductance (Lawson & Blatt, 2014). Measurements of stomatal

conductance in naturally fluctuating conditions are therefore most

often associated with low reproducibility and consequently low herita-

bility (Vialet‐Chabrand et al., 2017). Measurements in stable conditions

allow better reproducibility but do not take into account the time

courses of stomatal closure and opening in response to rapid changes

in light (e.g., shading by a cloud; Lawson, Kramer, & Raines, 2012).

Integrated over weeks, this might generate large differences in overall

conductance between genotypes presenting different kinetics of

responses, not observable in stable conditions (Lawson et al., 2012).

The genetic variability of stomatal control has been indirectly eval-

uated via the response of transpiration to VPD (Sinclair, Hammer, &
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van Oosterom, 2005). Genotypic variability was observed in the param-

eters of this response (Sadok & Sinclair, 2009; Yang et al., 2012). A dif-

ficulty arises from the fact that VPD is only one of the determinants of

evaporative demand, among others. The response of transpiration to

VPD can thus only be established under stable light, most often in con-

trolled conditions (Gholipoor, Choudhary, Sinclair, Messina, & Cooper,

2013; Shekoofa, Sinclair, Messina, & Cooper, 2016; Yang et al., 2012),

ensuring full stomatal opening. This can be extended to climates in

which light intensity is high and stable between successive days, pro-

vided that measurements are carried out during a well‐defined time

window (Kholová et al., 2010; Kholová et al., 2016). In contrast, it does

not apply to the genetic analysis of stomatal control in most common

situations in which light and VPD fluctuate simultaneously.

The emergence of phenotyping platforms provides a novel way to

avoid the methodological difficulties raised above (Tardieu, Cabrera‐

Bosquet, Pridmore, & Bennett, 2017). Transpiration rate of thousands

of plants can be measured with a time resolution ranging from a few

minutes to a few hours, thereby allowing one to establish direct rela-

tionships between changes in transpiration rate with those of light

and VPD. However, the spatial variability of light received by

neighbouring plants causes a major difficulty for the establishment of

these relationships (Brien, Berger, Rabie, & Tester, 2013; Kozai &

Kimura, 1977; Stanhill, Fuchs, Bakker, & Moreshet, 1973), together

with the larger proportion of diffuse versus direct light compared to

natural conditions (Poorter et al., 2016). A method has recently been

developed to solve these difficulties through the evaluation of the

amount of direct and diffuse light received by each individual plant

of the greenhouse, obtained by combining imaging with modelling

(Cabrera‐Bosquet et al., 2016). Phenotyping platforms also allow pre-

cise estimation of transpiration rate, plant leaf area, and architecture

of thousands of plants every day, together with soil water potential

and VPD sensed by the same plants (Cabrera‐Bosquet et al., 2016).

Collectively, these data potentially allow one to carry out indirect esti-

mations of stomatal conductance of thousands of plants by inversion

of the Penman–Monteith equation and to analyse the response of

transpiration rate to both light and VPD in hundreds of genotypes,

provided that a sufficient range of variation exists for environmental

conditions within the experimental datasets.

The objective of this work was to develop a non‐invasive,

automatized, and accurate procedure to estimate stomatal conduc-

tance in a high‐throughput phenotyping platform and to perform a

proof of concept of this method via a genome wide association study

(GWAS) of stomatal conductance and of its response to fluctuating

light and VPD. To our knowledge, we present here the first genetic dis-

section of stomatal conductance and of its responses to environmental

conditions via an analysis of the effects of light, VPD, and soil water

potential at quantitative trait locus (QTL) effect level.
2 | MATERIALS AND METHODS

2.1 | Plant material and experiments

A diversity panel of maize hybrids was generated by crossing a

common flint parent (UH007) with 254 dent lines with a restricted

flowering window (Millet et al., 2016). Lines were genotyped using
50 K Infinium HD Illumina array (Ganal et al., 2011), a 600 K Axiom

Affymetrix array (Unterseer et al., 2014), and a set of 500 K markers

obtained by genotyping by sequencing (Sandra Negro, Stéphane

Nicolas and Alain Charcosset, personal communication). After quality

control, 758,863 polymorphic single‐nucleotide polymorphisms (SNPs)

were retained for GWAS analyses.

Four experiments were carried out in the phenotyping

platform PhenoArch (https://www6.montpellier.inra.fr/lepse_eng/

M3P/PHENOARCH‐platform; Cabrera‐Bosquet et al., 2016) hosted

at the M3P, Montpellier Plant Phenotyping Platforms (https://www6.

montpellier.inra.fr/lepse/M3P). Sowing dates were May 14, 2012

(Spring 2012), January 21, 2013 (Winter 2013), May 13, 2013 (Spring

2013), and May 10, 2016 (Spring 2016). In all experiments, plants were

grown in 9 L pots (0.19 m diameter, 0.4 m high) filled with a 30:70 (v/v)

mixture of a clay and organic compost. Three seeds per pot were sown

at 0.025 m depth and thinned to one per pot when leaf three emerged.

In each experiment, two levels of soil water content were

imposed, namely retention capacity (well‐watered, soil water potential

of −0.05 MPa) and water deficit (soil water potential from −0.3 to

−0.6 MPa depending on the experiment). The weight of water in each

pot was calculated at the beginning of the experiment from the weight

of soil and measured soil water content. Soil water content in pots was

maintained at target values by watering each pot three times per day,

using watering stations made up of weighting terminals with 1 g

accuracy (ST‐Ex, Bizerba, Balingen, Germany) and high‐precision

pump‐watering stations (520 U, Watson Marlow, Wilmington, MA,

USA). This technique allowed high reproducibility of soil water

potential between genotypes presenting contrasting leaf areas. Each

hybrid was replicated: three times for the well‐watered and water

deficit treatments in Winter 2013, Spring 2013, and Spring 2016;

and 4 and two times in Spring 2012 for the well‐watered and water

deficit treatments, respectively.

Air temperature and humidity were measured at six positions in

the platform every 15 min (HMP45C, Vaisala Oy, Helsinki, Finland).

Daily incident photosynthetic photon flux density (PPFD) over each

plant within the platform was estimated by combining a 2D map of

light transmission, and the outside PPFD measured every minute and

averaged every 15 min with a sensor placed on the greenhouse roof

(SKS 1110, Skye Instruments, Powys, UK). The greenhouse tempera-

ture was maintained at 26 ± 3 °C during the day and 18 ± 1 °C during

the night. Supplemental light was provided either during daytime when

external solar radiation was below 300 W m−2 or to extend the

photoperiod by using 400 W HPS Plantastar lamps (OSRAM, Munich,

Germany) with 0.4 lamps m−2. The amount of light supplied by

lamps was taken into account in the calculations of local PPFD

(Cabrera‐Bosquet et al., 2016).
2.2 | Image acquisition and analysis

Red‐green‐blue (2056 × 2454) images taken from 13 views (12 side

views from 30° rotational difference and one top view) were captured

daily for each plant during the night. Top and side cameras were

calibrated using reference objects in order to convert pixels into

mm2. Plant pixels from each image were segmented from those of

the background and used for estimating the whole plant leaf area

https://www6.montpellier.inra.fr/lepse_eng/M3P/PHENOARCH-platform
https://www6.montpellier.inra.fr/lepse_eng/M3P/PHENOARCH-platform
https://www6.montpellier.inra.fr/lepse/M3P
https://www6.montpellier.inra.fr/lepse/M3P
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and fresh biomass as described in Brichet et al. (2017). Calibration

curves were constructed using multiple linear regression models based

on processed images taken in 13 directions against measurements of

leaf area and fresh biomass at harvest.

The time courses of leaf area and plant fresh biomass were then

fitted individually to a Gompertz equation,

y ¼ a×e − e b − cxð Þ
(1)

using appropriate R scripts (R Core Team, 2014). Time courses were

expressed as a function of thermal time in equivalent days at 20 °C

(d20°C, Parent, Turc, Gibon, Stitt, & Tardieu, 2010). Leaf area and fresh

biomass were therefore estimated at specific times by interpolation

between nonsynchronous measurement points.

2.3 | Estimation of evaporative demand in the
greenhouse

The transpiration rate of the reference hybrid (B73 × UH007) was first

calculated every 15 min from changes in pot weight corrected for the

effect of changes in plant fresh weight and of soil evaporation

estimated from the changes in the weight of pots carrying no plant.

Transpiration rate per unit leaf area was then calculated by dividing

transpiration by the leaf area estimated in the same plants on the same

days. Then, we parametrized the Penman–Monteith equation for

mimicking the transpiration of the reference hybrid,

ETref ¼ s×Rn þ ρ×Cp×ga×VPD

λ× sþ γ× 1þ ga
gs

� �� � (2)

Inputs were net radiation (Rn) estimated for each individual plant

position in the greenhouse (Cabrera‐Bosquet et al., 2016) and a mean

VPD measured in eight locations of the greenhouse. Because ETref

refers to the maximum transpiration rate for the considered environ-

mental conditions, gs in Equation 2 was the maximum value reported

for maize (Tardieu & Simonneau, 1998). Temperature‐dependent coef-

ficients (ρ, kg m−3; γ, Pa K−1; λ, J kg−1 and s, Pa K−1) took into account

mean air temperature at each time step (Jones, 1992). Because of the

complex nature of air circulation within a greenhouse, which would

make any calculation of aerodynamic conductance (ga) risky and

unprecise, we have calibrated it based on measured transpiration of

the reference hybrid in each experiment.

2.4 | Calculation of transpiration of individual plants

The individual pot weight was recorded four times per day, before and

after each irrigation. The amount of water used by each plant was esti-

mated as

Water use litres H2Oð Þ ¼ ∑ PWA timei −PWB timeiþ1ð Þ (3)

where PWA timei is the pot weight (g) after irrigation at time i,

and PWB timei+1 is the pot weight (g) before irrigation at time i + 1.

Evapotranspiration was estimated as the difference between pots

weights measured four times per day (three during day‐time irrigation

and one after night‐time imaging). Direct soil evaporation was calcu-

lated in pots carrying plastic plants. Plant transpiration was calculated
by subtracting the evaporation from evapotranspiration of each pot,

after correction for plant biomass. Transpiration rate was estimated as

TR mg H2O m − 2s − 1
� � ¼

PWA timei −PWB timeiþ1ð Þ− EPWA timei −EPWB timeiþ1ð Þ
LAiþ1×time iþ1ð Þ − i

(4)

where PWA timei is the pot weight (mg) after irrigation at time i, minus

plant weight at time i, PWB timei+1 is the pot weight (mg) before

irrigation at time i + 1, minus plant weight at time i + 1, EPWA timei

is the weight (mg) of pot without plant after irrigation at time

i, EPWB timei+1 is the weight (mg) of the pot without plant before irri-

gation at time i + 1, LAi+1 is the leaf area (m2) of the plant estimated

through image analysis at time i + 1 and time(i+1)− i is the time (s)

between two subsequent pot weights.

For each hybrid under each watering treatment, data from four

experiments were combined, and a linear regression was used to

describe the response of the transpiration rate to ETref. Given the lin-

ear regression, a segmented model was used to estimate a broken‐line

relationship using the “segmented” package in R (R Core Team, 2014).

Selection of the best model was based on Davies test (Davies, 2002).

For those genotypes showing a linear response, we considered the

maximum ETref as the breakpoint for genetic analysis.

2.5 | Whole‐plant calculation of stomatal
conductance and gas‐exchange measurements

An integrated stomatal conductance was estimated by inversion of the

Penman–Monteith equation, from values of transpiration rate (mg

H2O m−2 s−1), net radiation (Rn, W m−2), VPD (kPa), and the optimized

value of aerodynamic conductance for each experiment, as presented

in Equation 2 (ga m s−1).

gs ¼
gaTR λ γ

s Rnþ ρ Cpga VPD−TR λ sþ γð Þ (5)

This calculation was performed over 4 time‐periods per day for

20 days, totalizing 40 to 80 periods for each of the 1,680 plants of

the greenhouse in each of the four studied experiments (a total of

200 to 320 periods per genotype). Maximum stomatal conductance

(gsmax) was estimated for each genotype in each experiment × scenario

combination and for each scenario by combining all experiments. In

those experiments conducted in spring (high light levels) where the

response of stomatal conductance to PPFD was usually saturated,

the mean gs beyond 700 μmol m−2 s−1 was considered as gsmax. Other-

wise, in those experiments with low incident light and consequently

without saturating response, gsmax was considered by averaging gs

values beyond 400 μmol m−2 s−1.

A portable open gas‐exchange system (Li‐Cor 6400XT; Li‐Cor Inc.,

Lincoln, NE, USA) was used to measure gas‐exchange of the youngest

fully expanded leaf blade in 13 of the 254 hybrids of the panel,

selected for their contrasting transpiration rates in previous experi-

ments. The stomatal conductance of these leaves was measured inside

the glasshouse in Exp. Spr16 from 10:00 to 14:00 hr (solar time) at

1,500 μmol photons m−2 s−1 of PPFD, a leaf temperature of 28 °C, a

leaf‐to‐air vapour pressure deficit of approximately 1.2–1.5 kPa, and
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an ambient CO2 of 400 μmol mol−1. Stomatal conductance was also

measured in situ on nonshaded leaves of the canopy receiving

direct light, by using a porometer (Delta T AP4; Delta‐T Devices Ltd,

Cambridge, UK).

2.6 | Genetic analysis

Genotypic means were calculated for each hybrid using a mixed model

containing fixed hybrid effects, random replicate, and spatial effects

and spatially correlated errors fitted with ASReml‐R (Butler, Cullis,

Gilmour, & Gogel, 2009). The spatial model was a first order

autoregressive model for both rows and columns (Gilmour, Cullis, &

Verbyla, 1997). Individual mixed models were fitted in each experi-

ment by treatment combination:

Y ¼ Gþ Row þ Col þ Rep þ E (6)

where Y is the vector of phenotypic observations, G the fixed geno-

typic effect, Row the random row effect, Col the random column effect,

Rep the random replicate effect, and E the residual error variance with

an AR1(Row):AR1(Col) correlation structure. The best linear unbiased

estimations of the genotypic means were then used for GWAS. The

same model, but with random genotypic effects, was used to estimate

heritability. Generalized heritability interpreted as broad‐sense mean‐

line heritability was estimated as

H2 ¼ 1−
PEV
2σ2G

(7)

where PEV is the mean pairwise prediction error variance of

differences between genotypes, and σ2G is the variance component

associated with genotypic effects (Cullis, Smith, & Coombes, 2006).

GWAS was performed on individual traits for each experiment by

treatment combination using the procedure presented in Millet et al.

(2016). Briefly, we used the single locus mixed model

Y ¼ μþ Xβþ Gþ E (8)

whereY is the vector of phenotypic values, μ the overall mean, X is the

vector of SNP scores, β is the additive effect, and G and E represent

random polygenic and residual effects. As in Rincent et al. (2014),

the variance–covariance matrix of G was determined by a genetic

relatedness (or kinship) matrix, derived from all SNPs except those on

the chromosome containing the SNP being tested. The SNP effects β

were estimated by generalized least squares, and their significance

(H0: β = 0) tested with an F‐statistic. Analyses were performed with

FaST‐LMM v2.07 (Lippert et al., 2011).

An initial set of SNPs was selected on the basis of the results of

single locus GWAS by including all SNPs with −log10 (p value) larger

than 5. Physical positions of significant SNPs were projected on the

consensus genetic map for Dent genetic material (Giraud et al.,

2014). Candidate SNPs distant less than 0.1 cМ were considered as

belonging to a common QTL, described via the most significant SNP

in the QTL and the interval between all SNPs belonging to the QTL.

Co‐locations between QTLs were checked by comparing QTLs

intervals (defined by all SNPs contained in the QTL) and checking

for overlap.
2.7 | Dissection of G × E and QTL × E for gsmax

To investigate the structure of G × E, we first fitted a multisituation

mixed model with random effects for genotype (G), genotype by sea-

son interaction (G × S), genotype by water treatment interaction

(G × T), and experiment specific residual error variance (E).

Y ¼ Env þ PC þ PC×Env þ G þ G×S þ G×T þ E (9)

where Y is the vector of all phenotypic observations, Env represents

fixed situation‐specific means, and PC denotes a fixed term that refers

to the first 10 principal components of the kinship matrix used to cor-

rect for population structure (Millet et al., 2016) and PC × Env the sit-

uation by PC interaction.

The variance components of random terms were extracted follow-

ing the procedure presented in Millet et al. (2016), and the standard

deviations were expressed as a percentage of the general phenotypic

mean. Any effect in the model can contribute to differences in pheno-

type for individual genotypes within a range of ± twice the standard

deviation. This range was also expressed as a percentage of the general

mean.

Then for investigating the structure of the QTL × E effects, we

fitted a multienvironment model with multiple QTLs,

Y ¼ Env þ PC þ PC×Env þ ∑q∈QQTL
Env
q þ G þ G×S þ G×T þ E (10)

with QTLEnvq ¼ QTLq þ QTL×Envð Þq . We have fitted environment‐spe-

cific QTL effects that are the sum of a QTL main effect and a QTL by

environment interaction term. The set of QTL used in the model was

determined by a backward elimination process over the complete set

of QTLs. To assess the amount of genetic (co)variance explained by

the QTLs, we compared the estimated variance components in Equa-

tion 9 with those obtained in Equation 10.

Allelic effects of all candidate QTLs were extracted from Equa-

tion 10. When no indication is provided, a positive effect indicates that

the reference hybrid allele increased the trait value, whereas a negative

effect indicates that the alternative allele increased the trait value.

Finally, a model considering QTL main effects, the environmental

variables PPFD, VPD and soil water potential and their interaction with

QTLs was used to predict gsmax

gsmax ¼ μþ PPFDþ VPDþ SWPþ PPFD×VPDþ PPFD×SWP

þ VPD×SWPþ ∑q∈QQTL
EnV
q þ E (11)

where μ is the phenotypic mean, PPFD,VPD,SWP the environmental

variables, and QTLEnvq ¼ QTLq þ QTL×Envð Þq. We have fitted

environment‐specific QTL effects that are the sum of a QTL main

effect and a QTL by environmental variable interaction. For each of

the QTLs, the part due to (QTL×Env)q was dissected in the

interaction of QTLs with environmental variables PPFD, VPD, and soil

water potential:

QTL×Envð Þq ¼ QTLq×PPFD
� �þ QTLq×VPD

� �þ QTLq×SWP
� �

(12)
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2.8 | Candidate genes

Each QTL of gsmax was queried in the maize 5b annotation file

ZmB73_5b_FGS_info.txt downloaded from maizesequence.org using

a custom Perl script. Gene products were sought at the National

Center for Biotechnology Information database (www.ncbi.nlm.nih.

gov; verified April 3, 2017).
3 | RESULTS

3.1 | A large variability of growth and transpiration
rate over a range of environmental conditions, with
marked genotypic differences

Four datasets corresponding to experiments carried out at different

times of the year were combined to generate a large range of environ-

mental conditions, with mean values of incident light from 2.8 to

7.7 MJ m−2 d−1 (Table 1), a day‐to‐day coefficient of variation (CV) of

VPD from 22% to 40% depending on experiments and soil water

potentials ranging from −0.03 to −0.55 MPa, obtained via controlled

irrigation (Table 1). This translated into large phenotypic differences

across experiments. Leaf area ranged from 0.26 to 0.41 m2 pl−1

(Figure 1a,b), total water use from 1.9 to 4.5 l pl−1 (Figure S1), and fresh

biomass from 193 to 330 g pl−1 (Figure S1). The genotypic variability in

the diversity panel was high for fresh biomass and leaf area, with

variabilities of 47% and 52%, respectively, at early phenological stages

(24 d20°C after sowing), and 46% and 47% at late stages (45 d20°C

after sowing; Figure 1a, S1a). Broad sense heritability ranged from

0.53 to 0.78 across experiments for fresh biomass and from 0.53 to

0.83 for leaf area (Table S1). A GWAS analysis resulted in multiple

QTLs presented in Table S2.

A reference evapotranspiration (ETref) was calculated on the basis

of changes in pot weight of the reference hybrid, B73 × UH007,

recorded every 15 min in all experiments (inset Figure 2), corrected

for the effect of plant fresh weight and of soil evaporation, and divided

by the leaf area estimated in the same plants on the same days. We

have then parametrized the Penman–Monteith equation for mimicking

the transpiration of reference hybrid. The resulting ETref closely

followed this transpiration (Figure 2) and ranged from 8 to 19 mg

H2O m−2 s−1 (Figure 1c). The transpiration of individual hybrids

showed a large genotypic variability (58% over the whole set of

experiments, Figure 1b), with a broad sense heritability of 0.58

(Table S1). It was related to ETref with a slope that largely varied

between hybrids (Figure S2 p < .001), indicating genotypic differences

in stomatal control.
TABLE 1 Environmental variables and watering scenarios of the four expe
visible leaves) to 45 d20°C (14 visible leaves)

Season Year ID
Tmax Tmin Tmean VPDmax

(°C) (°C) (°C) (kPa)

Spring 2012 Spr12 32.8 20.7 25.1 2.9

Winter 2013 Win13 29 19.5 21.3 2.4

Spring 2013 Spr13 32 17.1 23.4 2.6

Spring 2016 Spr16 31.4 16 23.5 1.9

Note. VPD = vapor pressure deficit; WW = well‐watered; WD = water deficit.
Overall, this dataset was therefore an interesting case study for

testing our method of estimation of stomatal conductance and for

assessing the genotypic variability of stomatal conductance and of its

responses to environmental conditions.
3.2 | High‐throughput calculation of stomatal
conductance at whole‐plant level

Stomatal conductance was calculated for each plant by inversion of

the Penman–Monteith equation (Equation 5), taking into account

measured values of transpiration rate, net radiation, VPD, and leaf

area. This whole‐plant stomatal conductance increased with PPFD,

with a larger scatter of points compared with that obtained by using

a gas‐exchange equipment with controlled light on a single leaf

(Figure 3a,b). However, this scatter took into account different plants

of the same hybrid on different days and was similar to that of

measurements performed on different plants and days with the

gas‐exchange device (not shown). Furthermore, gs at the whole‐plant

level showed a lower plant‐to‐plant variability than in situ values

at leaf level measured with a porometer on plants receiving natural

light (Figure S3). As expected, gs at the whole‐plant level was

lower than that at leaf level because the whole‐plant gs integrated

the whole leaf area with only part of it receiving full light

(inset Figure 3b).

Maximum stomatal conductance (gsmax) was estimated for each

hybrid in each combination experiment × scenario, as the mean gs

at PPFD beyond 700 μmol m−2 s−1, or beyond 400 μmol m−2 s−1 in

the winter experiment with low incident light. Mean values

corresponding to each hybrid closely correlated with those measured

with a gas exchange device in well‐watered conditions but with lower

values (R2 = 0.54, Figure 4a). The difference in gsmax between well‐

watered and water deficit conditions was also accounted for by our

method (overall R2 = 0.85, CV of error of 13%). In water deficit, the

genotypic variability of gsmax did not match between single‐leaf and

whole‐plant measurements, possibly because of different distribu-

tions of stomatal closure between leaves in the tested hybrids. The

estimated gsmax was also positively associated with biomass

accumulation per unit leaf area over the whole panel (Figure 4b,

overall R2 = 0.58). This relationship probably reflected the control that

stomatal conductance exerts over cumulated photosynthesis through

the regulation of transpiration rate (Fig. S4; R2 = 0.66, CV = 7.5%).

Overall, these results suggest that the method presented here can

be used as a surrogate of gas‐exchange for analysing the genetic

variability of stomatal conductance.
riments. Data are averaged for a period running from 24 d20°C (eight

VPDmin VPDmean Lightmean Scenario
(kPa) (kPa) (MJm−2) WW (MPa) WD (MPa)

0.6 1.3 5.9 −0.09 −0.45

0.9 1.4 3.2 −0.09 −0.35

0.6 1.1 6 −0.08 −0.3

0.3 1.0 7.7 −0.03 −0.55

http://maizesequence.org
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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FIGURE 1 Genotypic and environmental variabilities of leaf area and
transpiration rate in the studied dataset. (a) Change with time of leaf
area for the 254 hybrids of the panel during one experiment (Exp.
Spr12). (b) Leaf area at 45 d20°C after sowing in the eight situations.
(c) Mean transpiration rate per unit leaf area from 24 to 45 d20°C. In (a),
green, blue, and red lines represent plants of the hybrids with
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represent the rest of the panel. Each point represents one
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genotypic variability in well‐watered (light blue) and water deficit (red)
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5%, 25%, 50%, 75% and 95% quantiles [Colour figure can be viewed at
wileyonlinelibrary.com]
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3.3 | Genetic analysis of gsmax revealed QTLs whose
allelic effects responded to VPD, light, or soil water
potential

A large genotypic variability was observed for gsmax in each experiment

(as illustrated for one experiment in Figure 5), with a genotypic

variation (G) affecting the mean gsmax by ±8.6% (Table 2). The

genotype by environment interaction affected gsmax by ±3.8% for

watering treatments (G × T) and ±4.4% for seasons (G × S; Table 2,
Figure S5). The broad sense heritability of gsmax was 0.57 and 0.56

under well‐watered and water deficit, respectively, in Exp. Spr16

(Figure 5; Table S1).

A GWAS analysis was performed on gsmax estimated in each

experiment or combining all experiments. This resulted in 29 and 20

QTLs under well‐watered and water deficit conditions, respectively

(Table S2). Among those, 16 QTLs were retained after using the

backward elimination procedure that allows eliminating redundant

QTLs. They captured 58% of the additive genetic variance of gsmax

(Table 2) and an appreciable part of the genotype by environment

interaction, namely 33% and 40% of the G × T and the G × S

interactions (Table 2). Sixteen of them co‐localized, within 0.1 cM, with

QTLs for transpiration rate (Fig. S6; Table S2), three with QTLs of fresh

biomass, and six with QTLs of leaf area (Table S2). Four co‐localized

with QTLs of the slope of the relationship between transpiration rate

and evaporative demand (Fig. S6).

The 16 QTLs of gsmax harboured from 1 to 19 genes, except for

QTLs on bins 2.05 and 4.05 (Table 3). Their allelic effects largely

differed between experiments, opening the possibility that QTL

effects may depend on the environmental conditions that affect

phenotypic values of stomatal conductance. This translated into

the classical result of a high QTL by environment interaction, with

only two of the 16 QTLs significant in more than five experiment by

water regime combinations (Table S3). We have therefore tested if

the effects of light, VPD, and soil water potential on stomatal

conductance translated at QTL level, thereby indicating possible

mechanisms of stomatal control and providing an efficient way to

select likely candidate genes among the 1–19 that were located within

the QTL interval.

• Vapour pressure deficit affected the allelic effects of three QTLs

(bins 2.05, 4.05, and 6.00; example on Figure 6b). Interestingly,

two of them were also significantly affected by light but with

opposite directions, as observed for phenotypic data. Among the

genes within the QTL intervals, we identified three abscisic acid

(ABA) transcription factors (myeloblastosis, N‐acetyl cysteine,

and basic‐leucine zipper) and two ethylene related proteins

(AP2‐EREBP and ethylene receptor homolog 40), all of them

involved in the drought‐induced processes of stomatal closure

(Table S4). In addition, the QTL on bin 2.05 co‐localized with a

QTL that constitutively affects the discrimination of stable carbon

isotope (Δ13C), which is associated with stomatal closure under

water deficit conditions (Gresset et al., 2014). QTL co‐location

between gsmax and Δ13C was also observed on bins 5.02, 7.02,

and 7.03.

• Light alone (independently of VPD) affected the allelic effects of

three QTLs (Figure 6a,c, bins 2.05, 6.00 and 8.05), thereby

accounting for part of the genotype by season interaction

(Table 2). Among the five and seven genes in the confidence

interval of these QTLs (except for one of them), two genes were

related to stomatal response to light via biosynthesis and transport

genes, namely a flavonoid ABC transporter (G family member 10)

and auxin‐induced protein (IAA27; Table S4). Flavonoids control

the polar transport of auxin involved in stomatal control

(Terasaka et al., 2005).

http://wileyonlinelibrary.com


FIGURE 2 Daily time courses of transpiration
rate (light blue lines and symbols) of hybrid
B73 × UH007 and reference evapo‐
transpiration (ETref, red lines and symbols)
estimated via the Penman–Monteith equation
(Exp. Spr16). Inset, plants of hybrid
B73 × UH007 placed on balances for
estimation of transpiration every 15 min. Only
plants on balances are presented here for
easier understanding but, during experiments,
these plants are surrounded by four plants
each, thereby creating a mini canopy [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Relationship between incident light photosynthetic photon
flux density (PPFD) and (a) stomatal conductance at leaf scale (leaf gs)
measured with a gas‐exchange device and (b) calculated stomatal
conductance at plant scale (plant gs) estimated via inversion of the
Penman–Monteith equation. In (a) and (b), the grey curve represents
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• Soil water potential affected the allelic effect of three QTL (bin

4.01, 7.04, and 10.04; example on Figure 6d), thereby accounting

for part of the genotype by treatment interaction (Table 2). Among

the 3 and 15 genes in the confidence interval of the QTLs

(Table 3), we have identified a protein kinase (dual specificity pro-

tein kinase shkE) involved in ABA‐induced stomatal closure under

water deficit (Brock et al., 2010).

Independently of their putative action, the QTLs and relationships

presented above allow estimation of stomatal conductance across

genotypes and environmental scenarios. For the 13 hybrids previously

compared with gas‐exchange measurements, observed values of gsmax

were accounted for by values of light, VPD, and soil water potential

across situations (Figure 7, R2 = 0.77–0.97). As expected, the estimated

effects were usually smaller than observed effects, resulting in slopes

smaller than 1 in the observed—predicted graphs corresponding to

each hybrid in Figure 7. This was due to the fact that significant QTLs

detected in this analysis accounted for 58% of the genetic variability. It

is nevertheless remarkable that more than half of the genetic variability

of gs was accounted for in this analysis.
4 | DISCUSSION

4.1 | Exploiting the environmental variability for
analysing gas‐exchange at the whole‐plant level

Reproducibility of experiments in phenotyping platforms is

difficult because, even if temperature is controlled, different

experiments are carried out under varying vapour pressure deficit

associated to changes in air dew point temperature and varying

light intensity associated with time of year, cloud cover, and shading

from greenhouse structure and neighbouring plants (Cabrera‐Bosquet

http://wileyonlinelibrary.com
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et al., 2016; Lawson et al., 2012). This is often viewed as an

argument in favor of fully controlled conditions in growth chambers.

However, phenotyping in stable conditions is not a panacea in view

of the importance of mechanisms during non‐steady states

(Baerenfaller et al., 2012; Lawson & Blatt, 2014). Here, inversion of

the Penman–Monteith equation (Monteith, 1965) allowed us to

exploit the variability of light and VPD along day or night cycles and

seasons for estimation of stomatal conductance and of its changes

with environmental conditions.

• Calibrating the Penman–Monteith equation for daily variations

within each experiment has enabled us to solve the problem of

estimation of aerodynamic conductance. The latter can be based

on energy balance following short‐term changes in temperature
(Tarara & Ham, 1999), but the complex nature of air fluxes in the

greenhouse, the rapid change with time of canopy architecture,

and the movements of plants in the greenhouse would have led

to serious inaccuracy. Instead, we have optimized this parameter

to mimic changes in transpiration rate during day or night cycles

with varying light and evaporative demand (Figure 2). This has

allowed us to estimate a reference evaporative demand every

15 min, which considered temporal and spatial variations in both

light and VPD for each plant within the platform.

• Estimating transpiration rate several times per day for each plant

and combining it between experiments has allowed us to obtain

integrated estimations of stomatal conductance and of its

response to light and VPD. This has avoided the difficulty of

rapid changes in stomatal conductance at leaf level. Indeed,

gas‐exchange measurements in these conditions result in a

very large variability of gs (Fig. S3) and also in frequent overestima-

tions due to the succession of shade and sun flexes (Rochette

et al., 1991).

• Considering experiments at different seasons has allowed us to,

partly, disentangle the respective effects of light and VPD that

are usually well correlated during a single experiment. Indeed,

diurnal changes in VPD are essentially due to changes in

temperature, themselves closely correlated with light. Because

dew point temperature differs between seasons, higher VPD

were obtained in winter whereas light was lower, thereby break-

ing the usual correlation between these terms. It is noteworthy

that large stability of light in subtropical environments is an

advantage for establishing direct relationships between VPD

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


TABLE 2 Variance components of the different mixed models for whole‐plant stomatal conductance (gsmax)

Statistical model Type Ga G × Tb G × Sc Resd

Model 1: Multi‐envt Variance components (mmol m−2 s−1)2 5.9 1.2 1.5 32.9

Model 2: Multi‐envt, multi locus Variance components (mmol m−2 s−1)2 2.5 0.8 0.9 27.7

Model 1: Multi‐envt SD as % of mean 4.3 1.9 2.2 10.2

Model 2: Multi‐envt, multi locus SD as % of mean 2.8 1.6 1.7 9.3

QTLs (diff. Var. comp. Model) 58 33 40 16

Note. The general mean of gsmax was 56.42 mmol m−2 sec−1.

QTLs = quantitative trait loci; G = genotype; G × T = genotype by water treatment interaction; G × S = genotype by season interaction.
aGenotype.
bGenotype by water treatment interaction.
cGenotype by season interaction.
dExperiment‐specific residual error variance.

TABLE 3 Final set of QTLs of whole‐plant stomatal conductance (gsmax; mmol m−2 s−1) with position, region, situation, effects, and number of
genes in the region around QTL position

SNP namea SNP position (pb)b Binc Region (Mbp)d Region (cM)d Situatione LogPvalf Allelic effectg Gene #h

S1_5744907 5744907 1.01 5.7–5.79 12.65–12.85 Spr13.WD 5.82 1.15 3

AX‐90724010 280381987 1.10 280.31–280.46 230.18–230.38 Spr12.WD 5.95 −2.21 1

PZE‐102095227 108996680 2.05 84.45–132.54 94.88–95.08 Mean WW and WD 5.15 1.72 425

AX‐91442117 127216610 3.05 126.64–127.78 60.42–60.62 Spr16.WW 5.14 3.02 19

AX‐90856058 2435073 4.01 2.41–2.48 7.08–7.28 Spr13.WW 5.42 −1.51 3

S4_122293518 122293518 4.05 92.39–126.79 54.45–54.66 Spr12.WW 6.78 −2.86 250

S5_11921464 11921464 5.02 11.88–11.97 36.50–36.70 Spr13.WD 5.46 −1.19 6

AX‐90979141 3854510 6.01 3.69–3.94 3.50–3.79 Win13.WW 5.12 1.39 5

S6_150840088 150840088 6.05 150.77–150.92 71.63–71.83 Spr12.WD 5.49 2.24 8

S6_158480562 158480562 6.06 158.45–158.52 89.80–90.01 Spr12.WW 5.53 −2.38 7

S7_124403341 124403341 7.02 124.35–124.46 55.09–55.29 Spr16.WW 5.67 3.07 2

S7_128646920 128646920 7.03 128.6–128.71 63.24–63.44 Win13.WW 5.00 −1.26 3

SYN29618 160060267 7.04 160–160.14 91.40–91.62 Win13.WW 6.70 1.47 9

AX‐91435380 143564041 8.05 143.3–143.94 126.39–126.64 Spr16.WD 5.75 −1.94 7

AX‐91804303 139953567 9.06 139.89–140.02 91.46–91.66 Spr12.WW 5.63 2.34 8

AX‐91189633 124235924 10.04 123.96–124.52 80.07–80.27 Spr12.WW 5.19 2.22 15

Note. QTL = quantitative trait loci; SNP = single‐nucleotide polymorphisms; WW = well‐watered; WD = water deficit.
aSNP with the highest −log10(p‐value).
bSNP physical position.
cChromosome and bin.
dQTL region (in physical and genetic units).
eExperiment by scenario combination where the QTL was initially significant.
f−log10(p‐value).
gAllelic effect in the specific situation.
hNumber of genes in the QTL interval.
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and transpiration (Kholová et al., 2010; Kholová et al., 2016), but

the variability in temperate climate allows addressing a wider

range of environmental conditions provided that several seasons

are combined.

Overall, the method proposed here allowed estimation of the

genetic and environmental variabilities of stomatal conductance of

thousands of plants, a nearly impossible task with methods based
on gas exchanges. Whole‐plant conductance was well related to

gas exchanges and biomass, had an appreciable heritability, and

could be dissected into well‐organized QTLs. This suggests that

the noise associated with errors, estimates, and hypotheses at differ-

ent step of the method did not hamper the usefulness of our

method. The lower values of whole‐plant conductance compared

with gas exchanges were expected due to the large part of leaf

area that is shaded in a canopy. We acknowledge that this may
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buffer part of the genetic variability, but it also buffers temporal and

spatial changes that blur integrated estimates based on

gas exchanges.
4.2 | Dissecting the effects of evaporative demand
on stomatal conductance through genetic analysis

The high QTL × E interaction for stomatal conductance resulted in

QTL instability, already observed in previous studies using a gas‐

exchange device (Fracheboud, Ribaut, Vargas, Messmer, & Stamp,

2002). In particular, all QTLs identified here displayed a high and

significant QTL × E interaction, similar to that for yield (Bonneau et al.,

2013; Millet et al., 2016). Despite this high instability, QTLs of stomatal

conductance co‐localized with QTLs of transpiration rate and

biomass (Table S2) and with QTLs of Δ13C (Gresset et al., 2014),

which is directly associated with stomatal conductance under water

deficit conditions.

The differential responses of allelic effects at QTLs suggest that

the well‐known effect of light, soil water potential and VPD on

stomatal conductance may act at gene level, in addition to whole‐plant

controls. (a) Two QTLs had allelic effects that responded to light and

VPD in opposite ways, suggesting that opposite effects of light and

VPD may act at gene level. This suggestion was supported by the

presence of auxin‐related genes, involved in the inhibition of ABA‐

induced stomatal closure through the modulation of ethylene

biosynthesis (also found within the QTL intervals) that reduce osmotic

pressure in the guard cells (Tanaka et al., 2006). (b) Other QTLs
were responsive to VPD but not to light, suggesting a hydraulic effect,

which was endorsed by a gene involved in ABA synthesis

(Cominelli et al., 2005). (c) One QTL was responsive to light but not

to VPD, containing a gene involved in transport and biosynthesis of

the growth hormone auxin (Terasaka et al., 2005). (d) Three QTLs

responded to soil water potential but not to VPD, suggesting

independence of these two effects, with genes related to a protein

kinase, which directly interacts with ABA‐inducible genes that trigger

stomatal closure (Brock et al., 2010). (e) Finally, eight QTLs had allelic

effects that responded to none of the studied environmental variables,

suggesting either that they were constitutive (e.g., stomatal density or

shape), or that our method could not detect environmental effects on

their allelic values.

When considering all QTL effects and their interactions with

environmental variables in a model, the phenotypic variability due to

different environmental scenarios in the four experiments was

reasonably accounted for in the tested genotypes. However, about

half of the genetic variability was not taken into account by significant

QTLs, as commonly observed in other studies (Alvarez Prado, López,

Gambín, Abertondo, & Borrás, 2013; Malosetti, Ribaut, Vargas, Crossa,

& van Eeuwijk, 2008). This was probably due to the presence of small‐

effect QTLs that were not significant for the selected threshold. An

approach based on genomic prediction, jointly taking into account

the effects of hundreds of small‐effect SNPs within a statistical model,

would probably capture a larger proportion of the genetic variability,

which was not explained here by a limited number of significant QTLs

(Moser et al., 2015).
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Hence, we believe that the method presented here can bring new

elements for analysing the genetic architecture of environmental

effects on stomatal conductance.
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