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This study investigated the potential application of genomic selection under a multi-breed scheme in the Spanish autochthonous
beef cattle populations using a simulation study that replicates the structure of linkage disequilibrium obtained from a sample of
25 triplets of sire/dam/offspring per population and using the BovineHD Beadchip. Purebred and combined reference sets were
used for the genomic evaluation and several scenarios of different genetic architecture of the trait were investigated. The single-
breed evaluations yielded the highest within-breed accuracies. Across breed accuracies were found low but positive on average
confirming the genetic connectedness between the populations. If the same genotyping effort is split in several populations, the
accuracies were lower when compared with single-breed evaluation, but showed a small advantage over small-sized purebred
reference sets over the accuracies of subsequent generations. Besides, the genetic architecture of the trait did not show any
relevant effect on the accuracy with the exception of rare variants, which yielded slightly lower results and higher loss of predictive
ability over the generations.
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Implications

The results of this study indicate that the use of a meta-
population within the scope of the Spanish autochthonous beef
cattle populations may provide an increase of accuracy for
populations with small size or limited economic resources for
genotyping. Besides, the advantage of admixed populations
seems to be greater when predicting individuals more distant
from the training set because the across breed and multi-breed
genomic predictions are basedmore on the LD betweenmarkers
and quantitative trait loci (QTL) than on family relationships.

Introduction

The advances in the area of molecular genetics have allowed
the development of SNP chips that provide genomic informa-
tion throughout the genome (Gunderson, et al., 2005). Along
with the molecular advances, new statistical methods have
been developed with the purpose of predicting the breeding

values of candidates to selection using genomic information
(Meuwissen et al., 2001). The potential applications of these
methods have been tested through simulation (Meuwissen
et al., 2001) and in different species such as mice (Legarra
et al., 2008), aquaculture (Vallejo et al., 2017), poultry
(Heidaritabar et al., 2016) and pigs (Tussell et al., 2016).
In cattle, genomic selection is a reality in large (Hayes et al.,

2009) and medium-sized dairy cattle populations (Reiner-
Benaim et al., 2017). In beef cattle, it has been implement in
some medium or large populations (Lourenco et al., 2015;
Silva et al., 2016). Nevertheless, the full application of geno-
mic selection methods in the beef cattle industry is somewhat
questionable. The main drawbacks are the limited census of
some beef populations, the great variability of the production
systems, the narrow use of artificial insemination and the low
quality of phenotypic recording (Berry et al., 2016).
In simulation scenarios, several authors (De Roos et al.,

2009; Kizilkaya et al., 2010; Toosi et al., 2010) have shown
how it is feasible to increase the precision of the genomic
predictions by using phenotypic and genomic information
provided by several populations. Their results indicate that† E-mail: lvarona@unizar.es
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the use of a combined population is more helpful when the
populations involved have diverged for a small number of
generations, for populations of reduced size, and for traits of
low heritability if high-density genotypes are available. With
real data, some studies have obtained promising results
(Weber et al., 2012), whereas some others reported almost
no advantage from a multi-population genomic evaluation
(Karoui et al., 2012; Bolormaa et al., 2013; Chen et al., 2013;
Kachman et al., 2013). Though it seems that its potential
use should be studied in each specific case because it is
population and trait dependent (Saatchi et al., 2012).
The Spanish autochthonous cattle breeds have a Bos

taurus ancestral origin and it is estimated that they have a
common origin (Beja-Pereira et al., 2003), with estimated FST
statistics between them ranging between 0.009 and 0.068
(Cañas-Álvarez et al., 2015) and with a quite important
persistency of haplotype phase between them (Cañas-
Álvarez et al., 2016). These characteristics jointly with the
small size of these populations and the limited economic
resources available for genotyping, suggest an appealing
scenario to explore the implementation of genomic selection
in a meta-population context. Thus, the objective of this
study is to evaluate the efficiency of the potential application
of multi-breed genomic selection in the Spanish beef cattle
populations through a simulation study using a genomic
data set to mimic the populations’ LD structure.

Material and methods

The genomic data used for simulation purposes consisted of
genotypes from 171 triplets (sire/dam/offspring) obtained
with the Illumina BovineHD Beadchip from seven breeds:
Asturiana de los Valles (AV), n= 25, Avileña - Negra Ibérica
(ANI), n= 24, Bruna dels Pirineus (BP), n= 25, Morucha
(Mo), n= 25, Pirenaica (Pi), n= 24, Retinta (Re), n= 24 and
Rubia Gallega (RG), n= 24. The triplets were sampled under
the criteria of minimizing the genealogical relationship
between them in order to capture as much of the variability
as possible in each population.
The SNP filtering process included the following require-

ments: (1) Mendelian error bellow 0.05, (2) SNP and indivi-
dual call rates higher than 95% and (3) minor allele
frequency higher than 0.01, and it was performed using the
Plink software (Purcell et al., 2007). Further, SNPs that were
located on the autosomal chromosomes were kept and those
found in repetitive positions were excluded. At the end of the
process there were 629 251 SNP markers covering
2 510 350 kb of the autosomal chromosomes with a mean
density of one marker per 3.99 kb. The reconstruction of the
parental haplotypes was conducted with the software Beagle
(Browning and Browning, 2009) using the ‘TRIO’ option.

Simulation
As mentioned, the simulation procedure was set up to
reproduce the existing linkage disequilibrium structure of
each breed. Thus, we started with the 100 available paternal

haplotypes (50 individuals) for each breed comprising
629 251 SNP markers. Then, we expanded the populations to
500 individuals in the first generation. For each population,
the 629 251 SNP markers of the individuals of the first
generation were simulated by gene-dropping and assuming
a map distance of 1 cM every Mb. Their parents were selec-
ted randomly from the previous generation (50 individuals)
ignoring their sex. Following the same procedure, six more
generations of 1000 individuals (100 sires and 900 dams)
were simulated, selecting the parents randomly but con-
sidering their sex this time. The first three generations were
used to establish the training populations for each breed,
and the last three were used for validation. A summary of
this simulation procedure is presented in Figure 1.
Further, in order to simulate the causative mutations of a

trait, 3% of the SNP markers of each chromosome were
randomly selected as QTL and they were attributed an
additive effect sampled from a Gaussian distribution with
zero mean and a standard deviation of one. Later on, for
every individual, true breeding values (TBVs) were calculated
as the sum of the effects of their genotype for the QTL
polymorphisms. In addition, beside the polygenic model, five
other scenarios of genetic architecture of the quantitative
traits were simulated to create a sensitivity analysis:

∙ LMAF: Only markers with extreme frequencies (minor
allele frequency ⩽ 0.05) were chosen to be QTLs.

∙ Ex: The effects of the QTLs were drawn from an
exponential distribution instead of a Gaussian distribution.

∙ 10G(20%): 10 randomly selected QTLs which explained
20% of the total genetic variance were added to the
polygenic model.

∙ 4G(50%): Four randomly selected QTLs were added to the
polygenic model explaining 50% (5%, 10%, 15% and
20% for each QTL) of the total genetic variance.

Figure 1 Structure of the simulation strategy for the generation of
pseudo-populations for each population.
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∙ 4MG: Four QTLs were randomly selected to explain the
100% of the genetic variance with effects drawn from a
normal distribution.

For each scenario, phenotypes were simulated for all
individuals in the training population summing to their TBV,
a trait mean (= 1000) and a residual drawn from a Gaussian
distribution with appropriate variance to generate two traits
with heritability 0.4 and 0.1, respectively.

Genomic evaluation
The genomic evaluation was performed by means of a
Bayesian procedure with the solveSNP software (Legarra and
Misztal, 2008) and under the following model.

yi = μ +
Xn
j = 1

xijaj +ei

where yi is the phenotype of the ith individual, µ the trait
mean, n the number of SNPs, xij the genotype of the ith
individual for the jth marker coded as 0, 1 and 2, aj the
substitution effect for the jth marker and ei the residual effect
of the ith individual. Further, the prior distribution for the
marker effects was the following multivariate Gaussian dis-
tribution:

a�MVN 0; Iσ2a
� �

where σ2a is the marker variance whose prior distribution was
assumed to be uniform within appropriate bounds.
The SNP markers selected as causal mutations were

excluded from the marker panel during the genomic eva-
luation. Later on, genomic estimated breeding values (GEBV)
were calculated as:

GEBVi =
Xn
j=1

xij baj

Several scenarios of genomic evaluation were considered
depending on the size and composition of the reference
population.

∙ Pure-bred (PG): The reference population comprised 3000
individuals of one of the populations simulated. All seven
populations were used as reference populations
separately.

∙ Admixed_2 (×2): The reference populations comprised
3000 (1500+ 1500) randomly selected individuals from
two purebred populations. All possible combinations were
used as reference populations.

∙ Admixed_7 (×7): One reference population comprised
3003 individuals with 429 randomly selected individuals
from each of the seven populations.

In addition, reduced purebred populations of 1500 and
429 individuals were used with the aim of comparing them to
the admixed scenarios under equal genotyping effort within
populations. As before, genotyped individuals were sampled
randomly from the training populations.

Validation
In order to validate the predictions, we calculated the accu-
racy as the Pearson correlation between the simulated and
the predicted breeding values in three additional generations
(generations 1, 2 and 3) of 1000 non-phenotyped individuals
for every population. Each case of simulation was replicated
five times and we present the mean and standard error per
generation.

Results and discussion

Single-breed evaluation
In the first scenario, the effects of the SNP markers were
estimated within each breed. Then, they were used to
predict the GEBV within and across breeds. Figure 2 and
Supplementary Material Table S1 show the results of the
accuracies obtained for a trait with heritability 0.4 in all
populations in generation 1 and for two subsequent gen-
erations. Within-breed accuracies at the first generation were
the highest, ranging from 0.637 (RG) to 0.580 (BP). These
results are similar to those reported by Saatchi et al. (2011)
and Van Eenennaam et al. (2014) from empirical field studies
with traits of comparable heritabilities. On the other hand,
the across-breed accuracies were very low, with the highest
value obtained when training in BP to predict over Pi (0.177)
and the lowest when training in Pi to predict over Re (0.087).
These results confirm the postulate of Harris et al. (2008) that
indicated that training in one population and to predict in
another is not effective. However, it is remarkable that all the
average estimates of accuracy were positive which is
coherent with the persistency of LD found between these
populations and the genetics closeness between them
(Cañas-Álvarez et al., 2016).
When predicting the subsequent generations the within-

breed accuracies resulted on average lower by 16.4% in
generation 2 with values between 0.545 (RG) and 0.475 (AV)
and 24.3% in generation 3 with values between 0.496 (Pi)
and 0.420 (BP) with respect to generation 1. The decrease in
accuracy across generations was expected and confirms the
relevance of the relationship between the testing and train-
ing populations in the accuracy of genomic selection (Clark
et al., 2012). Nevertheless, the across-breed accuracies
remained similar to generation 1, because the relationship
between testing and training populations was not modified
in these cases.
The results of accuracy obtained when evaluating for a

trait with heritability 0.1 were similar but with lower mag-
nitude of accuracies (Figure 3 and Supplementary Material
Table S2). Thus, values ranged between 0.440 (Mo) and
0.380 (Re) for within-breed predictions and between 0.129
(AV over Mo) and 0.030 (BP over Re) for across-breed pre-
dictions in generation 1. The loss of predictive ability over
subsequent generations resulted to be higher than that of the
previous case. The within-breed accuracies were 18.1%
lower in generation 2 (0.377 (Mo)–0.292 (BP)) and 30.0% in
generation 3 (0.312 (Mo)–0.244 (BP)) than generation 1
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(Figure 3). In traits with low heritabilities, the family infor-
mation has a major impact on breeding value estimation
(Falconer and Mackay, 1996). Therefore, as the relationship
between testing and training populations weakened from
one generation to the other, the loss of accuracy became
more evident.

Evaluation in admixed ×2
The training sets used in this second scenario were set up by
mixing data from two purebred populations with equal pro-
portion of each. All possible combinations were considered
which resulted in 21 different admixed populations. The
results of the predictive ability of these populations over the
purebred populations for generation 1 and for a trait with
heritability of 0.4 are presented in Supplementary Material

Table S3. When the purebred validation population was
included in the admixed training set the accuracies ranged
from 0.545 (AV–RG over RG) to 0.475 (AV–ANI over AV).
However, when the purebred validation population was not
included in the training set the accuracies resulted similar to
the previous scenario of across-breed evaluation and ranging
between 0.186 (AV–BP over RG) and 0.103 (Re–RG over Pi).
As an example, Figure 4 shows the results obtained from

training in the AV–ANI population for all generations. As
expected, the predictive ability over the subsequent genera-
tions was lower than that of the training population for AV
and ANI. Though, the loss in predictive ability resulted
slightly higher than that of the previous case. On average
(Figure 5), the accuracies resulted 15.6% and 26.2% lower,
compared with generation 1, for generations 2 and 3,

Figure 2 Accuracy from single-breed genomic evaluation (h 2= 0.4). AV=Asturiana de los Valles; ANI= Avileña-Negra Iberica; BP= Bruna dels Pirineus;
Mo=Morucha; Pi= Pirenaica; Re= Retinta; RG= Rubia Gallega; generations 1, 2, 3= distance in generations between the training and validation sets.
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respectively. The reason of this higher decrease of accuracy
may be the limited number of individuals with a direct
relationship with the testing population in the training set
(1500 v. 3000).
Moreover, the results with heritability 0.1 were similar

(Supplementary Material Table S4), although the overall
accuracies resulted lower than previously. Accuracies for the
populations included in the training set ranged between
0.338 (BP–Pi over Pi) and 0.290 (Pi–Re over Re). On the other
hand, the results for the populations not included in the
admixture were also lower, from 0.122 (AV–BP over Mo) to
0.029 (MO–Re over RG). The loss of accuracy in the
subsequent generations was 17.7% and 30.2% for genera-
tions 2 and 3, respectively (Figure 5).

Evaluation in admixed ×7
Finally, the last training set used for genomic evaluation was
constructed by combining data of 429 randomly selected
individuals from each purebred population (total 3003
individuals). Figure 6 shows the results obtained for all
populations and all generations. The accuracies resulted
between 0.363 (BP) and 0.330 (AV) for the trait with h 2= 0.4
and between 0.233 (Mo) and 0.159 (RG) for the trait with
h 2= 0.1, while the loss of accuracy with the generations was
16.1% and 22.2% for the first trait (h 2= 0.4) and 15.8% and
29.7% for the second trait (h 2= 0.1). The accuracies were
lower than those in the previous scenarios and, as before, the
loss of accuracy when training and testing populations were
more distant was greater with lower heritability.

Figure 3 Accuracy from single-breed genomic evaluation (h 2= 0.1). AV=Asturiana de los Valles; ANI= Avileña-Negra Iberica; BP= Bruna dels Pirineus;
Mo=Morucha; Pi= Pirenaica; Re= Retinta; RG= Rubia Gallega; generations 1, 2, 3= distance in generations between the training and validation sets.
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Admixed v. reduced purebred
For each scenario, we also performed genomic evaluations
using a subset of randomly selected individuals (1500 and 429)
in order to compare them with the admixed populations and
evaluate the effect of adding individuals from other popula-
tions to increase the size of the training dataset. Figure 5 (1500
individuals per population) and Figure 6 (429 individuals)
present also the results of this comparison. They showed that
adding information from another population to a small-sized
training set was beneficial in all cases. The admixed ×2
populations performed slightly better than the reduced

purebred populations with 1500 individuals with 1.7%, 3.0%
and 4.2% higher accuracies for generations 1, 2, and 3,
respectively, for a trait with h2= 0.4 and 1.1%, 2.1% and
3.4% for a trait with h2= 0.1. This superiority of the admixed
population was more evident between the admixed ×7 and
the reduced purebred populations of 429 individuals. Here, the
gain in accuracy with the number of generations was 8.8%,
16.7% and 23.2% for the first trait (h 2= 0.4) and 7.3%,
11.2% and 15.8% for the second trait (h 2= 0.1). The most
probable cause of this phenomenon is that as the relatedness
between the training set and the validation set weakens the

Figure 4 Accuracy obtained from genomic evaluation in an admixed ×2 population (AV-ANI). AV=Asturiana de los Valles; ANI=Avileña-Negra Iberica;
BP= Bruna dels Pirineus; Mo=Morucha; Pi= Pirenaica; Re= Retinta; RG= Rubia Gallega; generations 1, 2, 3= distance in generations between the
training and validation sets.

Figure 5 Average accuracy obtained from genomic evaluation in the admixed ×2 population and comparison with the results of purebred genomic
evaluation with 1500 individuals per population. AV=Asturiana de los Valles; ANI=Avileña-Negra Iberica; BP= Bruna dels Pirineus; Mo=Morucha;
Pi= Pirenaica; Re= Retinta; RG= Rubia Gallega; generations 0, 1, 2, 3= distance in generations between the training and validation sets; ×2= admixed
training set from all two purebred populations (1500+ 1500 individuals); pure_1500= purebred training set with 1500 individuals.

Figure 6 Accuracy obtained from genomic evaluation in the admixed ×7 population and comparison with the results of purebred genomic evaluation
with 429 individuals per population. AV=Asturiana de los Valles; ANI=Avileña-Negra Iberica; BP= Bruna dels Pirineus; Mo=Morucha; Pi= Pirenaica;
Re= Retinta; RG= Rubia Gallega; generations 0, 1, 2, 3= distance in generations between the training and validation sets; ×7= admixed training set
from all seven purebred populations (7× 429 individuals); pure_429= purebred training set with 429 individuals.
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predictions are based more on the short range LD between the
markers and the QTLs than on the pure family relationship
between individuals. Thus, the admixed populations perform
better because of the higher number of data and the fact that
mixing data breaks down the long distance LD created by
relatedness and leaves the effects of the short range LD that
persists through generations (Hill and Robertson, 1968).
Nevertheless, these results indicate that the information pro-
vided by genetically related populations can be somewhat
useful when the genotyping ability of a single population is
restricted due to economic or size limitations and it seems to
be more helpful when trying to predict individuals with weak
genetic relationship with the training population.

Genetic architecture of the trait
Finally, we also compared the consequences of alternative
genetic architecture of the traits. Thus, along with the
polygenic traits (PG) simulated above, five more cases of
genetic architecture were simulated as described earlier. In
Supplementary Material Figure S1, we present the average
within-breed accuracies for both traits (h 2= 0.4 and
h2= 0.1), obtained from training in purebred populations for
all the populations simulated and for all generations.
The values obtained were similar in all cases which is
somewhat surprising for cases where QTLs explain a large
amount of the genetic variance. As causal mutations are
removed from the prediction process, the Bayesian procedure
here used might not be the method of choice for these type of
traits as it is unable to accommodate the differential effect of
QTLs. To illustrate this phenomenon, Supplementary
Material Figure S2 reflects the relationship between the LD
with the causal polymorphism and the estimated effects for
the closest 1000 markers in the validation and testing
populations. The total effect of the QTL (20.16) was
split in a large number of marker effects with estimates
between−0.016 and 0.028. Some of them present a large LD
with the causal polymorphism, but some others with a
moderate LD are also associated with relevant SNP effects.
Moreover, the relationship between LD and the estimated
marker effects is reduced with the generations of separation
between training and testing populations (r 2= 0.851
in the testing population v. r 2= 0.796 in the third generation
of validation). Thus, if the existing LD between markers and
causal mutations becomes smaller just by chance it would
mean that the ability of markers to capture the effect of the
QTLs would be reduced and therefore the effect on accuracy
may become evident. Small differences can be observed only
for the case of traits that are controlled by rare variants
(LMAF) with MAF lower than 0.05 where the loss of accuracy
was slightly greater with the number of generation.
Similarly, the results from the admixed ×2 and admixed ×7

training sets showed little differences among cases
(Supplementary Material Figures S3 and S4, respectively). As
before, only the LMAF case gives slightly lower accuracies.
This phenomenon is coherent with the results obtained by
Wientjes et al. (2015) that indicated that when the QTLs
controlling the genetic variability of the traits have low

frequencies the prediction ability of genomic selection is
lower. However, although this has been suggested as the
cause of the missing heritability (Gibson, 2012), the evidence
for the percentage of genetic variation that rare variants
produce is low and some authors have shown that these
rare variants explain only a small percentage of the missing
heritability of complex traits in human (Gusev et al., 2014) or
cattle (Gonzalez-Recio et al., 2015).
Moreover, the reduced sized purebred populations performed

similarly as in all previous cases. The only exception was that of
the LMAF case where the reduced purebred training sets yielded
higher accuracies than those of the admixed training sets with
the number of generations. In the LMAF case, the markers
selected to simulate the causal mutations where selected under
the condition of having extreme frequencies (MAF⩽ 0.05). As a
consequence, the LD between the neutral markers and the QTLs
is lower even at close distances and therefore, the reduced
purebred training sets perform better than the admixed training
sets because there is a larger proportion of family LD than sort
range historical LD, even though the family relationship is
decaying with the number of generations.
In conclusion, the results of this study indicate that the use

of a meta-population may provide an increase of accuracy in
scenarios with a reduced size of reference populations within
breed. Further, the advantage of admixed populations seem
to be greater when predicting individuals more distant
from the training set because the across breed and multi-
breed genomic predictions are based more on the LD
between markers and causal polymorphism than on family
relationships. This advantage should be more evident as the
density of the genetic map growths. Nevertheless, some
recent studies (Iheshiulor et al., 2016; Van den Berg et al.,
2016) have probed that the use of full sequence data only
provide marginal increases of the ability of prediction
between distant breeds. Moreover, we assumed in this study
that the genetic effect of QTL is constant across breeds, a
typical assumption that may be wrong. The presence of
epistatic or genotype× environmental interactions will also
reduce the ability of prediction across breeds. Finally, it
should also be noted that in this study all individuals in the
reference populations were phenotyped and genotyped. The
presence of missing phenotypes or genotypes in some
individuals would probably reduce the ability of prediction.
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