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(Received 26 October 2007; in final form 3 March 2008 )

Soil erosion is a key factor in land degradation processes in the sandy rangelands

of the Peninsula Valdés of Patagonia, Argentina. Mapping landform and

vegetation patterns is important for improving prediction, monitoring and

planning of areas threatened by sand and shrub encroachment. This paper

investigates the contribution of optical sensors, such as the Terra Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and

textural measures derived from microwave Radarsat Advanced Synthetic

Aperture Radar (ASAR) to their discrimination. An evaluation is undertaken

to compare the classification accuracy achieved by specific regions of the

spectrum and their synergistic use in an object-oriented approach. Image

segmentation and object-oriented classifications were applied to the datasets.

This required defining appropriate fuzzy membership functions for characteriz-

ing active and stabilized lineal dunes and the main vegetation classes.

Improvements in the discrimination of active and stabilized dunes (vegetated

by either scrub or grass) were achieved by using an object-oriented classification

that integrated microwave and visible near-infrared (NIR) data. Changes in

surface roughness caused by different vegetation types stabilizing the dunes

affected the radar backscattering. Whereas Radarsat enabled a clear separation

of scrub-stabilized dunes, Terra-ASTER showed superior performance in the

cartography of grass-stabilized dunes. The synergistic use of microwave and

visible and near-infrared (VNIR) data yielded a substantial increase in the

discrimination and mapping of landform/vegetation patterns.

1. Introduction

1.1 Criteria for mapping rangelands

Arid and semiarid drylands encompass nearly one-third of the world’s land surface

(OIES 1991). Among these, rangelands are essential contributors to the productivity
and biodiversity of the biosphere as they support the global population of

domesticated livestock and represent a key component of global ecosystem function

and biodiversity (Stafford Smith 1996). It is estimated that between 50% and 70% of

the world’s rangelands are degraded as a result of overgrazing, aggravated by the

characteristics of dryland climates (Warren and Agnew 1988). Long-term major
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effects of grazing, such as an increase in bare soil exposed to erosive effects and

encroachment of unpalatable woody plants, are well documented (Schlesinger et al.

1990, Bahre and Shelton 1993, Milchunas and Lauenroth 1993, Perkins and Thomas

1993).

Sandy rangelands with wind-erodible soils and low resilience are particularly

vulnerable to the consequences of land degradation (Warren and Agnew 1988).

Wind erosion and heavy grazing are the principal mechanisms of land degradation

in sandy rangelands (Okin et al. 2001). Once soil is exposed by heavy grazing, wind

erosion occurs immediately (Whitford et al. 1995). Generation of active sand dunes,

expansion of sand-seas and reactivation of stabilized dunes are major manifestations

of wind erosion in these environments (Le Houérou 1993).

Establishing criteria for accurate mapping of arid and semiarid regions in general,

and sandy rangelands in particular, facilitates identifying locations where different

degradation processes dominate. Detecting either increased sand cover or greater

woody biomass is an important contribution to identifying sites that are

experiencing changes that can be described as land degradation. As not all sites

are equally vulnerable to degradation, it is of value to know the spatial distribution

of vegetation and landform patterns in an integrated (phyto-geomorphological)

manner, to identify areas prone to erosion, so that appropriate conservation and

management measures can be implemented.

1.2 Background and objectives

Satellite remote sensing is an effective tool that can be used for mapping sandy

rangelands in a rapid and accurate manner over large areas. Previous research on

the use of passive and active spaceborne sensors for mapping sandy rangeland

patterns of degradation, as well as image processing techniques adopted to this end,

are summarized below.

Ground- and satellite-based research shows that visible-infrared (VIR) data can

be used to discriminate vegetation and landform patterns based on the distinctive

reflectance values of light-coloured sands (property of active dune areas) and dark-

coloured vegetation, which produce significant tonal differences (e.g. Paisley et al.

1991, Tucker et al. 1991, 1994, Sanjeevi 1996, Kutiel et al. 2004, Ballantine et al.

2005). However, image processing techniques based purely on spectral information

of the VIR region present limitations for distinguishing between vegetation types

given the saturation of the observed signal with increasing biomass (Palmer and van

Rooyen 1998).

However, data collected using Synthetic Aperture Radar (SAR) have the

potential to provide information on the geometry of sand dunes and other aeolian

features because of the sensor’s susceptibility to changes in the structure of surface

features. This is particularly important in areas where dunes are not pronounced

and, as a consequence, optical remote sensors may fail to reveal the dunes’

geometry. Previous research has shown that SAR imagery can also provide useful

information for distinguishing stable vegetated areas from bare areas of active sand

dunes (Blom and Elachi 1981, Lancaster et al. 1992, Greeley and Blumberg 1995,

Blumberg 1998, del Valle and Blanco 2006). These studies consistently indicate that

the visibility of sand dunes on radar images is a function of wavelength, incidence

angle and polarization characteristics of the sensor. However, most of the current

radar spaceborne systems only collect data at a single wavelength with a fixed

polarization. Future systems will include an increased number of wavelengths and
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polarizations, but until such time the goal of increased informational content may

be reached through simpler methods, such as the extraction of textural measures, as

discussed below.

The textural component of ground targets provided by active microwave data has

the potential to furnish additional information for mapping land features (Herold

et al. 2004). As the information content of a radar image resides in both the intensity

(spectral) of individual pixels and the spatial arrangement of those pixels, the

textural information that can be derived from such imagery can be as valuable as

information derived from the visible and near-infrared (VNIR) (Anys and He 1995).

Characterization of areas on the basis of a range of radar-derived textural measures

has been used successfully for mapping shrub encroachment (Hudak and Wessman

1998, 2001, Shupe and Marsh 2004), to discriminate landforms (Frohn et al. 2005,

Drăgut and Blaschke 2006), and also for various land-use/land-cover mapping

projects (van der Sanden and Hoekman 1999, Haack and Bechdol 2000).

Furthermore, pixel-based classifications are generally unsatisfactory for range-

lands, which often consist of highly variable mixtures of scattering objects and are

largely distinguished by their spatial, as well as their spectral, characteristics

(Blumberg 1998). Schiewe et al. (2001) report that traditional algorithms such as the

maximum likelihood classification produce too many or ill-defined classes. Object-

based segmentation and image classification techniques are receiving increasing

attention for classification of spectral and SAR data because these techniques

account for relationships between adjacent pixels, including shape, texture,

relational and contextual information. The synergy of this information enables

mapping of individual objects as opposed to single pixels (Thomas et al. 2003). In

addition, from an ecological perspective, it is more appropriate to analyse objects, as

opposed to pixels, because landscapes consist of patches that can be detected in the

imagery using object-based analysis. Pixels are aggregated into image objects by

segmentation, which is defined as the division of remotely sensed images into

discrete regions or objects that are homogeneous with regard to spatial or spectral

characteristics (Ryherd and Woodcock 1996).

The current study focused on the cartography of vegetation and landforms over a

sandy rangeland by combining multiresolution image segmentation and object-

oriented image classifications of VNIR and microwave satellite data. The three

primary objectives of the study were: (1) to assess whether information content can

be increased by specific SAR enhancements, and select optimal textural measures

for the discrimination of vegetation and landforms, (2) to investigate and implement

object-oriented image analysis algorithms and fuzzy logic techniques for the

recognition and classification of vegetation and landforms from radar-derived

textural measures and VNIR data, and (3) to assess the effect that the synergy of

textural and optical data exerts on the classification accuracy of vegetation and

landforms of sandy rangelands. We hypothesized that the synergistic use of data

from these discrete portions of the electromagnetic spectrum could be used for

accurate and economic mapping of vegetation and landforms in sandy rangelands.

The sandy rangelands at the Peninsula Valdés, located in Patagonia, Argentina

were selected because of the presence of spatial patterns related to soil degradation

processes. Dunes in this area were formed in the upper Pleistocene from loose, sand-

sized sediment of the sandy beaches and cliffs exposed to the prevalent westerly

winds (Beltramone et al. 1993). Nowadays, dunes are mostly stabilized by

vegetation, with some active sand dunes, grouped in discrete megapatches of

Sandy rangeland features classification 2581
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different ages, that are moving at different distances from the western coast where

they were generated (Súnico 1996). This system is extremely fragile and subject to

soil degradation by wind and overgrazing. By assessing the spatial pattern and

extent of vegetation and landforms, this work aimed to provide information that can

be significant for prediction and monitoring of areas threatened by sand and shrub

encroachment in this region.

2. Methods

2.1 Study area

This research was conducted in an area of about 300 km2 centred at 42u329 S,

63u549 W in Peninsula Valdés (southern Patagonian Monte, Argentina). The climate

is semiarid, characterized by an annual mean temperature of 13uC and an average

annual rainfall (1912–2002) of 231 mm, with a high mean interannual variation

(coefficient of variation 30%; Barros and Rivero 1982). The prevailing winds

are from the west and northwest (Coronato 1994). The mean annual wind

speed is 25 km h21 (Barros et al. 1981). The area is strongly influenced by intense

winds from the northeasterly direction prevailing from October to February

(Labraga 1994).

The study area is flat, with a modest undulating relief dominated by aeolian

sands. Landforms mostly result from wind erosion and sand deposition. Two

dunefields are distinguishable in Peninsula Valdés: the largest one is in the central

area, forming a belt that stretches from the west to the east coast, and the smaller

one is a fringe-like dunefield located in the southwest corner of the peninsula. Two

main generations of dunes can be identified in the dunefields: (1) megapatches of

active dunes, including a series of aeolian forms such as barchan, dome and

transverse dunes, and (2) relict aeolian landforms, including vegetated sand sheets

and stabilized lineal dunes on several alignments, that are not in accord with present

wind regimes (Beltramone et al. 1993). Active dunes are about 20 m height and the

average rate of dune movement has been measured at 9.1¡3.7 m year21 (del Valle

et al. 2007). Associated with the active dunes, there are deflationary surfaces, namely

regs, where aeolian activity has removed fine particles leaving lag gravels. Lineal

dunes are about 10 m high, trending in a WNW–ESE direction.

The vegetation covers 50–80% of the dunefields and the most widespread

communities stabilizing sand are grasslands, with palatable, annual and perennial

grasses (the dominant species are Sporobolus rigens, Panicum urvilleanum and Stipa

tenuis), and scrublands dominated by Hyalis argentea, an unpalatable, perennial

scrub (or sub-shrub) forming large, dense homogeneous stands as shown in figure 1

(Bertiller et al. 1981). Historically, most of the area was dry grassland, but shrub

encroachment by Hyalis argentea has led to the conversion of much of the area to

shrubland. A shrub steppe of Chuquiraga avellanedae extends between both

dunefields, but this area was excluded from this study. Pastoralism, especially

sheep grazing, has been the major land use over the past 100 years (Defossé et al.

1992).

Based on pre-existing physiographic and vegetation maps (Bertiller et al. 1981,

Sunico 1996) and observations of the actual situation in the field, six dominant

vegetation/landform patterns were identified in the study area. These are: Active

Dune, Reg, Grassland, Grass Stabilized Lineal Dune, Scrubland, and Scrub

Stabilized Lineal Dune.
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2.2 Remotely sensed data

2.2.1 Optical data. An Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) level 1B scene (raw product corrected for instrumental and

geometric errors; ERSDAC 2000) was acquired over the study area. The Terra-

ASTER sensor acquires data in three separate subsystems: VNIR (bands 1, 2 and 3,

spatial resolution of 15 m), shortwave infrared (SWIR; bands 4–10, spatial

resolution of 30 m), and thermal infrared (TIR; bands 11–14, spatial resolution of

90 m). The image was acquired on 27 November 2004, georeferenced in the

Universal Transverse Mercator projection (UTM Zone 20), WGS-84 ellipsoid, and

converted to radiance values.

Given the high correlation between the ASTER bands (above 0.9), a principal

component analysis (PCA) was applied to remove redundant information. The

analysis revealed that the first two components explained 98% of the image

variability, and thus they were selected for further analysis. The ASTER bands 1, 2,

3 and 4 showed the highest contribution to these first two components (figure 2),

and thus were selected as the raw bands to be included in the classification process.

The Soil Adjusted Vegetation Index (SAVI), designed to minimize the effect of the

soil background (Huete 1988), was applied to the ASTER data as a means to gather

information on vegetation cover. Similarly to the Normalized Difference Vegetation

Index (NDVI), the NIR and red bands are used in the calculation of the SAVI, but

with the addition of an adjustment factor (L) that varies between 0 and 1. We used

an adjustment factor of 0.5, which has been shown to reduce soil influences

considerably (Huete 1988) and is the most widely used adjustment factor for

intermediate vegetation cover.

Figure 1. Ground photograph of dunefields vegetation communities: (a) scrubland
dominated by Hyalis argentea, with stabilized lineal dunes in the background, and (b)
grassland dominated by Sporobolus rigens, Panicum urvilleanum and Stipa tenuis.
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2.2.2 SAR data. The SAR sensor onboard Radarsat collects data in the C-band

(5.6 cm wavelength), with a single horizontal–horizontal (HH) polarization. The

image of the study area was acquired in fine mode 4, mode descending (west

looking) at an incidence angle of 44u, with a nominal spatial resolution of 8 m. A

Radarsat-1 SAR image acquired on 1 January 2005 was used to evaluate the

contribution of the microwave region of the spectrum to the differentiation of

vegetation/landforms in the study area. Radar surface feature interaction, or

scattering, and the characteristics of this scattered energy, or backscatter, are mainly

sensitive to four parameters: target orientation, surface roughness, volumetric

inhomogeneities and the dielectric constant of the target material (Elachi et al. 1982,

Ford et al. 1989, Blumberg 1998). Although the dielectric constant is sensitive to

variations in water content, the low soil moisture of desert areas increases the

importance of the other parameters in energy backscatter (Sano et al. 1998).

Radarsat data were received in raw signal format and subsequently converted to

magnitude image products (ERDAS Inc. 2003). To decrease the speckle contribu-

tion, different low-pass filter treatments were tested. The variations in parameters

for each low-pass spatial filtering treatment were window size, number of iterations,

the algorithm used (c-MAP, Lee-Sigma, Local Region, Frost, and Median), the

coefficient of variation (for c-MAP and Lee-Sigma filters) and the number of

standard deviations (for the Lee-Sigma filter). Evaluation of the filtering treatments

was based on quantitative and visual assessment of the edge-boundary preservation

and the decrease of the ‘granular’ aspect of the radar image. The speckle index (Lee

and Jurkevich 1994) was selected as the quantitative parameter to evaluate filter

performance. A low speckle index indicates a good ability of the filter to reduce the

noise on the image. The more effective filtering treatment was three iterations of the

Frost filter with square window sizes of three, three and five pixels, respectively.

The speckle index decreased from 1.58 for the raw Radarsat scene to 0.63 for the

filtered image. The filtered image was geocoded in the UTM projection Zone 20.

2.3 Extraction of Radarsat-derived textural measures

Among the existing methods of texture representation, the best known are statistical

transformations (Hsu 1978), the Fourier power spectrum method (Weska et al.

1976) and the Haralick grey level co-occurrence (GLC) matrix method (Haralick

Figure 2. Contribution of each ASTER band in the first two components of the PCA.
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et al. 1973). The GLC procedure is by far the most widely used approach for

computing second-order texture measures (Haralick 1979, Karathanassi et al. 2000,

Treitz and Howarth 2000), and thus we restricted our study to this method to

ascertain their relative value in mapping vegetation and landform patterns. The goal

of the co-occurrence matrix method is also, as in the normal texture analysis, to

describe the grey value relationships in the neighbourhood of the current pixel.

However, the grey value relationships are analysed in the co-occurrence matrix

space and not using the original grey values. In the transformation from the image

space into the co-occurrence matrix space, only the neighbouring pixels in one or

some of the eight defined directions are used.

Haralick et al. (1973) proposed 14 statistical features calculated on the GLC

matrix for extracting textural information. Among these features, and in a similar

way to previous studies (Ulaby et al. 1986, Kurvonen and Hallikainen 1999,

Narasimha Rao et al. 2002), we selected the mean, variance, homogeneity, contrast,

dissimilarity, entropy, angular second moment, and correlation measure. These

textural features are described briefly in table 1.

Table 1. Image texture measures derived from the SAR image.

Texture
measure Description Equation*

Mean Mean is the average grey level for each sample PN{1

i, j~0

i Pi, j

� �

Variance Variance is a measure of heterogeneity; it
increases when the grey level values differ
from their mean. In general, coarse-textured
features are associated with higher variances

PN{1

i, j~0

Pi, j i{mið Þ2

Homogeneity This parameter measures image homogeneity
as it assumes larger values for smaller grey
tone differences in pair elements

PN{1

i, j~0:

Pi, j

1z i{jð Þ2

Contrast Contrast is a measure of spatial frequency,
the difference between the highest and the
lowest values of a contiguous set of pixels.
A high contrast implies high coarse texture

PN{1

i, j~0

Pi, j i{jð Þ2

Dissimilarity Dissimilarity, akin to contrast, describes the
heterogeneity of the grey levels. Higher
values of dissimilarity in the GLC matrix
indicate coarser textures

PN{1

i, j~0

Pi, j i{jj j

Entropy Entropy measures the disorder of an image.
When the image is not texturally uniform,
many GLC matrix elements have very small
values, which imply that entropy is very large

PN{1

i, j~0

Pi, j {ln pi, j

� �2

Angular
second
moment

This parameter measures textural uniformity.
Thus, high angular second moment values
occur when the grey level distribution over
the window has either a constant or a
periodic form

PN{1

i, j~0

Pi, j
2

Correlation Correlation is a measure of grey-tone linear
dependencies in the image. High correlation
values imply a linear relationship between
the grey levels of pixel pairs

PN{1

i, j~0

Pi, j

i{mið Þ j{mj

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDi

2
� �

SDj
2

� �q

2

6
4

3

7
5

From (i, j50) to (N21), each cell in the co-occurrence matrix is considered; i, row number; j,
column number; m, mean; SD, standard deviation; Pi,j, probability value from the co-
occurrence matrix.
*Source: Hall-Beyer (2004).
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The GLC matrix depends on (i) the number of grey levels, (ii) the distance

between pixels and (iii) the direction (0u, + 45u, + 90u, + 135u) for each of Haralick’s

textural features. Despite an increase in computation time, the number of grey levels

was set to 256 to avoid losing information. The choice of an adequate distance

between pixels is closely related to the coarseness or the fineness of the texture in the

image to be processed. Hence, interpixel distances (IPDs) of 1, 3, 5, 7, 9 and 11 (valid

for both fine and coarse textures) were evaluated. Finally, considering the

randomness of orientation of natural features, a GLC matrix computed in all

directions was considered appropriate. In view of the predominant west–east

orientation of landforms in the study area, and assuming the redundancy of texture

in different orthogonal directions, the GLC matrix was generated at a single

direction angle of 90u.
Texture features should be able to discriminate clearly between different textures,

while presenting little variability inside each class. Therefore, to evaluate the

performance of each of the textural measures and to identify the best performing set,

the following procedure was applied: (1) image segments of 30630 pixels each,

representing textural patterns of the classes of interest, were identified in the

Radarsat image; (2) the texture of these features was computed and normalized

linearly for all the segments to enable comparative evaluation of each feature; (3)

scatter plots of the normalized values as a function of IPDs were produced for all

textural measures; and (4) the selection of textural features was made based on the

discrimination capability of the different classes.

2.4 Image data integration

An image-to-image registration was conducted between the ASTER and the Radarsat

images to keep registration errors to less than half a pixel. As the study area presents

an almost flat topography, a first-order polynomial transformation and nearest-

neighbour resampling were used to create the output images with a common

resolution of 8 m. Bands 1–4 from ASTER and the selected Radarsat-derived texture

measures were stacked into one single image in Erdas 8.7 (ERDAS Inc. 2003).

2.5 Object-oriented approach

An object-oriented multiscale image analysis method embedded in the software

eCognition (Baatz and Schaepe 2000, Definiens 2003) was used. Figure 3 shows the

conceptual model designed for an object-oriented classification of the ASTER- and

Radarsat-derived dataset. The approach can be divided into two major parts. First,

multiresolution segmentation of the remotely sensed data is performed. This

procedure is analogous to a visual interpretation and can be done at various scales.

The outputs are highly homogeneous segments at an adequate scale and of a

comparable size. Once segmentation is complete, classification is performed using

those objects rather than single pixels. The classification of the image objects can be

performed by using a nearest-neighbour classifier based on user-selected samples or

by developing fuzzy membership functions based on fuzzy logic theory combined

with user-defined rules. A fuzzy membership function ranges from 0 to 1 for each

object’s feature values with regard to the object’s assigned class. Spectral, shape and

statistical characteristics as well as relationships between linked levels of the image

objects can be used in the rule base to combine objects into meaningful classes (Benz

et al. 2004).
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2.5.1 Segmentation. Three projects were implemented in this research using

different input datasets (table 2). The first project used the VNIR and SWIR bands

of ASTER (e.g. bands 1–4) as data input for image segmentation and classification.

The second project included the co-occurrence texture images derived from the

Radarsat data. The third project segmented and classified a dataset of integrated

optical and textural measures. All projects included the SAVI image as well.

Table 2. Scale parameters considered for each project.

Project Dataset used

Scale

Level 1 Level 2 Level 3

1 B1–4 ASTER 3 7 9
2 Textural measures 8 15 25
3 ASTER combined texture 8 15 25

Figure 3. Conceptual model of the object-oriented approach adopted.

Sandy rangeland features classification 2587

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
l
a
n
c
o
,
 
P
.
 
D
.
]
 
A
t
:
 
1
5
:
5
6
 
1
3
 
J
u
n
e
 
2
0
0
9



The object-oriented approach considers three parameters for image segmentation,
namely scale, colour/shape ratio and form/spatial properties (smoothness/compact-

ness ratio) (Baatz et al. 2004), where colour and shape parameters can be weighted

from 0 to 1. The most suitable scale parameter, that is the one giving the smallest

possible number of objects while keeping homogeneity in terms of the targeted class,

was selected at each level. Therefore, broad land-cover types (vegetation types, not-

vegetated areas) can be defined at coarser scales, whereas medium scale

discriminates active dunes, and a finer scale identifies stabilized lineal dunes. The

segmentation weights for colour and shape was established after several iterations to
a ratio of 0.8 : 0.2 for the relative importance of reflectance versus shape, and 0.1 : 0.9

for compactness versus smoothness.

2.5.2 Object-oriented classification. The image classification steps are described
next and are shown in the flowchart of figure 4. The highest hierarchical level, which

was segmented on the coarser scale, was classified using a SAVI threshold. Those

objects whose SAVI value was below 0.74 were considered to be Dunefield, and

those whose SAVI values were above 0.74 were classed as Scrubland. The selection

of 0.74 was empirical, based on an inspection of the image objects within the study

area. This initial step was necessary to mask out the Shrub Steppe from the

remaining classification scheme. At the same level, the Dunefield was classified into

Grassland, Scrubland and Areas Not Vegetated. These classes were identified and
separated by selecting an appropriate training set of object features chosen in the

SAVI feature space. A nearest-neighbour classifier was then applied using the most

significant differentiating objects for the three classes.

Figure 4. Fuzzy membership functions for all classes. AD, Active Dune; GSD, Grass
Stabilized Lineal Dune; SSD, Scrub Stabilized Lineal Dune; BR, brightness; L, length; W,
width; RB, the relationship of border to a certain class.
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At the next lower level, the basic aim was to identify active dunes. This feature

was therefore classified by defining fuzzy membership functions for mean brightness

values, related to the input data for each project (table 3). Two subclasses of the

Active Dune (AD) were defined, AD-1 and AD-border, the latter with a feature space

broader but a constraint of relative border length to AD greater than 0.5 imposed.

Subsequently, an object fusion was applied to group the objects of these classes in

the common class AD. The Reg class was defined as complementary to AD.

At the lowest hierarchical level, a classification was implemented for the

extraction of stabilized dunes. We discriminated between dunes stabilized by grass

and dunes fixed by scrub. Therefore, the classes Grass Stabilized Lineal Dune

(GSD)-1 and Scrub Stabilized Lineal Dune (SSD)-1 were classified based on

membership functions for mean brightness values. Because these classes had similar

brightness values and could be confused with other classes, a restriction was

established on the shape of the segments: that is the length/width ratio should be

greater than 4. To account for wrongly excluded objects, two new subclasses were

defined: GSD-border and SSD-border. These subclasses had the brightness feature

space broader than GSD-1 and SSD-1, respectively, but with the constraint that the

relative border length to these classes was greater than 1. Lastly, a fusion of these

classes was performed leading to the final extraction of the classes Grass Stabilized

Lineal Dune and Scrub Stabilized Lineal Dune. The Grassland and Scrubland classes

were defined as complementary to these classes, respectively.

2.6 Validation

Accuracy assessment was performed by means of an error matrix based on stratified

and randomly selected sites across the study area, ensuring at least 50 samples per

class (Story and Congalton 1986). Ground truthing was carried out by field survey

in the summer of 2005, visiting as many sites as possible, and confirming the

vegetation/landform type in situ with a Global Positioning System (GPS) unit. At

each validation site, an area at 45 m by 45 m was examined to account for location

errors caused by positional inaccuracies of the GPS and/or the geometric correction

of the satellite imagery. The number of validation pixels was 729 for Active Dune,

414 for Reg, 369 for Grassland, 360 for Scrubland, and 837 and 792 for Lineal Dunes

Stabilized by Grass and Scrub, respectively.

The error matrix was used as the basis for calculating the overall accuracy, and

individual class user’s and producer’s accuracy (Congalton 1991). The KHAT

statistic K̂
� �

, which is an estimate of the kappa coefficient, and its variance were

Table 3. Decision on brightness feature space and fuzzy boundaries.

Classes

Brightness feature space

B1–4 ASTER Textural measures ASTER combined texture

AD-1 27,BR,46 5,BR,22 25,BR,43
AD-border 24,BR,46 5,BR,33 25,BR,48
SSD-1 17,BR,19 44,BR,48 15,BR,16
SSD-border 17,BR,20 39,BR,56 14,BR,17
GSD-1 21,BR,22 33,BR,43 18,BR,20
GSD-border 20,BR,23 31,BR,48 18,BR,24

AD, Active Dune; GSD, Grass Stabilized Lineal Dune; SSD, Scrub Stabilized Lineal Dune;
BR, brightness.
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also calculated to compare the accuracy of the classifications to that of a random

pixel classification (Congalton and Green 1999). This method uses the normal curve

deviate statistics Z given by:

z~
k̂
ffiffiffiffiffiffiffi
vâr
p

k̂
� � ð1Þ

where the denominator is the square root of the sample variance from k̂.

2.7 Efficiency of the synergistic approach

This phase of the study aimed to assess the efficiency of combining synergistically

ASTER and Radarsat sensor data for classification of vegetation/landforms. The

efficiency of the synergic approach was evaluated from two points of view, the

classification accuracy and the economic/financial cost of the satellite images.

2.7.1 Classification accuracy. The two maps obtained using information from a

single sensor were compared with the map obtained when the optical data were

combined with textural information. To this end, the KHAT statistic and its

variance were used to construct a hypothesis test for statistically significant

difference between error matrices (Cohen 1960). The null hypothesis is that there is

no disagreement between the KHAT values:

z~
k̂1{ k̂2

�
�
�

�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vâr k̂1

� �
zvâr k̂2

� �r ð2Þ

where k̂1 and k̂2 are the two different KHAT statistics being compared, and the

denominator is the square root of the sum of the sample variances from k̂1 and k̂2,

respectively.

To determinate the degree of agreement and disagreement and the spatial

distribution of the differences between maps, we used a fuzzy set approach proposed

by Hagen-Zanker et al. (2005) as the Map Comparison KIT (MCK) software. The

approach is aimed specifically at categorical raster maps, and it makes use of fuzzy

set techniques to account for fuzziness of location and fuzziness of category, as

defined in Hagen-Zanker et al. (2005). Fuzziness of location is taken into account by

enabling the fuzzy representation of a cell to be partly defined by neighbouring cells.

A function (e.g. exponential decay, linear decay or constant value) defines the level

to which neighbouring cells exert this influence. Similarly, a category similarity

matrix can be applied to highlight or disregard different types of similarity, and thus

better characterize the fuzziness of categories. After different trials the category

similarity matrix shown in table 4 was applied to account for fuzziness between the

vegetation and landform patterns considered. For instance, this matrix considers

that Grassland and Grass Stabilized Lineal Dune classes are more similar to each

other than to Reg and Active Dune classes, but they are not considered so different

from Scrubland and Scrubland Stabilized Lineal Dunes. Furthermore, after trying

different values, a neighbourhood radius equal to 20 cells and a halving distance of 5

were applied as they showed the best comparison results. The result of comparing

two maps is a third map, indicating for each cell the level of agreement in a range

from 0 (low similarity) to 1 (identical) between categories.
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2.7.2 Economic/financial cost. We evaluated the efficiency of the synergistic

approach in relation to the cost of the images used. Plot diagrams were built up

to compare and evaluate the results of integrating different image data sources. The

x-axis represents the overall and per class accuracies obtained by using a particular

sensor or a combination of sensors, while the cost of the images used are plotted on

the y-axis.

3. Discussion of results

3.1 Optimization of Radarsat-derived texture measures

Examination of figure 5, the Radarsat image for a portion of the study area, shows

poor effectiveness for visual separation of vegetation/landforms in this region.

Active dunes, acting almost as a specular surface to the radar signal, display a dark

Figure 5. Radarsat-1 SAR, C-band HH polarization image showing part of the study area.
The brightness tones represent higher backscatter magnitude values. The parts labelled (a) to
(d) are described in the text.

Table 4. Fuzzy similarity matrix.

Class AD Reg Grassland GSD Scrubland SSD

AD 1 0.5 0 0 0 0
Reg 0.5 1 0 0 0 0
Grassland 0 0 1 0.6 0.4 0.4
GSD 0 0 0.6 1 0.4 0.4
Scrubland 0 0 0.4 0.4 1 0.6
SSD 0 0 0.4 0.4 0.6 1

AD, Active Dune; GSD, Grass Stabilized Lineal Dune; SSD, Scrub Stabilized Lineal Dune.
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tone due to the low backscatter (figure 5(a)). Natural vegetation has a strong

backscatter, mainly controlled by volume scattering, providing uniform medium to

bright grey tones (figure 5(b)). Grassland and scrubland areas cannot be separated

visually in this scene. Within these lighter, vegetated regions are some isolated very

high return features representing lineal dunes stabilized by vegetation (figure 5(c)).

Rock fragments in erosion pavements presented a rough surface in the radar sense,

and thus regs are seen as light grey due to high backscatter (figure 5(d)). Regs are not

clearly identifiable because they produce a high backscatter similar to natural

vegetation.

The confusion associated with the raw Radarsat’s vegetation and landform

backscattering suggest that measures of image texture might increase the

discriminatory ability of the SAR image. In figure 6 we present the normalized

means of the textural features for all the classes. The class Active Dune showed the

finest texture reflected in the highest correlation and lowest contrast and variance.

Natural vegetation presented coarser textures than Reg and Stabilized Lineal Dune

classes, which had less variance, more contrast and dissimilarity. Scrubland showed

coarser texture than grassland areas, this being evident in its larger dissimilarity.

Comparison of the vegetation and landform patterns separable by the textural

features clearly reveals that the tonal average is important because its sole use could

Figure 6. Capability of discriminating between texture patterns by GLCM texture features:
MED, mean; VAR, variance; HOM, homogeneity; CON, contrast; DIS, dissimilarity; ENT,
entropy; SM, angular second moment; COR, correlation.
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exclusively discriminate all covers. Thus, the mean became the first choice among

the textural features. Reg and Stabilized Lineal Dune classes were found to be

discriminated by variance at IPD55 and contrast at IPD57, respectively. Grassland

and Scrubland are well discriminated by dissimilarity at IPD55. Hence, this textural

feature was also selected as a complementary feature to mean, variance and contrast

for discrimination of all the classes. Therefore, the mean, variance and dissimilarity

images from the GLC matrix computed at IPD55 and contrast image computed at

IPD57 were generated and used for further object-oriented classification.

3.2 Vegetation and landform mapping

The object-oriented classification outputs obtained from ASTER alone, textural

information from Radarsat, and ASTER combined with the Radarsat texture

dataset are shown in figure 7. The areal and proportional extent of vegetation and

landform patterns resulting from the different layer input maps are summarized in

table 5.

Differences in the extent of vegetated and non-vegetated areas have the strongest

influence on the three classifications (approximately 70% and 30% on average,

respectively). The largest vegetated areas in the three maps were occupied by

Grassland (about 40% on average) and Scrubland (about 26% on average). Active

Dune and Reg classes were the next most common in the three classifications,

Figure 7. Object-oriented classifications based on optical data from ASTER (a), textural
measures derived from Radarsat (b), and merged optical and texture image data (c).

Table 5. Proportional vegetation/landform units extent as total hectares and percentage for
the study area.

ASTER Textural data ASTER combined texture

Hectares % Hectares % Hectares %

AD 39 12.6 34 11.0 40 12.9
Reg 51 12.5 56 18.1 51 16.5
Grassland 122 39.4 125 40.3 117 37.7
GSD 11 3.5 8 2.6 14 4.5
Scrubland 84 27.1 81 26.1 78 25.2
SSD 3 1.0 6 1.9 10 3.2

AD, Active Dune; GSD, Grass Stabilized Lineal Dune; SSD, Scrub Stabilized Lineal Dune.
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covering approximately 12% and 17% of the area, respectively. It is interesting to

note that the main difference between the maps obtained using single datasets versus

the ASTER combining Radarsat-derived texture map is the proportion of stabilized

lineal dunes (4.5% on average vs. 7.7%, respectively). Similarly, the vegetated sand

sheets area estimation on this map was about 3% lower than the results obtained on

the maps using single datasets.

3.3 Validation

Accuracy assessments performed for ASTER alone, Radarsat-derived textural

information and ASTER combined texture maps are presented in table 6. Overall

accuracies of vegetation and landform patterns in these classification outputs were

82.8%, 84.3% and 89.7%, respectively. Table 7 presents the KHAT statistic and its

variance, and the Z statistic used for determining whether the classification was

significantly better than a random result. At the 95% confidence level, the critical

value was 1.96. The Z statistic for the three maps was larger than the critical value

and therefore the classifications are significantly better than random.

3.3.1 ASTER data classification. Producer’s and user’s accuracies for the Active

Dune class were acceptable (approximately 91% and 95%, respectively; table 6(a))

for the ASTER map. This result is expected because this class is easily separable due

to its high reflectivity. The observation that active sand surfaces have a higher

albedo (are spectrally brighter) than inactive sand surfaces has been made previously

(Blount 1988, Blount et al. 1990). This yields a high contrast between these areas,

making their discrimination possible by thresholding the intensity (Paisley et al.

1991).

The Reg class presented a producer’s accuracy of about 87% and user’s accuracy

of approximately 77%. The main error of commission (about 13%) for Reg was due

to confusion with the Active Dune class. This confusion is indicative of a sediment

availability continuum, where regs and active dunes are areas of low and high

sediment availability, respectively. Many of the pixels classified erroneously in the

regs were at intermediate positions along this continuum. By contrast, regs could be

accurately discriminated from active dunes in the ends of this continuum, possibly

because of their lower brightness values. The low reflectance of regs is attributed to

the dark colouring of clasts and rock fragments, which cast shadows, trapping more

of the incoming sunlight and reducing the amount of reflected energy (Metternicht

and Zinck 1998).

The lowest producer’s accuracy was obtained for stabilized lineal dunes.

However, although considerable confusion occurred between Grassland and GSD

classes (producer’s accuracy of approximately 78%), lineal dunes were more

accurately identified in the grassland than in the scrubland. The SSD class had the

lowest producer’s accuracy (about 70%) and was mainly confused with the

scrubland matrix, which in turn decreased the reliability of this class. A large

number of pixels from the SSD class were incorrectly included as part of the

Scrubland (216 out of 567 total pixels). Although this misclassification did not affect

the proportion of correctly identified Scrubland pixels (333 out of 360), it did

decrease the user’s accuracy of the Scrubland class. The reliability was decreased

because as the total number of pixels classified as Scrubland features increased, the

correctly identified Scrubland pixels occupied an increasingly lower proportion of

the total (333 out of 567) pixels. This resulted in a much larger Scrubland area than

2594 P. D. Blanco et al.
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Table 6. Contingency matrix for the accuracy assessment of the object-oriented classifications.

Class AD Reg Grassland GSD Scrubland SSD

(a) ASTER data input
AD 666 (94.87) (91.36) 36 (5.13) (8.70) 0 (0) (0) 0 (0) (0) 0 (0) (0) 0 (0) (0)
Reg 63 (13.46) (8.64) 360 (76.92) (86.96) 0 (0) (0) 27 (5.77) (3.23) 0 (0) (0) 18 (3.85) (2.27)
Grassland 0 (0) (0) 0 (0) (0) 324 (67.92) (87.80) 153 (32.08) (18.28) 0 (0) (0) 0 (0) (0)
GSD 0 (0) (0) 0 (0) (0) 45 (6.41) (12.20) 657 (93.59) (78.49) 0 (0) (0) 0 (0) (0)
Scrubland 0 (0) (0) 18 (3.17) (4.35) 0 (0) (0) 0 (0) (0) 333 (58.73) (92.50) 216 (38.10) (27.27)
SSD 0 (0) (0) 0 (0) (0) 0 (0) (0) 0 (0) (0) 27 (4.62) (7.50) 558 (95.38) (70.45)
(b) Radarsat-derived texture data input
AD 630 (97.22) (86.42) 18 (2.78) (4.35) 0 (0) (0) 0 (0) (0) 0 (0) (0) 0 (0) (0)
Reg 90 (18.87) (12.35) 387 (81.13) (93.48) 0 (0) (0) 0 (0) (0) 0 (0) (0) 0 (0) (0)
Grassland 9 (1.61) (1.23) 0 (0) (0) 324 (58.06) (87.80) 225 (40.32) (26.88) 0 (0) (0) 0 (0) (0)
GSD 0 (0) (0) 0 (0) (0) 45 (6.85) (12.20) 612(93.15) (73.12) 0 (0) (0) 0 (0) (0)
Scrubland 0 (0) (0) 9 (10.00) (10.87) 0 (0) (0) 0 (0) (0) 324 (72.00) (90.00) 117 (10.00) (5.68)
SSD 0 (0) (0) 0 (0) (0) 0 (0) (0) 0 (0) (0) 36 (5.06) (10.00) 675 (94.94) (85.23)
(c) ASTER combined textural data input
AD 684 (95.00) (93.83) 36 (5.00) (8.70) 0 (0) (0) 0 (0) (0) 0 (0) (0) 0 (0) (0)
Reg 45 (7.84) (4.94) 378 (82.35) (91.30) 0 (0) (0) 18 (7.84) (4.30) 0 (0) (0) 18 (7.84) (4.55)
Grassland 0 (0) (0) 0 (0) (0) 306 (77.27) (82.93) 90 (22.73) (10.75) 0 (0) (0) 0 (0) (0)
GSD 0 (0) (0) 0 (0) (0) 63 (7.95) (17.07) 729 (92.05) (87.10) 0 (0) (0) 0 (0) (0)
Scrubland 0 (0) (0) 0 (0) (0) 0 (0) (0) 0 (0) (0) 342 (82.61) (95.00) 72 (17.39) (9.09)
SSD 0 (0) (0) 0 (0) (0) 0 (0) (0) 0 (0) (0) 18 (2.50) (5.00) 702 (97.50) (88.64)

AD, Active Dune; GSD, Grass Stabilized Lineal Dune; SSD, Scrub Stabilized Lineal Dune.
The diagonals are pixels classified correctly, with user’s accuracy (in parentheses bold) and producer’s accuracy (in parentheses bold italics) for each class.
User’s accuracy shows the error of commission and producer’s accuracy shows the error of omission. Non-diagonals represent errors with commission
percentage (in parentheses) and omission percentage (in parentheses and italics).
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should have been present within the classification. The producer’s accuracy of the

SSD class decreased as well, as a number of pixels that should have been included

within of this class were removed and instead classified as Scrubland (27% of the

SSD truth pixels), thus increasing the SSD errors of omission.

The low producer’s accuracy for the SSD class is probably due to the higher

reflectance of the scrubland compared with the grassland, which may have masked

the surface expression of the lineal dunes in the ASTER image, limiting the capacity

of this sensor to accurately discriminate them. There are two possible reasons for the

higher reflectance of the scrubland. First, the presence of dense, white pubescent

foliage in Hyalix argentea specie dominant in the scrubland (Cabrera 1971). Leaf

hairs are common features in desert vegetation, acting to reduce leaf absorption in

the visible, which decreases the red edge in many of these plants (Okin and Roberts

2004). Thus, leaf pubescence can have significant effects on leaf spectral

characteristics, resulting in an increase of the reflectance, especially in the visible

(Ehleringer and Mooney 1978). The second reason for the higher albedo in

scrubland is the higher woody biomass (scrubs are more robust, have greater leaf

biomass and larger stem diameter than grasses), which would be accompanied by an

increment in the amount of reflectance.

3.3.2 Textural data classification. Textural measures were relatively successful in

accurately mapping active dunes and regs, but provided less encouraging results in

the separation of lineal dunes from the vegetation matrix (table 6(b)). Active Dune

was the class showing the best separation, with producer’s and user’s accuracies of

around 86% and 97%, respectively. The distinctive textural pattern of active dunes

with respect to the other covers enabled better discrimination (figure 6). The smooth

surface of the active dunes tended to backscatter low energy because the sand

behaves more like a specular surface, where the energy of the incident wave is

reflected away from the antenna. Blom and Elachi (1981) and Lancaster et al. (1992)

were also able to discriminate between stabilized and active sand dunes on the basis

of their different signal return. The Reg class accuracy was also acceptable

(producer’s and user’s accuracies of about 93% and 81%, respectively), although

there was some confusion between regs and actives dunes. As discussed in section

3.3.1, many of these errors may be attributed to inadequate sampling.

Grass and Scrub Stabilized Lineal Dunes (GSD and SSD, respectively) were the

most representative classes of the confusion associated within the classification of

the Radarsat-derived textural dataset. True pixels of SSD were misclassified as the

Scrubland class (approximately 15% of omission errors) and areas of scrubland were

classified as lineal dunes (about 5% of commission errors). However, the

misclassification of GSD was observed to be highest, with a producer’s accuracy

of about 73%, indicating a high degree of errors of omission. A large number

of Grassland pixels (225) were incorrectly classified as GSD, accounting for

Table 7. KHAT statistics, standard errors and Z values for the ASTER, textural and ASTER
combined texture maps.

Data input KHAT Standard error Z

B1–4 ASTER 0.791 0.0077 103.34
Textural measures 0.81 0.0074 105.38
ASTER combined texture 0.874 0.0062 111.19

2596 P. D. Blanco et al.
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approximately 27% of the actual GSD. Accordingly, the Grassland class has the

lowest user’s accuracy (about 58%), indicating a high degree of errors of

commission.

The confusion associated with the lineal dunes could be due to the orientation of

these features with respect to the radar look direction. The backscatter from dune

surfaces is largely controlled by dune topography and incidence angle, except where

the vegetation masks the ground return (Blom and Elachi 1981, 1987). Lineal dunes

have directional features and so must be oriented approximately perpendicular to

the radar beam, otherwise no backscatter will occur (Blom and Elachi 1987, Qong

2000). The look angle of the Radarsat image used in this study was about 44u. If a

dune was to be imaged at a look direction of 90u (relative to the dune slip face, which

has a slope of approximately 30u) and a look angle of 44u, the local incidence angle

would be about 14u. The 30u slope was chosen because this is the angle of repose of

sand (Blom 1988, Lancaster 1995) and therefore an active dune would have a slip

face approaching this slope. In the case shown here, the flight azimuth was 223u
(look direction5133u) and the lineal dunes orientation approximately 100u.
Therefore, there were only 33u between the look direction and the dune orientation.

Consequently, the local incidence angle was much greater than 14u, eliminating any

enhancement of the dunes by topographic effects. Hence, the backscattering of the

lineal dunes cannot be attributed to topography in this case, but to the vegetation

stabilizing them.

The backscattering from vegetation is mainly determined by the volume

scattering, which in turn depends on the size of canopy structural elements relative

to the radar wavelength (Ferrazzoli and Guerriero 1995). Therefore, the better

discrimination of lineal dunes stabilized by grassland as compared to those

vegetated by scrubland may rely on the difference in structure of grasses versus the

structure of the Hyalis argentea, the dominant species on the scrubland. Modelling

of volume scattering by randomly oriented canopies indicates that backscattering in

the C-band is optimally sensitive to vegetation elements with diameters of less than

0.8 cm (Ferrazzoli and Guerriero 1995). As the diameter decreases below the

optimum, the elements became increasingly transparent. The leaves and stems of the

grasses in the study area are generally less than 0.5 cm in diameter (Nicora 1978) and

would therefore have been transparent, or nearly so, in the C-band. The Hyalis sp.

canopies contain many stems with diameter larger than 1 cm (Cabrera 1971) and

would therefore be expected to contribute strongly to the backscatter of the C-band

signal. In addition, scrubs are taller and their leaves are longer than grasses,

contributing to the higher backscatter of the Hyalis sp. stands. Hence, the higher

classification accuracies of the SSD class, as compared to the GSD class, could be

attributed to the increased roughness, and thus coarser texture, of the scrubland

relative to the grassland, therefore enabling better discrimination of lineal dunes

stabilized by scrub.

3.3.3 ASTER combined Radarsat textural data classification. The map resulting

from the object-oriented classification using spectral and textural data inputs shows

high overall accuracy and kappa statistic (89.7% and 87.4%, respectively), as well as

high producer’s and user’s accuracy for all the classes, excepting the Grassland class

(table 6(c)). This means that most of the vegetation and landform patterns have been

correctly identified, with low omission and commission errors. The Grassland class

had the lowest user’s accuracy (about 77%), the main error being commission for

this class the confusion with the GSD class (approximately 23%). This
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misclassification could be attributed to the spectral and textural similarity of these

classes, as discussed previously.

3.4 Efficiency of the synergistic approach

3.4.1 From a classification accuracy perspective. The Z score of the kappa analysis

for the pairwise comparison between the ASTER-derived and the combination of

ASTER and Radarsat-derived textural information (table 8) shows a result of 5.96,

which is superior to 1.96 (the critical value at the 95% confidence level), indicating

that the two error matrices are significantly different. Table 8 summarizes the kappa

analysis results for the pairwise comparison of the textural data and ASTER

combined texture error matrices. The result (4.69) is again greater than 1.96,

suggesting that the two matrices are significantly different. A comparison of the

classification accuracies obtained with the different layer combinations revealed that

the ASTER combined texture had better overall accuracy (89.7%) and a higher

KHAT statistic value (87.4%) than the classifications resulting from the use of single

optical (82.8% and 79.1%, respectively) or textural (84.3% and 81.0%, respectively)

layer input, indicating that the synergic approach enabled better discrimination of

vegetation and landform patterns in the study area.

Classification outputs using ASTER alone and textural information were

compared with the ASTER combined texture output using a fuzzy approach, to

produce maps of spatial agreement (figure 8). Areas of agreement show values close

Table 8. Kappa analysis result for the pairwise comparison of error matrices.

Pairwise comparison Z

ASTER vs. ASTER combined texture 5.96
Textural data vs. ASTER combined texture 4.69

Figure 8. Spatial assessment of similarity using the two-way fuzzy map comparison: (a)
ASTER data input vs. ASTER combined texture information classifications, and (b) textural
measures vs. ASTER combined texture data classifications. Areas mapped identically
have values close to or equal to 0, while areas of total disagreement show values close to or
equal to 1.
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to zero, while areas of total disagreement on class assignation take a value close to

or equal to one. Figure 8(a), which compares ASTER versus the synergy of ASTER

and texture layers, shows that the highest disagreement appeared in scrubland areas,

where the synergy of ASTER and texture layers classified lineal dunes, while the

ASTER data classified most of these same areas as Scrubland class. Additionally,

figure 8(a) reveals a strong agreement in the spatial classification of the Active Dune

and Reg classes.

By contrast, the areas recording the highest disagreements between textural and

ASTER combined texture maps tend to correspond to grassland extents

(figure 8(b)). There are large areas classified as lineal dunes in the ASTER combined

texture map, but these appear as the Grassland class in the textural map.

Furthermore, figure 8(b) reveals that, as with the comparison between ASTER

and ASTER combined texture maps, there is strong agreement between the

classifications of active dunes and regs.

3.4.2 Economic/financial point of view. Classification accuracy itself may not be

the sole criterion determining the choice of the sensor/s to mapping vegetation/

landforms. Image cost is obviously important. The synergic use of ASTER and

textural datasets is more expensive, hence a cost-effectiveness analysis is necessary to

evaluate it. The results of this study (figure 9) show that active dunes mapped from

single ASTER or Radarsat datasets achieved a level of classification accuracy that

was almost as high as that derived from the use of ASTER combining texture

information. Therefore, to map active dunes a single sensor may be used, without

significant loss of accuracy and with a substantially lower cost. By contrast, the

synergic use of ASTER and Radarsat to mapping lineal dunes stabilized by

vegetation significantly improved the level of classification accuracy, and is thus a

cost-effective alternative to map these features.

4. Conclusions

This paper has presented a detailed evaluation of the use of remote sensing data in

the visible, NIR and microwave parts of the spectrum to map vegetation and

Figure 9. Accuracies vs. image cost. Image prices: ASTER scene5USD 10.10/100 km2,
RADARSAT scene5USD 27.50/100 km2.
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landform patterns in a sandy rangeland. The proposed data processing procedure

integrated textural analysis of Radarsat-SAR data and Terra-ASTER VNIR data.

The analysis was performed using an object-oriented classifier. We have shown

that a thematic classification from the synergy of ASTER and Radarsat-

derived texture data had better overall accuracy and a higher KHAT statistic value

than the classifications resulting from single sensor data inputs. The study

shows that the two types of sensors, ASTER and Radarsat, provide different

information and can be effectively used to map vegetation/landform classes in

Peninsula Valdés, Patagonia, Argentina. The following conclusions may be drawn

from this study.

The original radar data present poor effectiveness in visual delineation of

vegetation and landform patterns. Radarsat-derived textural measures based on the

GLC matrix approach were used to increase the discriminatory ability of the

original SAR image. Haralick’s textural features, namely mean, variance,

dissimilarity (all computed at IPD55) and contrast (computed at IPD57)), as

optimized with this approach, appear to be the best textural features to improve

interclass discrimination.

The Active Dune and Reg classes were identified as the dominant landforms in all

classifications at 12% and 17% coverage, respectively. The stabilized lineal dunes

comprised a larger proportion of the surface area in the combined ASTER and

Radarsat-derived texture map, than in the single dataset maps (7.7% vs. 4.5% on

average, respectively). Areas dominated by sandsheets occupied 3% more surface in

the maps using ASTER and textural measures datasets alone, in comparison with

the map obtained from optical and Radarsat-derived texture data.

The results of the accuracy and map comparison suggested that the two types of

sensors, ASTER and Radarsat, provide information on different aspects and have

potential for complementarity. Both sensors were relatively successful in accurately

mapping active dunes and regs but experienced difficulties in the discrimination of

lineal dunes from the vegetation matrix. In contrast to ASTER, lineal dunes could

be more accurately discriminated from the scrubland using Radarsat-derived

textural data but, unlike ASTER, lineal dunes could not be accurately distinguished

from the grassland using textural measures derived from radar. Vegetation type

influenced VNIR reflectance and radar backscatter. Native grasses had low radar

backscatter as well as low VIR reflectance. Hyalis argentea, the dominant scrub

specie, had high values for both sensor groups. Other features, such as active dunes,

had high values for VNIR and low radar backscatter, while desert pavements or reg

characterized by high rock fragment content and strong microtopography had high

radar backscatter but low VIR reflectance.

The object-based classification technique used in this study proved a valuable tool

and was suitable for optical and radar data classification. Objects with similar

spectral reflectance and radar backscatter, such as stabilized lineal dunes, could be

discriminated by describing differences between neighbouring objects as well as

objects on a different hierarchical level. In addition, the object-oriented classifier

allowed interpretation of each decision rule and made efficient use of only important

objects’ features for the classification. Future related research will include the

application of the technique over larger areas; comparison with other classifiers,

including neural networks and decision trees approaches; further evaluation of

different radar angles and look directions; and analysis of the influence of image

date on the approach proposed in this study.

2600 P. D. Blanco et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
l
a
n
c
o
,
 
P
.
 
D
.
]
 
A
t
:
 
1
5
:
5
6
 
1
3
 
J
u
n
e
 
2
0
0
9



Acknowledgements

We acknowledge the valuable suggestions made by two anonymous reviewers and

by Diego Giberto, which greatly improved the manuscript. This study was funded

by CONICET (PIP-2004, No. 6413) and FONCyT (BID 1728/OC-AR PICTR/03

No. 439). Comisión Nacional de Actividades Espaciales (CONAE) supplied the

Terra-ASTER and Radarsat-1 ASAR images within the framework of the project to

promote monitoring of World Heritage sites (UNESCO). We thank Walter Sione

(PRODITEL-Universidad Nacional de Lujan) for facilitating the eCognition

software, and the Department of Spatial Sciences, Curtin University of

Technology, where the leading author spent three months in research.

References
ANYS, H. and HE, D.C., 1995, Evaluation of textural and multipolarization radar features for

crop classification. IEEE Transactions on Geoscience and Remote Sensing, 33, pp.

1170–1181.

BAATZ, M., BENZ, U., DEHGHANI, S., HEYNEN, M., HLTJE, A., HOFMANN, P.,

LINGENFELDER, I., MIMLER, M., SOHLBACH, M., WEBER, M. and WILLHAUCK, G.,

2004, eCognition Professional: User Guide 4 (Munich: Definiens-Imaging).

BAATZ, M. and SCHAEPE, A., 2000, Multiresolution segmentation: an optimization approach

for high quality multi-scale image segmentation. In Angewandte Geographische

Informationsverarbeitung (AGIT, Applied Geographic Information Processing), J.

Strobl and T. Blaschke (Eds), pp. 12–23 (Heidelberg: Wichmann-Verlag).

BAHRE, C.J. and SHELTON, M.L., 1993, Historic vegetation change, mesquite increases, and

climate in southeastern Arizona. Journal of Biogeography, 20, pp. 489–504.

BALLANTINE, J.A.C., OKIN, G.S., PRENTISS, D.E. and ROBERTS, D.A., 2005, Mapping North

African landforms using continental-scale unmixing of MODIS imagery. Remote

Sensing of Environment, 47, pp. 470–483.

BARROS, V.R. and RIVERO, M., 1982, Mapas de Probabilidad de la Precipitación en la

Provincia de Chubut (Precipitation Probability Maps in Chubut Province).

Contribución 54 (Puerto Madryn, Argentina: CENPAT-CONICET).

BARROS, V.R., RIVERO, M., RODRIGUEZ SERÓ, J.A. and LABRAGA, J.C., 1981, Primeras
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