
Journal of Algebra 299 (2006) 190–197

www.elsevier.com/locate/jalgebra

Equivalence between varieties of square root rings and
Boolean algebras with a distinguished automorphism

J. Patricio Díaz Varela 1

Departamento de Matemática, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina

Received 28 February 2005

Available online 22 March 2006

Communicated by Efim Zelmanov

Abstract

In this paper we study the variety R2 of square root rings, that is, commutative rings with unit, of char-
acteristic two, with the square root as an additional operation. We prove that this variety is generated by the
finite Galois fields GFGFGF(2k) and we establish an equivalence between R2 and the variety BABABAδ of Boolean
algebras with a distinguished automorphism. Via this equivalence, we will be able to obtain properties of
R2 from the results proved in [M. Abad, J.P. Díaz Varela, M. Zander, Boolean algebras with a distinguished
automorphism, Rep. Math. Logic 37 (2003) 101–112].
© 2006 Elsevier Inc. All rights reserved.
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1. Preliminaries

The variety BABABAδ of Boolean algebras with a distinguished automorphism was introduced and
studied in [2]. This paper deals with that variety and the variety R2 of square root rings. Our
objective is to establish an equivalence between these two varieties, generalizing the well-known
equivalence between Boolean algebras and Boolean rings (see [4]). We also deduce some prop-
erties for R2 from the properties proved in [2] for BABABAδ.
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We include in this section some definitions and results on the variety BABABAδ, and we recall the
notion of equivalence between varieties. For definitions and basic properties of universal algebra
the reader is referred to [4,10].

To start with, we introduce the square root rings as a variety, that is, as a class of algebras
closed by direct products, subalgebras and homomorphic images. In that sense, our approach to
the study of this algebras is different to that of Heatherly and Blanchet in [8], as we consider
the square root as a new operation in the language of rings, in the style of universal algebra. In
particular, the concepts of subalgebra, congruence and homomorphic image are different.

A square root ring is an algebra A = 〈A,+, ·,√ ,0,1〉 of type 〈2,2,1,0,0〉, that satisfies the
following conditions:

(R1) 〈A,+, .,0,1〉 is a commutative ring with unit,
(R2) 2 . x = 0, i.e., A is of characteristic two,
(R3)

√
x2 = x and (

√
x)2 = x.

The class of all square root rings R2 is equational, and hence, it is a variety in the sense of
universal algebra (see [4,10]).

By a Boolean algebra with a distinguished automorphism [2] we understand an algebra
〈A;∧,∨,−, δ, δ′,0,1〉, such that 〈A;∧,∨,−,0,1〉 is a Boolean algebra, δ is an automorphism
of A and δ′ = δ−1. Clearly, the class of Boolean algebras with a distinguished automorphism is
a variety which we denote BABABAδ.

The typical example of an algebra in BABABAδ is the field of subsets of the integers Z, 2Z , with the
set-theoretical operations of union, meet and complementation, and where δ is the automorphism
of 2Z induced by the mapping n �→ n + 1, n ∈ Z. In [2] it is shown that 2Z is non-simple
subdirectly irreducible, and the variety BABABAδ is generated by the algebra 2Z .

Let k be a positive integer. A subset x of Z is called k-periodic if it coincides with the set
obtained by adding k to each of its elements. The set of k-periodic subsets of Z is a subalgebra
of 2Z , which we denote by Bk .

Let BN = ⋃
i∈N Bi . BN is a subalgebra of 2Z , and thus BN ∈ BAδ. The following results can

be found in [2].

Theorem 1.1. The algebra BN is simple, atomless and locally finite.

The following theorem states that the variety BABABAδ is generated by its finite members. In what
follows V (K) denotes the variety generated by a class K of algebras.

Theorem 1.2. BABABAδ = V ({Bm: m > 0}).

Corollary 1.3. BABABAδ = V (BN ).

We say that a variety V is interpretable [9,10] in a variety W if for each V -operation
Ft(x1, . . . , xn) there is a W -term ft (x1, . . . , xn) such that if 〈A;Gt 〉 is in W , then 〈A;ft 〉 is
in V . Notice that the constants in the language of V must be interpreted as constants in the lan-
guage of W . Intuitively, this means that each algebra in W can be turned into an algebra in V by
defining the V -operations applying a uniform procedure.
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This notion can also be approached in the following way: there exists a functor Φ :W → V

which commutes with the underlying set functors, that is,

W

UW

Φ
V

UV

Sets

is commutative. UV and UW are the forgetful functors which assign to each algebra its universe.
Each functor Φ is called an interpretation of W in V .

If 〈A;Gt 〉 is any algebra and for each V -operation Ft(x1, . . . , xn) there is a term ft (x1, . . . ,

xn) in the language of 〈A;Gt 〉 such that 〈A;ft 〉 is in V , the terms ft (x1, . . . , xn) define an in-
terpretation of V in V (〈A;Gt 〉), the variety generated by the algebra 〈A;Gt 〉. One only has
to observe that the evaluation of any term in an algebra B in V (〈A;Gt 〉), is determined by
its evaluation in A and that both 〈A;Gt 〉 and 〈B;Gt 〉 satisfy the same equations. We have

V (〈A;Gt 〉) Φ−→ V , and we say that Φ(〈A;Gt 〉) is an interpretation of V in V (〈A;Gt 〉).
By an equivalence [10] of the varieties V and W is meant a pair of interpretations Φ1 of

V in W and Φ2 of W in V such that Φ2Φ1 = IdV and Φ1Φ2 = IdW . Two algebras A,B are
equivalent if and only if there are interpretations Φ :V (A) → V (B) and Ψ :V (B) → V (A) such
that ΦΨ (B) = B and Ψ Φ(A) = A.

Observe that A and B are equivalent if and only if every operation in the language of A can
be written as a term in the language of B , and conversely.

Theorem 1.4. [10] For varieties V and W, V is equivalent to W if and only if there exist equiv-
alent algebras A and B such that V = V (A) and W = V (B).

2. Equivalence between R2 and BAδ

In this section an equivalence between the varieties R2 and BABABAδ is established and some
applications are given thereof.

For A ∈ R2 and x ∈ A, let σ(x) = x2 be the Frobenius endomorphism. Observe that the
existence of square roots in R2 implies that σ is an automorphism. We denote

√
x = σ−1(x) =

x1/2, and (
√

)k(x) = 2k√
x = x1/2k

.
Let orb(a) = {σn(a): n ∈ Z} be the orbit of an element a ∈ A. We say that a is periodic if

orb(a) is finite. In this case the least integer n � 1 such that σn(a) = a is called the period of a.

If A is finite we have that a is periodic for every a ∈ A. The following lemma is clear.

Lemma 2.1. Let A ∈ R2 be finite. Then there is m ∈ N such that σm(x) = x2m = x for every
x ∈ A. In this case

√
x = σm−1(x) = x2m−1

.

An sr-ideal in an algebra A ∈ R2 is an ideal I ⊆ A closed under √ , i.e., an ideal I of A such
that

√
x ∈ I whenever x ∈ I . It is easy to see that congruences in A are determined by sr-ideals.

In fact, there is a lattice isomorphism between the lattice of congruences of A and the lattice of
sr-ideals of A.
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For x ∈ A, let (x) be the sr-ideal generated by x. Note the difference between the ideal
generated by x and the sr-ideal generated by x. Indeed, the ideal generated by x is Ax = {y ∈ A:
y = ax, a ∈ A}, but

(x) =
{

y ∈ A: y =
k∑

i=1

aix
αi , ai ∈ A, αi = ti

2hi
, ti � 1, hi � 0

}
.

Similarly, it is well known that a commutative ring A with unit is simple if and only if A is a
field. In the variety R2, the simple objects are the fields as well.

Theorem 2.2. In the variety R2, A is simple if and only if A is a field.

Proof. Let A ∈ R2 be simple. Then, 1 ∈ (x) for every x ∈ A, x �= 0, and consequently, there are
ai ∈ A such that 1 = ∑k

i=1 aix
αi , with αi = ti

2hi
, ti � 1, hi � 0. Let m = max{2hi , i = 1, . . . , k}.

Then

1 = 1m =
(

k∑
i=1

aix
αi

)m

=
k∑

i=1

am
i xβi ,

with the integers βi � 1. Thus

1 = x .

k∑
i=1

am
i xβi−1.

From this we have that for every x �= 0, x has inverse. Thus A is a field. The other implication is
trivial. �

Observe that a field in R2 is a perfect field.
We analyze now the equational theory of R2 with the objective of proving that R2 is generated

by its finite members.
Let p(x1, x2, . . . , xn) be a term in the language of R2. Then

p(x1, x2, . . . , xn) =
s∑

i=1

x
α1

i

1 x
α2

i

2 · · ·xαn
i

n , α
j
i = t

j
i

2h
j
i

, t
j
i , h

j
i � 0, 1 � i � s, 1 � j � n.

If p1(x1, x2, . . . , xn) = p2(x1, x2, . . . , xn) is an identity in the language of R2, then, for
A ∈ R2, A satisfies p1 = p2 if and only if for every n-tuple (a1, a2, . . . , an) ∈ An, p1(a1, a2,

. . . , an) = p2(a1, a2, . . . , an). But p1 = p2 is equivalent to p1 + p2 = 0. So every identity in the
language of R2 is equivalent to another one of the form

p(x1, x2, . . . , xn) =
s∑

x
α1

i

1 x
α2

i

2 · · ·xαn
i

n = 0.
i=1



194 J.P. Díaz Varela / Journal of Algebra 299 (2006) 190–197
Moreover, if m = max{hj
i } with i = 1, . . . , s and j = 1, . . . , n, we have that p(x1, x2, . . . ,

xn) = 0 iff (p(x1, x2, . . . , xn))
2m = 0. But

(
p(x1, x2, . . . , xn)

)2m =
(

s∑
i=1

x
α1

i

1 x
α2

i

2 . . . x
αn

i
n

)2m

=
s∑

i=1

x
β1

i

1 x
β2

i

2 · · ·xβn
i

n ,

with integers β
j
i � 0, for every i = 1, . . . , s and j = 1, . . . , n. From this assertion we have the

following lemma.

Lemma 2.3. Every identity p1(x1, x2, . . . , xn) = p2(x1, x2, . . . , xn) in the language of R2 is
equivalent to an identity of the form

s∑
i=1

x
β1

i

1 x
β2

i

2 · · ·xβn
i

n = 0,

where β
j
i ∈ N ∪ {0}, for every i = 1, . . . , s and j = 1, . . . , n.

Observe that two identities are equivalent if the algebras of R2 that satisfy them are the same.
The following theorem proves that R2 is generated by its finite members. In fact, R2 =

V ({GFGFGF(2k): k � 1}).
Theorem 2.4. R2 is generated by the fields GFGFGF(2k).

Proof. Let p(x1, x2, . . . , xn) = ∑s
i=1 x

β1
i

1 x
β2

i

2 . . . x
βn

i
n , β

j
i ∈ N ∪ {0}, be a term and suppose that

p(x1, x2, . . . , xn) = 0 characterizes a proper subvariety of R2. Let us prove that there exists a
finite field GFGFGF(2k) such that GFGFGF(2k) does not satisfy p(x1, x2, . . . , xn) = 0.

We may assume that p �= 0 and p �= 1. We make induction over the number of variables.
Suppose that n = 1. Then p(x) = ∑s

i=1 xβi , with βi � 0, βs > 0 and βi > βj if i > j. Choose
k = βs + 1. Let b ∈ GFGFGF(2k) an element of the normal base. Thus p(b) = ∑s

i=1 bβi �= 0.

Suppose now that the number of variables is n and let xl be a variable such that β
j
l �= 0, for

some j . Assume, without loss of generality, that l = 1 and β1
i > β1

i′ for i > i′. Then

p(x1, x2, . . . , xn) =
s∑

i=1

x
β1

j

1 pi(x2, . . . , xn).

By inductive hypothesis we can choose k and elements b2, . . . , bn ∈ GFGFGF(2k) such that

p1(b2, . . . , bn) = c1 �= 0. Let ci = pi(b2, . . . , bn). Observe that, for ci �= 0, c2k−1
i = 1. Thus

(
p(x1, b2, . . . , bn)

)2k−1 =
s∑

i=1

x
β1

i (2k−1)

1 c2k−1
i ,

that is a term in the language of R2, since c2k−1
i ∈ {0,1}. Now we are in the case of one variable.

So we can take k′ = kβ1
i (2k − 1), and b1 ∈ GFGFGF(2k′

) such that (p(b1, b2, . . . , bn))
2k−1 �= 0. Thus

p(b1, b2, . . . , bn) �= 0. �
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Corollary 2.5. R2 = V ({GFGFGF(2k): k � 1}).

Let GFGFGF2 be the algebraic closure of GFGFGF(2). It is known that GFGFGF2 is the field of roots of
polynomials in GFGFGF(2)[x], and that GFGFGF2 has a copy (as subalgebra) of GFGFGF(2k) for every k � 1.

Moreover, GFGFGF2 is isomorphic to the direct limit of the system 〈{GFGFGF(2k)}k�1, {φk,l}k�1〉 where
φk,l :GFGFGF(2k) → GFGFGF(2l ) is the natural immersion for k|l.

Corollary 2.6. R2 = V (GFGFGF2).

Moisil established relationships between finite fields GFGFGF(2k) and cyclic Boolean algebras, but
it was Cendra in [5] who gave a constructive method to define a simple k-cyclic Boolean algebra
〈A; δ〉 on a given finite field GFGFGF(2k), k � 1, and conversely.

Theorem 2.7. [2,5] Given a finite field GFGFGF(2k), there exists a structure of simple k-cyclic Boolean
algebra defined on GFGFGF(2k) isomorphic to Bk , and conversely, such that

(1) the constants are the elements of the prime field GFGFGF(2);
(2) the operations ∧ and ∨ are terms in the language of R2. In addition, ∼ x = 1 + x and

δ(x) = σ(x) = x2;
(3) the operations + and · are uniquely determined terms in the language of BABABAδ. Moreover,√

x = δ−1(x) = δk−1(x) and x + y = x � y.

As an immediate consequence of Theorem 2.7 we have the following (see [10, Theo-
rem 4.140] and [2]).

Corollary 2.8. The varieties V (Bk) and V (GFGFGF(2k)) are equivalent, that is, there exists an inter-
pretation Φk of V (Bk) in V (GFGFGF(2k)) and an interpretation Ψk of V (GFGFGF(2k)) in V (Bk) such that
ΨkΦk(B) = B for every B ∈ V (Bk) and ΦkΨk(A) = A for every A ∈ V (GFGFGF(2k)).

Lemma 2.9. GFGFGF2 is equivalent to BN .

Proof. Consider Φk :V (Bk) → V (GFGFGF(2k)) and Ψk :V (GF (2k)) → V (Bk) of Corollary 2.8.
Then we can define Φ :BN → GFGFGF2, where Φ(Bk) = Φk(Bk) and Ψ :GFGFGF2 → BN , where
Ψ (GFGFGF(2k)) = Ψk(GFGFGF(2k)). �

By the preceding lemma and Corollaries 2.6 and 1.3 we have

Theorem 2.10. R2 is equivalent to BABABAδ.

As an application of the previous results we can obtain many properties for the variety R2
that are immediate consequences of the corresponding results for BABABAδ [2]. As an example we can
state:

(1) R2 is not locally finite, even though it is generated by GFGFGF2 which is locally finite.
(2) The locally finite simple algebras in R2 are subalgebras of GFGFGF2.
(3) The locally finite subdirectly irreducible algebras in R2 are simple, and consequently, iso-

morphic to subfields of GFGFGF2.
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(4) Every locally finite algebra A ∈ R2 is semisimple, and consequently, A can be embedded
into (GFGFGF2)

k .
(5) A subvariety of R2 is locally finite if and only if it is finitely generated.

Finally, we point out that M. Zander proved that any proper subvariety of BABABAδ is locally finite,
that is to say, any proper subvariety is a finite join of V (Bn)’s. Consequently we have

Theorem 2.11. Any proper subvariety of R2 is locally finite, that is, any proper subvariety is a
finite join of V (GFGFGF(2k))’s.

Corollary 2.12. Every proper subvariety of R2 is a discriminator variety and if V =
V ({GFGFGF(2ki ): i = 1, . . . , n}), V is determined by the identity

γk1,...,kn(x) =
n∏

i=1

(
x2ki + x

) = 0.

Moreover, the lattice of subvarieties of R2 is isomorphic to the lattice 〈N ∪ {0}, | 〉, where a | b

is the order relation a is a divisor of b.

This equivalence between R2 and BABABAδ can be extended without difficulty to varieties of pth
root rings Rp , p prime, and p-valued Post algebras with a distinguished automorphism PApδ

(see [1,3]), that is, we have the following theorem.

Theorem 2.13. The varieties of pth root rings Rp and p-valued Post algebras with distinguished
automorphism PApδ are equivalent.

It is worth to mention that in recent articles [6,7], R. Cignoli et al. introduced functors between
the categories of locally finite MV-algebras, multisets and locally finite Boolean algebras with a
distinguished automorphism. Via the equivalence established in this work, the relationships be-
tween these classes of algebras can be extended to square root rings. Besides, it is immediate that
BABABAδ is dually equivalent to the class Stδ of Stone spaces with a distinguished homeomorphism,
so R2 is dually equivalent to Stδ. In a forthcoming paper we will develope further applications
of this equivalence.
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