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Abstract

We study the degree of irreducible morphisms in generalized standard convex component
Auslander–Reiten quiver of an artin algebra with the property that paths with the same origin a
vertices have equal length. We call the components with this last propertycomponents with length. In
particular, we give two criteria to determine wether the degree of such an irreducible morphisf is
finite or infinite. One of them is given in terms of the compositions off with non-zero maps betwee
modules in the component. The other states that the left degree of an irreducible mapf is finite if
and only if Kerf belongs to the component. We apply our results to irreducible morphisms ove
algebras of finite representation type and over tame hereditary algebras.
 2004 Elsevier Inc. All rights reserved.

Introduction

The notion of irreducible morphism, introduced by Auslander and Reiten, has p
an important role in the study of the category modA of finitely generated modules ov
an artin algebraA. The connection with the radical� of this category is well known, an
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is given by the fact that a morphism between indecomposable modules is irreduc
and only if it lies in� \ �2. It is then important to further study this radical, in order
get a better understanding of modA. In particular, it is natural to look at the compositi
of irreducible morphisms. The composition ofn irreducible morphisms belongs to�n.
An interesting question is when such a composition falls into�n+1. A partial solution
to this problem was given by Igusa and Todorov, who showed that the composition
irreducible morphisms on a sectional path does not belong to�n+1.

In order to answer this question Liu [13,14,16] introduced the notion of degree
irreducible morphism, as follows.

Let A be an artin algebra andf :X → Y an irreducible morphism in modA, with X

or Y indecomposable. Theleft degreedl(f ) of f is infinite, if for each integern � 0,
each moduleZ ∈ modA and each morphismg ∈ �n(Z,X) \ �n+1(Z,X) we have that
fg /∈ �n+2(Z,Y ). Otherwise the left degree off is the least naturalm such that there is a
A-moduleZ and a morphismg ∈ �m(Z,X) \ �m+1(Z,X) such thatfg ∈ �m+2(Z,Y ).

Theright degreedr(f ) of an irreducible morphismf is dually defined.
This notion has been very useful in the study of the components of the Auslander–

quiverΓA of an artin algebraA.
We study the degree of irreducible morphisms in generalized standard and conve

ponentsΓ of ΓA having the property that two paths inΓ having the same starting pointx

and ending pointy have equal length, called length fromx to y. We call the component
with this last propertycomponents with length. Bongartz and Gabriel proved in [7] that th
Auslander–Reiten quiver of a simply connected algebra of finite representation typ
component with length. We show that the convex directed components of a strongl
ply connected algebra (not necessarily of finite representation type) are componen
length.

We prove that the compositionf of n irreducible morphisms in a generalized stand
convex component with lengthΓ of ΓA belongs to�n+1 if and only if f = 0. We give two
different characterizations of the irreducible morphisms in generalized standard con
components with length having finite left (right) degree. The first is given in terms of
compositions with non-zero maps between modules inΓ . Actually, we prove the following
theorem.

Theorem A. Let A be an artin algebra andΓ a generalized standard convex compon
ofΓA with length. Letf :X → Y be an irreducible morphism withX,Y ∈ Γ . Thendl(f ) =
∞ if and only iffg �= 0 for each non-zero morphismg :M → X with M ∈ Γ .

Our second characterization allows us to know if the left degree of an irreducible
phismf in a component is finite or infinite, depending on whether Kerf belongs to the
component. More precisely we prove the following result.

Theorem B. LetA be an artin algebra,Γ a generalized standard convex component ofΓA

with length andf :M → N an irreducible epimorphism withM,N ∈ Γ . Thendl(f ) = ∞
if and only ifKerf /∈ Γ .



202 C. Chaio et al. / Journal of Algebra 281 (2004) 200–224

ve

owing

ments

rmine
eredi-

cible
s
nts of

Sec-
h the
ras. In
lts to

en an

dule
When we only assume that the componentΓ is generalized standard one of the abo
implications is still true. More precisely, we have in this case thatdl(f ) < ∞, provided
Kerf ∈ Γ .

We apply the above results to algebras of finite representation type proving the foll
theorem.

Theorem C. Let A be an artin algebra of finite representation type andf :M → N an
irreducible morphism between indecomposableA-modules. Then:

If f :M → N is an epimorphism thendl(f ) < ∞.

Moreover, ifΓA is a component with length, then:

If f :M → N is an epimorphism thendr(f ) = ∞.

The above results refer to the left degree of irreducible morphisms. Dual state
hold for their right degree (see Theorem 3.14).

Finally we give some applications and examples. First we use our results to dete
almost all irreducible morphisms with finite degree in the directed components of h
tary algebras of typẽEp andD̃n.

Then we use Liu’s results in [13], to study the finiteness of the left degree of irredu
morphisms in the directed components of hereditary algebras of typeÃpq . The same result
allow us to compute the degree of any irreducible morphism in the regular compone
a tame hereditary algebra.

The paper is organized in the following way.
In Section 1 we give some preliminaries results and recall some definitions. In

tion 2 we introduce the notion of component with length and study the relation wit
convex directed components of simply connected algebras and of hereditary algeb
Section 3 we prove Theorems A, B and C. Finally, in Section 4 we apply our resu
tame hereditary algebras.

1. Preliminaries

Throughout this paperA will denote an artin algebra, modA the category of finitely
generated leftA-modules and� the Jacobson radical of modA and k an algebraically
closed field.

We denote byΓA the Auslander–Reiten quiver ofA and byτ andτ− the Auslander–
Reiten translations DTr and TrD, respectively. We are not going to distinguish betwe
indecomposable moduleX in modA and the corresponding vertex[X] in ΓA. By ε(X) we
denote the almost split sequence ending at the non-projective indecomposable moX

and byα(X) the number of indecomposable summands of the middle term ofε(X). We
denote byε′(X) andα′(X) the dual notions, respectively. This is,ε′(X) is the almost split
sequence starting at the non-injective indecomposable moduleX andα′(X) is the number
of indecomposable summands of the middle term ofε′(X).
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Now we recall some definitions and results from [13]. LetA be an artin algebra an
f :X → Y an irreducible morphism in modA, with X or Y indecomposable. Theleft de-
greedl(f ) of f is infinite, if for each integern � 0, each moduleZ ∈ modA and each
morphismg ∈ �n(Z,X) \ �n+1(Z,X) we have thatfg /∈ �n+2(Z,Y ). Otherwise the lef
degree off is the least naturalm such that there is anA-moduleZ and a morphism
g ∈ �m(Z,X) \ �m+1(Z,X) such thatfg ∈ �m+2(Z,Y ).

Theright degreedr(f ) of an irreducible morphismf is dually defined.
If f :X → Y is an irreducible morphism between indecomposable modules, the

enough to consider only indecomposable modulesZ in the definition of left degree to prov
thatdl(f ) = ∞ (see [9, 2.1]).

A pathYn → Yn−1 → ·· · → Y1 → Y0 = Y in ΓA is said to bepresectionalif for eachi,
1 � i � n − 1, Yi−1 = τYi+1 implies thatYi−1 ⊕ τYi+1 is a summand of the doma
of the right almost split morphism forYi , or equivalently,τ−Yi−1 = Yi+1 implies that
τ−Yi−1 ⊕ Yi+1 is a summand of the codomain of the left almost split morphism forYi .

Next we recall some known definitions needed throughout the paper.
Let Γ be a component ofΓA. ThenΓ is generalized standardif �∞(X,Y ) = 0 for all

X,Y ∈ Γ , andΓ is convexif for every chainX0 → X1 → ·· · → Xn−1 → Xn of non-zero
non-isomorphisms between indecomposable modules withX0,Xn ∈ Γ , eachXi belongs
to Γ for i = 1, . . . , n − 1. Finally, Γ is calleddirected if there is no sequenceM0 →
M1 → ·· · → Mn of non-zero non-isomorphisms between indecomposableA-modules
with M0 = Mn.

Given a directed componentΓ of ΓA, its orbit graphO(Γ ) has as points theτ -orbits
O(M) of the modulesM in Γ . There exists an edge betweenO(M) andO(N) in O(Γ )

if there arem,n ∈ Z and an irreducible morphismτmM → τnN or τnN → τmM. The
number of such edges equals dimk Irr(τmM,τnN) or dimk Irr(τnN, τmM), respectively,
where Irr(X,Y ) = R(X,Y )/R2(X,Y ) andk = End(X)/R(X,Y ) . A componentΓ of ΓA

is of tree typeif its orbit graphO(Γ ) is a tree.
Let A be a basic finite dimensional associative algebra (with unit) over the algebra

closed fieldk. ThenA 	 kQ/I for some finite quiverQ and some admissible idealI of
the path algebrakQ, and the pair(Q, I) is called a presentation forA.

Let now (Q, I) be a connected bound quiver. A relationρ = ∑m
i=1 λiwi ∈ I (x, y)

is minimal if m � 2 and, for any non-empty proper subsetJ ⊂ {1,2, . . . ,m}, we have∑
j∈J λiwi /∈ I (x, y). A walk in Q from x to y is a path of the quiver formed byQ and the

formal inversesα−1 of the arrowsα ∈ Q. That is, it is a compositionαε1
1 α

ε2
2 · · ·αεt

t where
αi are arrows inQ andεi ∈ {1,−1} for all i, with sourcex and targety. We denote byex

the trivial path atx. Let ∼ be the least equivalence relation on the set of all walks iQ

such that:

(a) If α :X → Y is an arrow, thenα−1α ∼ ex or αα−1 ∼ ey .
(b) If ρ = ∑m

i=1 λiwi is a minimal relation, thenwi ∼ wj for all i, j .
(c) If u ∼ v, thenwuw′ ∼ wvw′ whenever these compositions make sense.

Let x ∈ Q0 be arbitrary. The setπ1(Q, I, x) of equivalence classesu of closed pathsu
starting and ending atx has a group structure defined by the operationu.v = u.v. SinceQ
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is connected then this group does not depend on the choice ofx. We denote itπ1(Q, I)

and call it thefundamental groupof (Q, I).
A triangular algebraA is simply connected if, for any presentationπ1(Q, I) of A, the

fundamental groupπ1(Q, I) is trivial.
An algebraB is a convex subcategory ofA if there is a full and convex subquiverQ′

of Q such thatB = kQ′/(I ∩ kQ′). The algebraA is said to bestrongly simply connecte
if any full convex subcategory ofA is simply connected. (See [17].)

2. Components with length

In this section we introduce the concept of component with length. The notion of le
of a walk appeared in the work of Bongartz and Gabriel [7] in a different context
w be a walk,w = α

ε1
1 α

ε2
2 · · ·αεt

t whereαi ∈ Q1 andεi ∈ {1,−1} for all i. Then we set
�(w) = ∑t

1=1 �(α
εi

i ) where�(αi) = 1 for all i, while �(α−1
i ) = −1 (see [7]).

Let us recall that paths inΓA having the same starting vertex and the same ending v
are calledparallel paths.

Definition 2.1. Let Γ be a component ofΓA. We say thatΓ is a component with length
when parallel paths inΓ have the same length. Otherwise, we say thatΓ is a componen
without length.

Observe that a component ofΓA with length has no oriented cycles.

Definition 2.2. Let Γ be a component ofΓA with length andX,Y ∈ Γ . We say that the
length�(X,Y ) betweenX andY is n if there is a path fromX to Y in Γ of lengthn.

There are many algebras having components with length. In [7], K. Bongartz
P. Gabriel considered the homotopy given by the mesh relations and defined simp
nected quivers. The notion of component with length can be extended to translation q
and we can state the following result, which has been implicitly proven in [7], in the p
of Proposition 1.6.

Theorem [7]. LetΓ be a component of a simply connected translation quiver. ThenΓ is
a component with length.

Proof. Let X ∈ Γ . By the definition of homotopy, the length function� above defined on
the set of walks is constant on each homotopy class. Now, sinceΓ is simply connected
the walks fromX to any givenY ∈ Γ are homotopic to each other.�

On the other hand, by [11], we know that ifA is a strongly simply connected algeb
then any convex directed component ofΓA is of tree type. Some classes of strongly sim
connected algebras have been completely described. In particular, in case that the alA

is iterated tilted of euclidean type, derived tubular, tame tilted or tame quasi-tilted, i
shown thatA is strongly simply connected if and only if the first Hochschild cohomol
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groupH 1(A) vanishes andA is stronglyÃ free, that is to say, contains no full conv
subcategory which is hereditary of typẽAn (see for instance [1–4]). We state the followi
proposition.

Proposition 2.3. LetA be a strongly simply connected finite dimensionalk-algebra andΓ
a convex directed component ofΓA. ThenΓ is a component with length.

Proof. In [7, Section 4.3], it has been proved that the orbit graphO(Γ ) is a deformation
retract of the componentΓ . By [11], O(Γ ) is a tree. ThenΓ is a simply connected trans
lation quiver. Thus, by the theorem stated above [7], it follows thatΓ is a component with
length. �

The converse of this proposition is not true, since there are components with
whose orbit graph is not a tree. For example, the directed components of a her
algebra over a fieldk of typeÃpp are components with length, as the following results w
prove.

The remainder of this section is devoted to prove that the directed components
Auslander–Reiten quiver of a hereditary algebraA over an algebraically closed fieldk are
components with length if and only if the ordinary quiver ofA does not contain a subquiv
(not necessarily full or convex) of typẽApq , with p �= q .

In all that followsk denotes an algebraically closed field.
We start by proving the following lemma:

Lemma 2.4. Let A be an artin algebra andΓ a semiregular directed component ofΓA

without length. Letm > 0 be the least integer such that there are modulesX,Y ∈ Γ and
paths fromX to Y of different length, one of them of lengthm. Then all paths fromX to Y

are sectional.

Proof. Let Cn = {γ : X � Y/γ is a path of lengthn}. We will prove that all paths inCn

are sectional. For a pathγ in Cn,

γ :X = X0 → X1 → ·· · → Xn = Y

we denote byiγ the largest integer such thatX = X0 → X1 → ·· · → Xiγ is a sectiona
path. Now, we assume thatCn is not empty and we choose a pathγ0 in Cn such that

iγ0 = min{iγ /γ ∈ Cn}.
It is enough to prove thatiγ0 = n.

By hypothesis there is a path

µ :X = Y0 → Y1 → ·· · → Yr = Y

of lengthr �= n and such that eitherγ0 or µ has lengthm. First we assume that the sem
regular componentΓ has no injective modules. Since any path of length one is secti
we also assumen > 1.
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Suppose thatiγ0 < n. If iγ0 = 1 thenX2 = τ−1X0. Since there is an irreducible mo
phismX0 → Y1 then there is an irreducible morphismY1 → τ−1X0 = X2 and there exis
paths

Y1 → X2 → ·· · → Xn = Y and Y1 → Y2 → ·· · → Yr = Y

of lengthn − 1 andr − 1, respectively, contradicting the minimality ofm. Thusiγ0 > 1.
SoXiγ0+1 	 τ−1Xiγ0−1. Since there is an irreducible morphismXiγ0−2 → Xiγ0−1 then we
have also an irreducible morphism

τ−1Xiγ0−2 → τ−1Xiγ0−1.

We can replace inγ0 the path

Xiγ0−2 → Xiγ0−1 → Xiγ0
→ Xiγ0+1

by the path

Xiγ0−2 → Xiγ0−1 → τ−1Xiγ0−2 → τ−1Xiγ0−1

obtaining a pathγ ′ :X → Y of lengthn such thatiγ ′ = iγ0 − 1. This contradicts the mini
mality of iγ0, proving thatiγ0 = n.

In caseΓ has no projective modules the result follows by duality.�
Lemma 2.5. Let A be a hereditary k-algebra,Γ a directed component ofΓA andX → Y

an arrow. If there exists a path fromX to Y in Γ of length larger than1, thenQA contains
a subquiver of typẽAp1 with p > 1.

Proof. First assume thatΓ is the preprojective component and letY0 → Y1 → ·· · → Yn

be a path withn > 1. SinceΓ is directed then the modulesYi are pairwise different. Le
k be the least positive integer such that{τ kYi}i=0,...,n contains a projective module. The
there are irreducible morphismsτ kYi → τ kYi+1 for 0 � i � n − 1.

On the other hand we know by hypothesis that there is an arrow fromY0 to Yn, which
induces an irreducible morphismτ kY0 → τ kYn.

Case 1. Assumeτ kYn is projective. Since there exists an irreducible morphismτ kYn−1 →
τ kYn andA is hereditary, thenτ kYn−1 is projective. Iterating this argument, we conclu
thatτ kYi is projective, fori = 0, . . . , n − 1. Thus,Γ contains the subquiver

τ kY1 · · · τ kYn−1

τ kY0 τ kYn
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where allτ kYi are different and projective, proving thatQA has a subquiver of typẽAn1
with n �= 1.

Case 2. τ kYn is not projective. Lett be the largest integer 0� t � n − 1, such thatτ kYt

is projective. Thusτ k+1Yi is defined fori > t and we get the following path of irreducib
morphisms

τ k+1Yt+1 → τ k+1Yt+2 → ·· · → τ k+1Yn.

Since there are irreducible morphismsτ kYt → τ kYt+1 andτ kY0 → τ kYn then we also have
irreducible morphismsτ k+1Yt+1 → τ kYt andτ k+1Yn → τ kY0.

SinceΓ is directed there are no oriented cycles inΓ . Using this and the fact thatτ kYt

is projective we get that all modules in the subquiver

· · · · · · τ k+1Yn τkY0 · · · τ kYt−1

τ k+1Yt+1 τ kYt

of ΓA are different and projective. SoQA has a subquiver of typẽAn1 with n �= 1, proving
the lemma in this case.

The result for the preinjective component follows by duality.�
Proposition 2.6. LetA be a hereditaryk-algebra. Then the directed components ofΓA are
components with length if and only ifQA does not contain a subquiver of typẽApq , with
p �= q .

Proof. If QA has a subquiver of typẽApq with p �= q then the directed components ofΓA

containQA as a convex subquiver. Thus, they are components without length.
To prove the converse, we first assume that the preprojective componentP of ΓA is

without length. We will prove that there existp �= q such thatQA contains a subquiver o
typeÃpq . First we will prove this in case there exists a particular type of cyclic walk,
then we will show that such a walk always exists. So we start by assuming that there
cyclic walk inP of the form

P0 − P1 − · · · − Pd = P0

where each edge stands for an arrow→ or ←, such that:

(i) Pi is projective for alli = 0,1, . . . , d .
(ii) There existsn, with 0< n < d , such that the modulesP0, . . . ,Pn are pairwise non

isomorphic, and alsoPn,Pn+1, . . . ,Pd are pairwise non-isomorphic.
(iii) The numberr of arrows in one direction is different from the numbers of arrows in

the opposite direction.
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If the modulesP0, . . . ,Pd are pairwise non-isomorphic thenQA would contain a sub
quiver of typeÃrs . If not, there existi < j such thatPi 	 Pj . Then we obtain two cyclic
walks of shorter length satisfying (i) and (ii), and such that one of them, sayC, satisfies
also (iii). If all modules inC are non-isomorphic we are done. Otherwise we iterate
procedure until we finally reach a cyclic walkwith non-isomorphic modules satisfying (
(ii) and (iii), having a subquiver of typẽApq with p �= q , as desired.

Let m be the least integer such that there exist indecomposable modulesX andY in P
and paths fromX to Y of different length, one of them of lengthm. We assume thatm � 2,
since otherwise the result holds by the previous lemma, and we will prove that there
a cyclic walk between projective modulessatisfying (i), (ii)and (iii). Let then

γ :X = X0 → X1 → ·· · → Xn = Y

and

µ :X = Y0 → Y1 → ·· · → Ym = Y

be paths withn �= m. SinceΓA has no oriented cycles and by the minimality ofm, the
modulesX0,X1, . . . ,Xn,Y1, Y2, . . . , Ym are pairwise different.

Then inP we have the following subquiver

X1 X2 · · · Xn−2 Xn−1

Y0 = X0 Xn = Ym

Y1 Y2 · · · Ym−2 Ym−1

By applyingτ k to this subquiver if necessary, we may assume thatX0 is projective.
Let k1 ∈ {1, . . . , n − 1, n} be the largest integer such thatXk1 is projective. Ifk1 < n then
τXk1+1 is projective, because there is an irreducible morphism fromτXk1+1 to the projec-
tive moduleXk1. Let k2 ∈ {k1 + 1, k1 + 2, . . . , n} be largest so thatτXk2 is projective.

Iterating this process we findk1 < k2 < · · · < kr such that the modules

X1,X2, . . . ,Xk1,

τXk1+1, τXk1+2, . . . , τXk2

and

τ rXkr+1, τ
rXkr+2, . . . , τ

rXn

are projective. We construct a walk of irreducible morphisms between projective mo

X0 → ·· · → Xk1 ← τXk1+1 → ·· · → τXk2 ← τ2Xk2+1 → ·· · ← · · · → τ rXn

with r arrows in one direction andn − r arrows in the opposite direction. Moreover, the
is always a non-sectional path fromXi to τ−kXi if k > 0. SoXj �= τ−kXi for i > j and
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k > 0 because all paths fromX to Y are sectional, according Lemma 2.4. Thus all
projective modules in the walk are pairwise different.

In a similar way we find inP a walk of irreducible morphisms between different p
jective modules

Y0 → ·· · → Yt1 ← τYt1+1 → ·· · → τYt2 ← τ2Yt2+1 → ·· · ← · · · → τ sYm

with m − s arrows in the same direction. SinceXn = Ym andτ rXn, τ sYm are projective it
follows thatr = s.

SinceX0 = Y0 andτ rXn = τ sYm, combining the two walks we get a cyclic walk wi
exactlyn arrows in one direction andm in the opposite direction, satisfying (i), (ii) and (iii),
as we wish. Then we conclude that there existp �= q such thatQA contains a subquiver o
typeÃpq .

The result for the preinjective componentfollows by duality. Then we conclude that th
directed components ofΓA are components with length.�

Finally, we remark that if a hereditary algebra contains a full convex subquiv
typeÃpp then it is not strongly simply connected. However, the directed componentsΓA

may be components with length.

3. On the degree of irreducible morphisms in components with length

In this section we are mainly interested in giving two different characterizations o
irreducible morphisms in generalized standard convex components with length hav
nite left (right) degree.

In these components it is possible to find a handy criterion to determine if the deg
an irreducible morphism is finite, depending on whether Kerf (Cokerf ) is in Γ .

Before we state our first characterization we prove a result useful for our purpose

Proposition 3.1. Let Γ in ΓA be a generalized standard convex component with len
LetX,Y ∈ Γ such that�(X,Y ) = n. Then:

(a) �n+1(X,Y ) = 0.
(b) If g :X → Y is a non-zero morphism theng ∈ �n(X,Y ) \ �n+1(X,Y ).
(c) �j (X,Y ) = �n(X,Y ), for eachj = 1, . . . , n.

Proof. (a) Assume that there is a morphismg �= 0 such thatg ∈ �n+1(X,Y ), with
X,Y ∈ Γ . Then there exist an integers � 1, indecomposable modulesB1,B2, . . . ,Bs,

morphismsfi ∈ �(X,Bi) and gi :Bi → Y with eachgi a sum of compositions of
irreducible morphism between indecomposable modules such thatg = ∑s

i=1 gifi with
gifi �= 0 [6]. SinceΓ is a convex component, the modulesBi ∈ Γ , for i = 1, . . . , s. More-
over, asΓ is a generalized standard component, by [6, 7.5], eachfi :X → Bi can be written
asfi = ∑r

k=1 µik , whereµik is composition of irreducible morphisms, fork = 1, . . . , r.
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So the pathsgiµik :X → Y have length greater than n, contradicting thatΓ is a componen
with length. Thus�n+1(X,Y ) = 0.

(b) SinceΓ is generalized standard andg :X → Y is not zero theng = ∑s
i=1 gi , where

eachgi is a path fromX to Y . Since�(X,Y ) = n, the length of eachgi is n. Hence
g ∈ �n(X,Y ). By (a) we know that�n+1(X,Y ) = 0. Sog ∈ �n(X,Y ) \ �n+1(X,Y ).

(c) Follows immediately from the fact thatΓ is a component with length an
�(X,Y ) = n. �

The following corollaries are direct consequences of the proposition.

Corollary 3.2. LetX andY be modules in a generalized standard convex component
length. If Hom(X,Y ) �= 0 then there is a uniquek such that�k(X,Y ) \ �k+1(X,Y ) is
non-empty and suchk coincides with�(X,Y ).

Corollary 3.3. LetΓ in ΓA be a generalized standard convex component with length.
the compositionf of n irreducible morphisms with modules inΓ is in �n+1 if and only if
f = 0.

WhenΓ is a generalized standard convex component with length, given an irredu
map and a morphism in�n\�n+1, their composition is in�n+2 only if it is zero. As a
consequence we can state the following result:

Corollary 3.4. Let Γ be a generalized standard convex component ofΓA with length. Let
f :X → Y be an irreducible morphism and letϕ ∈ �n(Y,Z)\�n+1(Y,Z), with X,Y,Z ∈
Γ . Thenϕf ∈ �n+2(X,Z) if and only ifϕf = 0.

Proof. Let ϕ ∈ �n(Y,Z)\�n+1(Y,Z) be such thatϕf ∈ �n+2(X,Z). By Corollary 3.2
we know that�(Y,Z) = n, since�n(Y,Z)\�n+1(Y,Z) is non-empty. Then�(X,Z) =
n + 1, becausef :X → Y is irreducible. Then we obtain from Proposition 3.1(a) t
�n+2(X,Z) = 0, and consequentlyϕf = 0. �

In the preceding corollary the hypothesis thatΓ has length can not be omitted, as t
example below shows.

Example 3.5. Let A be the algebra given by the quiver:

1
α γ

2
β

3

δ

5 4
ε
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with relationsβα = 0 andδγ = 0. Then A is a triangular algebra of finite representat
type, tilted of typeÃn, and the Auslander–Reiten quiverΓA of A is the following:

P3 f
· · · S2

f2

· · · I3

P4 I5

f1

g1 P1 I1

P5 τ−1P5 I4 g2

P2 · · · S4 · · · S3

g3

· · · I2

So the unique component ofΓA is a component without length. The irreducible morphi
f is left almost split, sodr(f ) = 1.

Let γ = g3g2g1 and µ = f2f1. Considerϕ = γ + µ. This morphism belongs t
�2(I5,P1)\�3(I5,P1), since µ is a sectional path of length 2. We claim thatϕf ∈
�4(P3,P1) and ϕf �= 0. In fact, sinceµf = 0 andϕf is a sectional path of length 4
we have thatϕf ∈ �4(P3,P1)\�5(P3,P1).

In the next proposition we consider a similar situation in a semiregular directed comp
nent ofΓA, having sectional parallel paths of different length.

Proposition 3.6. LetA be an artin algebra andΓ a semiregular directed component ofΓA

without length. Letm > 0 be the least integer such that there are modulesX,Y ∈ Γ and
paths fromX to Y of different length, one of them of lengthm. Letγ , µ be such paths, with
�(γ ) = n, �(µ) = m. Assume that there is an irreducible mapf :Z → X in Γ such that
µf = 0. Thenϕ = γ +µ is in �m(X,Y )\�m+1(X,Y ) andϕf ∈ �n+1(Z,Y )\�n+2(Z,Y ).
In particular, dr(f ) � m.

Proof. By Lemma 2.4 we know that both pathsγ andµ are sectional. It follows from th
minimality of m thatγf is also sectional, sinceµf = 0. Sinceγf is a composition ofn+1
irreducible morphisms we know by [12] that it belongs to�n+1(Z,Y )\�n+2(Z,Y ). Thus
ϕf = γf + µf = γf ∈ �n+1(Z,Y )\�n+2(Z,Y ). Sincen > m we obtain thatϕ = γ + µ

is in �m(X,Y )\�m+1(X,Y ) and thereforedr(f ) � m. �
Now we state the first of our main theorems.

Theorem 3.7. Let A be an artin algebra andΓ be a generalized standard convex com
nent ofΓA with length. Letf :X → Y be an irreducible morphism withX,Y ∈ Γ . Then:

(a) dr(f ) = ∞ if and only ifgf �= 0 for each non-zero morphismg :Y → M with M ∈ Γ .
(b) dl(f ) = ∞ if and only iffg �= 0 for each non-zero morphismg :M → X with M ∈ Γ .
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Proof. (a) First assume that for each non-zero morphismg :Y → M, with M ∈ Γ , we
have thatgf �= 0.

Considerg ∈ �n(Y,M) \ �n+1(Y,M). Thus g �= 0. By Corollary 3.3 we have tha
�(Y,M) = n. Sincef :X → Y is irreducible we get that�(X,M) = n + 1, and Propo-
sition 3.1(a) implies that�n+2(X,M) = 0. We assumed thatgf �= 0, sogf /∈ �n+2(X,M)

and we conclude thatdr(f ) = ∞.
The converse is an immediate consequence of the definition of infinite right degre
The result stated in (b) follows by duality.�
From the above theorem we deduce the following useful result.

Corollary 3.8. LetA be an artin algebra. IfΓ is a generalized standard convex compon
of ΓA with length then:

(a) If f :X → Y is an irreducible monomorphism withX,Y ∈ Γ thendlf = ∞.
(b) If f :X → Y is an irreducible epimorphism withX,Y ∈ Γ thendrf = ∞.

Let A be an artin algebra andΓ a generalized standard convex component ofΓA with
length. To determine if the degree of an irreducible morphism between indecomp
modulesf :X → Y is infinite we only need to prove that the composition off with non-
zero maps is non-zero. It would be interesting to know if it is enough to consider
compositions off with paths inΓA. Though we do not know the answer in general,
can prove that this is the case whenα(Γ ) � 2. That is,α(X) � 2 for everyX in Γ . In fact,
we prove the following result.

Proposition 3.9. Let A be an artin algebra andΓ a generalized standard convex comp
nent ofΓA with length such thatα(Γ ) � 2. Let f :X → Y be an irreducible morphism
with X,Y ∈ Γ . Then the following conditions are equivalent:

(a) dr(f ) = ∞.
(b) γf �= 0 for each non-zero pathγ :Y → M in Γ .

Proof. (a) implies (b) is an immediate consequence of Theorem 3.7.
Now, assume that (b) holds. By Theorem 3.7 it is enough to prove thatgf �= 0 for each

non-zero morphismg :Y → M with M ∈ Γ . SinceΓ is a generalized standard conv
component theng ∈ �n(Y,M) \ �n+1(Y,M) for somen � 0.

We prove thatgf �= 0 by induction onn. Assume thatn = 1, that is,g ∈ �(Y,M) \
�2(Y,M). SinceY,M are indecomposable theng is an irreducible morphism. Therefo
g is a non-zero path and it follows by hypothesis thatgf �= 0.

Assume now that the composition of an irreducible morphismh in Γ with a non-zero
morphism in�n−1 \ �n is non-zero, whenever the composition ofh with non-zero paths
does not vanish.

Suppose that there exists a morphismg ∈ �n(Y,M)\�n+1(Y,M) with M ∈ Γ such that
gf = 0. Thus�(Y,M) = n. By [13, Lemma 1.3] the irreducible morphismf :X → Y is
such thatX is not injective. Since we are assuming (b) it follows thatα′(X) �= 1. Otherwise,
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f is minimal left almost split and there is a non-zero pathg :Y → τ−1X such thatgf = 0.
Soα′(X) = 2. Consider the almost split sequence

0 → X
(f ′f )T−−−−→ Y ′ ⊕ Y

(t ′t )−−−−→ τ−1X → 0.

It is enough to prove that there exists a non-zero pathγ : τ−1(X) → M such thatγ t ′ = 0.
In fact, if this is the case, thenγ t �= 0 because(t, t ′) is surjective. Thus the pathγ t satisfies
γ tf = γ t ′f ′ = 0, contradicting (b).

We prove next the existence of suchγ using the induction hypothesis. Sincegf =
0 ∈ �n+2 [13, Lemma 1.3], states that there exists a morphismq : τ−1X → M in modA,
q /∈ �n(τ−1X,M) such thatg + qt ∈ �n+1(Y,M) and qt ′ ∈ �n+1(Y ′,M). SinceΓ is
a component with length and�(Y,M) = n, we get that�n+1(Y,M) = 0 and therefore
−qt = g. It follows from Corollary 3.2 that the morphismq belongs to�n−1(τ−1X,M)

and not to�n(τ−1X,M).
On the other hand,qt ′ = 0 sinceqt ′ ∈ �n+1(Y ′,M) and �(Y ′,M) = n. Thus, since

q �= 0 we know by the induction hypothesis that there exists a pathγ such thatγ t ′ = 0,
proving the desired result and ending the proof of the proposition.�

One can easily find componentsΓ satisfying the hypothesis of the proposition. A
example is given by the convex directed components of strongly simply connected
algebras. In fact, such componentsΓ satisfyα(Γ ) � 2 [8, p. 175], andby Proposition 2.3
we know that convex directed components are components with length.

Next we give another characterization of the degree of an irreducible morphis
tween indecomposable modules, which allows us to determine if the right (left) deg
an irreducible morphism is finite depending on whether Kerf (Cokerf ) belongs to the
component.

Observe that iff :X → Y is an irreducible epimorphism (monomorphism) then Kef

(Cokerf ) is an indecomposable module [5].
The following lemma will be very helpful in the sequel. ForX,Y ∈ ΓA, we recall that

X is apredecessor ofY or thatY is asuccessor ofX if there exists a sequenceX = X0 →
X1 → ·· · → Xt = Y of non-zero non-isomorphisms between indecomposable mod
When X and Y are in a generalized standard convex componentΓ the non-zero non
isomorphisms in the definition may be replaced by irreducible morphisms.

Lemma 3.10. LetA be an artin algebra andΓ a generalized standard convex compon
of ΓA.

(a) Let g :X → M be a non-zero morphism withX,M ∈ Γ and letf :M → N be an
irreducible epimorphism such thatfg = 0. ThenKerf belongs toΓ and is a successo
of X.

(b) Letg :N → X be a non-zero morphism withN,X ∈ Γ andf :M → N an irreducible
monomorphism such thatgf = 0. ThenCokerf belongs toΓ and is a predecesso
of X.
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Proof. We prove the first statement, the second follows by duality. Letf andg be as in (a).
Theng factors through Kerf , becausefg = 0. Hence there is a morphismg′ :X → Kerf
such thatg = jg′, wherej : Kerf → M is the inclusion map andg′ �= 0. SinceX,M ∈ Γ

andΓ is convex then Kerf ∈ Γ and is a successor ofX. �
We are now in a position to prove the following criterion to determine if an irreduc

morphism has infinite left degree.

Theorem 3.11. Let Γ be a generalized standard component ofΓA andf :M → N be an
irreducible morphism withM,N ∈ Γ .

(a) If Kerf ∈ Γ thendl(f ) < ∞.
(b) If Cokerf ∈ Γ thendr(f ) < ∞.

If Γ is, moreover, convex and with length, then

(a′) If f :M → N is an epimorphism thendl(f ) = ∞ if and only ifKerf /∈ Γ .
(b′) If f :M → N is a monomorphism thendr(f ) = ∞ if and only ifCokerf /∈ Γ .

Proof. (a) Letf :M → N be an irreducible epimorphism withM,N ∈ Γ and consider the
inclusionj : Kerf → M. SinceΓ is a generalized standard component then�∞(X,Y ) =
0 for eachX,Y ∈ Γ . Then j /∈ �∞(Kerf,M). So there is an integerk > 1 such that
j ∈ �k(Kerf,M) \ �k+1(Kerf,M). Sincefj = 0 it follows from the definition of left
degree thatdl(f ) < ∞.

The statement (b) follows by duality.
(a′) First supposedl(f ) is finite. This means that there is a non-zero morphismg :X →

M with X ∈ Γ , such thatfg = 0, by Theorem 3.7(b). Then the above lemma implies
Kerf belongs toΓ .

Assume now that Kerf ∈ Γ . Then the inclusionj : Kerf → M is a non-zero morphism
andfj = 0. Thusdl(f ) is finite, by Theorem 3.7(b).

The last statement follows by duality.�
As an application we have the following corollary.

Corollary 3.12. Let 0 → τZ
(g1g2)

t

−−−−→ Y1 � Y2
(f1f2)−−−−→ Z → 0 be an almost split sequenc

with Y1 and Y2 indecomposable. ThenKer(g1) 	 Ker(f2). If, moreover,Z belongs to a
generalized standard convex component ofΓA with length, thendl(g1) < ∞ if and only if
dl(f2) < ∞.

Proof. If g1 is a monomorphism then so isf2, anddl(g1) = dl(f2) = ∞ by Corollary 3.8.
So we may assume thatg1 is an epimorphism. Since(g1g2)

t is injective it follows that
g2|Kerg1 is injective.

On the other hand,f2g2 = −f1g1, sog2|Kerg1 : Kerg1 → Kerf2. Using a standard argu
ment we get thatl(Kerg1) = l(Kerf2), thus the monomorphismg2|Kerg1 : Kerg1 → Kerf2
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is an isomorphism, proving the first statement. The second statement follows from th
and the preceding theorem.�
Remark 3.13. S. Liu proved in [13, Corollary 1.2] that ifdl(f2) is finite thendl(g1) <

dl(f2).

Another interesting application of the above theorem is the following result.

Theorem 3.14. Let A be a finite dimensionalk-algebra of finite representation type, su
thatΓA is a component with length. Then:

(a) If f :M → N is an irreducible epimorphism thendl(f ) < ∞ anddr(f ) = ∞.
(b) If f :M → N is an irreducible monomorphism thendr(f ) < ∞ anddl(f ) = ∞.

Proof. (a) It is known thatΓA is connected and generalized standard. The result is a d
application of Theorems 3.11 and 3.7.�

We remark that ifA is a finite dimensional algebra over an algebraically closed
andΓ is a standard component ofΓA thenΓ is generalized standard [15]. Moreover, ifA

is of finite representation type andΓA is a component with length thenΓA is standard [7].

4. On the degree of irreducible morphisms over a tame hereditary algebra

We start this section by applying our results to determine the degree of almost a
ducible morphisms lying in the directed components of tame hereditary algebras of tyẼp

or D̃n.
Note that such components are convex, generalized standard and with length. S

are dealing with tame hereditary algebras, we can use the defect associated to an in
posable module to decide if the module is in the preinjective componentI. Thus, for a
particular irreducible morphismf in I we can determine whether Kerf belongs toI in
this way (see [10, Proposition 1.9]). Then, usingthe results of the preceding section one ca
decide if the left degree off is finite. However, we are going to give a direct descript
of the irreducible morphisms of finite degree, up to a finite number of them.

Then we turn our attention the hereditary algebras of typeÃn, and determine the le
degree of any irreducible morphism in the directed components of these algebras. W
that these components are not always with length, so the results of the previous sec
not apply to them. We use results due to S. Liu [13, Proposition 1.6 and Corollary 1
determine the degree of such irreducible morphisms.

On the other hand, we are going to consider the regular components of a tame her
algebra. It is well known that these components are without length. Using again
results we determine the degree of the irreducible morphisms between indecomp
regular modules.

For the convenience of the reader we state now the above mentioned results of L
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Proposition [13, Proposition 1.6]. Letf :X → Y be an irreducible morphism of finite le
degree inmodA with Y indecomposable. Assume that

Yn → Yn−1 → ·· · → Y1 → Y0 = Y

is a presectional path inΓA with n � 1. If X ⊕Y1 is a summand of the middle term ofε(Y )

thendl(f ) > n.

Corollary [13, Corollary 1.6]. Letf :X → Y be an irreducible morphism inmodA with
Y indecomposable. Assume that there is an infinite presectional path

· · ·Yn → Yn−1 → Yn−2 → ·· · → Y1 → Y0 = Y

in ΓA, such thatY1 ⊕ X is a summand of the domain of the left almost split morph
ending atY . Thendlf = ∞.

Dual results hold for the right degree.

4.1. Hereditary algebras of typẽEp for p = 6,7 and 8

Let A be a hereditary algebra of typẽEp for p = 6,7 and 8 and letI be the preinjective
component ofΓA. By Corollary 3.8, we know that the irreducible monomorphisms iI
have infinite left degree. On the other hand, it follows from Theorem 3.11 that the
degree of such morphisms is finite, since their cokernel is inI.

We also know, by Corollary 3.8, that the right degree of any irreducible epimorphi
infinite.

Using the shape of the Auslander–Reiten quiver and arguments on the length
modules (similar to those in [6, VIII, 277–289]) we can determine which irreducible
phisms inI are monomorphisms, up to a finite number (see [9, 4.4]). On the other
using the results of Liu stated above, one can determine the right degree of alm
irreducible epimorphism between indecomposable preinjective modules.

We recall the following notation. LetS( → M) be the full subquiver ofΓA given by all
modulesX ∈ ΓA such that there is a pathX � M and any such path is sectional.

Now, considerS = ⊔
j∈Q0

S( → Ij ) whereIj is the indecomposable injective corr
sponding to the vertexj of the ordinary quiverQ of A.

Let rj be the maximum length of any sectional path ending atIj andr = maxj∈Q0{rj }.
Let C = {X ∈ I/X is a predecessor of a module inτ rS}. ThenC is cofinite in indA

and the just mentioned results hold for irreducible morphisms with codomain inC. More
precisely:

Proposition 4.1. LetA be a hereditary algebra of typẽEp , with p = 6,7,8 and let

0 → τN
(f1f2f3)

t

−−−−−→ B1 � B2 � B3
(g1g2g3)−−−−−→ N → 0

be an almost split sequence, withN in C. Then, fori = 1,2,3,
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(a) fi is an epimorphism,dl(fi) < ∞ anddr(fi) = ∞.
(b) gi is a monomorphism,dr(gi) < ∞ anddl(gi) = ∞.

Proposition 4.2. LetA be a hereditaryk-algebra of typẽEp , for p = 6,7 and8. Let

0→ τN
(f1f2)

t

−−−−→ N1 � B2
(g1g2)−−−−→ N → 0

be an almost split sequence withN in C. Then eitherf1 or f2 is a monomorphism. Iff1 is
a monomorphism then

(a) g2 is a monomorphism,dl(f1) = ∞, dl(g2) = ∞ anddr(f1) < ∞, dr(g2) < ∞.
(b) f2 andg1 are epimorphisms,dl(f2) < ∞, dl(g1) < ∞ anddr(f2) = ∞, dr(g1) = ∞.

We do not include the proof of these results, which are done following the idea
plained at the beginning of 4.1. The details can be found in [9].

4.2. Hereditary algebras of typẽDn with n � 5

Using the shape of the Auslander–Reiten quiver and arguments similar to thos
in [6, VIII, 277–289], we can prove that the only irreducible monomorphisms inI are the
left almost split morphisms between indecomposable modules (see [9, 4.4]), which
left degree one. On the other hand, the left degree of any irreducible monomorph
infinite, by Corollary 3.8, and so is the right degree of irreducible epimorphisms.

So we know the right and left degree of all irreducible morphisms inI, except the
degree of the irreducible epimorphisms which are not minimal right almost split. We
prove that the left degree of almost all such epimorphisms is infinite. We start with
technical results.

Lemma 4.3. LetI be the preinjective component ofΓA, whereA is a hereditaryk-algebra
of typeD̃n, with n � 5. Let X,M ∈ I such thatα′(X) �= 1 and Hom(X,M) �= 0. Then
there exists a path fromX to M that is a composition of irreducible epimorphisms.

Proof. We prove the result by induction on the lengthd of the pathsX � M in ΓA. If
d = 1 then the irreducible morphisms starting atX are epimorphisms, becauseα′(X) �= 1.

Let �(X � M) = d > 1. Suppose that the result is true for paths of length sma
thand . We write the pathX � M as the compositionX � M ′ α→ M, with α an irre-
ducible morphism. Since�(X � M ′) < d, by the inductive hypothesis there exists a p
of irreducible epimorphismsγ :X � M ′. If M ′ α→ M is an epimorphism there is nothin
to prove. OtherwiseM ′ α→ M is a monomorphism. Thenα is left almost split, since th
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unique irreducible monomorphisms are the left almost split morphisms. Thus, we havI
the subquiver

• M1 •

• τM

β1

β3

β2
M2

α
M • •

• M3

α3

•

• • •
where without loss of generality we assume thatM ′ = M2.

Thenγ :X � M ′ is of the formX � τM
β2→ M2, with X � τM a path of epimor-

phisms orX = τM. In either case we can build a path of epimorphisms fromX to M,
throughM3. �
Corollary 4.4. Let A be a hereditaryk-algebra of typẽDn with n � 5. LetX ∈ I be such
thatα′(X) �= 1. Then there is no monomorphismγ :X → M, with M indecomposable no
isomorphic toX.

Proof. Suppose there is a monomorphismγ :X → M which is not an isomorphism. The
l(X) < l(M). This is a contradiction because by the above lemma there exists a path
epimorphisms fromX → M, sol(X) � l(M). �
Corollary 4.5. Let A be a hereditaryk-algebra of typẽDn with n � 5. Let f :M → N be
an irreducible epimorphism withM ∈ I. If α′(Kerf ) �= 1 thenKerf /∈ I .

Proof. Assume that Kerf ∈ I. The inclusion of Kerf in M is a proper monomorphism
thus by Corollary 4.4,α′(Kerf ) = 1. �

In the study of the remaining cases the following result will be useful.

Lemma 4.6. Let A be a hereditaryk-algebra of infinite representation type,µ :X → M a
monomorphism, withX, M ∈ I andt � 1. Thenµ does not factor throughτ−tX.

Proof. Let µ = µ2µ1 with µ1 :X → τ−tX andµ2 : τ−tX → M. If µ is a monomorphism
thenµ1 is also a monomorphism. Using thatI contains no projective modules andτ pre-
serves monomorphisms, we get a chain of irreducible monomorphisms

· · · → τ (n+1)tX → τntX → ·· · → τ tX → X

of arbitrary length, contradicting thatl(X) is finite. �
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We consider again the setS = ⊔
j∈Q0

S( → Ij ). Note that only finitely many irreducibl
morphisms inI end at a module inS. The following result holds for the remaining ones

Proposition 4.7. Let A be a hereditaryk-algebra of typeD̃n, with n � 5. Let M ∈ I be
not injective andf :M → N an irreducible epimorphism which is not an almost sp
morphism and such thatN /∈ S. ThenKerf /∈ I anddl(f ) = ∞.

Proof. Using Corollary 3.12 and the shape of the Auslander–Reiten quiver we obtai
it is enough to prove the result whenα(N) = 3.

Let X = Kerf and letj :X → M be the inclusion. SupposeX ∈ I. By Corollary 4.4
we have thatα′(X) = 1, soε′(X) has indecomposable middle termY with α(Y ) = 3. First
we analyze the case whenN = τ−kY, with k � 1. We have the almost split sequence

0 → τN
(β1β2β3)

t

−−−−−−→
3⊔

i=1

Mi
(α1α2α3)−−−−−−→ N → 0

with M = M3 andf = α3. Thenτ−kX 	 M1 or τ−kX 	 M2. Assume thatτ−kX 	 M2.
We have that Imj = Kerf . Moreover,(0,0,Kerf )t ⊂ Ker(α1, α2, f ) = Im(β1β2β3)

t .
Then there exists a submoduleU ⊂ τN such that(β1β2β3)

t (U) = (00 Kerf )t . Therefore
β1(U) = β2(U) = 0 andβ3|U :U → Kerf is an isomorphism. Now,U ⊂ Kerβ2 = τM2,
sinceε(M2) is a sequence with indecomposable middle term. Then there exists a mon
phism fromX to τM2. SinceτM2 	 τ−k+1X, with k > 1, there exists a monomorphis
from X to τ−k+1X, contradicting the above lemma, and proving the result ifN andY

belong to the sameτ -orbit.
Now assumeN andY are in differentτ -orbits. We illustrate the situation in the follow

ing picture:

X • • • •

• Y • • • • • Z • •

• • • • •

• • • • •

• • M
f

• •

• • • • • N • • • •
• • • • •
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Consider a sectional path fromM � Z with Z,Y in the sameτ -orbit. From the com-
mutative diagram of irreducible morphisms

Z
g

• •

• •

M
f

•

N

we get that Kerg 	 Kerf , by successive application of Corollary 3.12. Thus there
monomorphismϕ : Kerf = X → Z such that Imϕ = Kerg. Let

0 → Z
(g1g2g3)

t

−−−−−→
3⊔

i=1

Xi
(h1h2h3)−−−−−→ τ−1Z → 0

be almost split, withX1 = τ−kX andg3 = g. Sinceh2 is a monomorphism, we get th
(g1g)t is injective. Since Imϕ = Kerf and ϕ is injective, we get that(g1g)tϕ is also
injective, and so isg1ϕ :X → X1 = τ−kX, contradicting that there are no monomorphis
from X to τ−kX. Therefore Kerf /∈ I and by Theorem 3.11dl(f ) = ∞. �
4.3. Hereditary algebras of typẽAn

We know that any irreducible morphism between preinjective indecomposable mo
over a hereditaryk-algebra of typeÃn has infinite left degree. This follows from [13
Theorem 2.3], because all almost splitsequences in the directed components ofΓA have
exactly two indecomposable summands in the middle term. This result can also be
using the existence of certain presectional paths. More precisely, we prove that giv
irreducible morphismf between indecomposable modules over a hereditary algeb
type Ãn, we can find an infinite presectional path in the preinjective componentI ending
at f . Moreover, whenn � 2 such a path is sectional. Since the latter fact is interestin
itself, we include its proof here. We start by proving the following lemma.

Lemma 4.8. LetA be a hereditary artin algebra of typẽAn with n � 2 and letm � n. Then
there exists a sectional path

τ km+1Im+1 → τ kmIm → ·· · → τ k3I3 → τ k2I2 → I1, (4.1)
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whereIk is the indecomposable injective corresponding to the vertexk of QA,

2 · · · n

1 n + 1

is the underlying graph ofQA, and0 � k2 � k3 � · · · � km+1.

Proof. We prove the result by induction onm. Letm = 1. If 1 → 2 is an arrow inQA there
exists an irreducible morphismI2 → I1. Otherwise 2→ 1 is an arrow inQA and there is
an irreducible morphismτI2 → I1.

Now, letm > 1 and assume that the result holds form − 1. Then there exists a section
path of the form

τ rmIm → τ rm−1Im−1 → ·· · → τ r2I2 → I1 (4.2)

with 0 � r2 � · · · � rm.
There is either an arrowm + 1 → m or an arrowm → m + 1 in QA.
In the first case there are irreducible morphismsIm → Im+1 andτIm+1 → Im. Thus

we also have an irreducible morphismτ rm+1Im+1 → τ rmIm, and by composing it with th
above path we get the path

τ rm+1Im+1 → τ rmIm → ·· · → τ r2I2 → I1

which is clearly sectional. In a similar way, if there is an arrowm → m + 1 in QA then
there is an irreducible morphismIm+1 → Im and the required sectional path is

τ rmIm+1 → τ rmIm → ·· · → τ r2I2 → I1. �
Proposition 4.9. Let A be a hereditary artin algebra of typẽAn with n � 1. Given an
irreducible morphismf :X1 → X0 in I there exists an infinite presectional path

· · · → Xn+1 → Xn → ·· · → X1
f−→ X0.

Moreover, ifn � 2 such a path is sectional.

Proof. Let

2 · · · n

1 n + 1

be the underlying graph ofQA, and letf :X1 → X0 be an irreducible morphism inI.
First considern = 1, soA is the Kronecker algebra andQA is 1⇒ 2.
We may assume that eitherX1 = τ k2I2, X0 = τ k1I1, or X1 = τ k1I1, X0 = τ k2I2. In the

first casek1 = k2 and in the secondk2 = k1 − 1.
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In caseX1 = τ k1I2, X0 = τ k1I1 we get a presectional path

· · · → τ k1+t I2 → τ k1+t I1 → ·· · → τ k1+1I2 → τ k1+1I1 → τ k1I2
f−→ τ k1I1. (4.3)

On the other hand, ifX1 = τ k1I1 andX0 = τ k1−1I2, we build a presectional path

τ k1+t I1 → τ k1+(t−1)I2 → ·· · → τ k1+1I1 → τ k1I2 → τ k1I1
f−→ τ k1−1I2.

Thus we get the desired result in casen = 1.

Now, supposen � 2. By the above proposition there exists a sectional path

τ kn+1In+1 → τ knIn → ·· · → τ k2I2 → I1 (4.4)

with 0 � k2 � k3 � · · · � kn+1.
If there is an arrow 1→ n + 1 in QA then there is an irreducible morphismIn+1 → I1

and thus anotherτI1 → In+1. By applying the functorτ to (4.4) and composing with th
morphismτI1 to In+1 we obtain the sectional path

τ kn+1+1In+1 → τ kn+1In → ·· · → τ k3+1I3 → τ k2+1I2 → τI1 → In+1.

Now we may applyτ i(kn+1+1) obtaining a pathγi , for each i � 0. The composition
· · ·γi · · ·γ1γ0 is an infinite sectional path, ending at the irreducible morphismτI1 → In+1.

In case there is an arrown + 1 → 1 we obtain, in analogous way, an infinite sectio
path ending at the irreducible morphismI1 → In+1.

Then we proved that there is either an infinite sectional path ending atI1 → In+1 or at
τI1 → In+1.

Now consider the given irreducible morphismf :X1 → X0. Let I andI ′ be injective
modules such thatX1 = τ rI andX2 = τ sI ′ with r, s � 0. SinceA is hereditary, we hav
s = r or s = r − 1. So there is an arrowI → I ′ or τI → I ′. We label the vertices ofQA

so thatI1 = I , In+1 = I ′. Then there is an arrown + 1 → 1 whens = r, and an arrow
in the opposite direction otherwise. In any case, we applyτ r to the corresponding infinit
sectional path above constructed. We obtain an infinite sectional path ending atτ rI1 →
τ sIn+1. This is, atX1 → X0, as desired. �
Corollary 4.10. LetA be a hereditary artin algebra of typẽAn, with n � 1 andf :X → Y

be an irreducible morphism, withX ∈ I. Thendl(f ) = ∞.

Proof. Let ε(Y ) be the almost split sequence ending atY

0 → τY → X ⊕ Z → Y → 0.

By the above proposition there exists an infinitepresectional path ending at the irreduci
morphismg :Z → Y , such thatZ ⊕X is a summand of the domain of the right almost s
morphism forY . Then from the result due to S. Liu stated at the beginning of this se
[16, Proposition 1.6] we conclude thatdlf = ∞. �
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4.4. The regular components

In this section we calculate the right and left degree of the irreducible morphism
tween indecomposable regular modules in stable tubes or in components of typeZA∞ of
the Auslander–Reiten quiver of an artin algebra.

Let T be such a component. We recall that a co-ray ofT is an infinite sectional pat
· · · → Xn → Xn−1 → ·· · → X2 → X1 with X1 ∈ T and α(X1) = 1. Dually, a ray of
T is an infinite sectional pathX1 → X2 → ·· · → Xn → Xn−1 → ·· · with X1 ∈ T and
α(X1) = 1.

An irreducible morphism in a stable tube belongs either to a ray or to a co-ray, a
determine its degree in the following proposition.

Proposition 4.11. Let A be an artin algebra and assume that the componentT of ΓA is
either a tube or of typeZA∞. Letf in ΓA be an irreducible morphism. Then

(a) If f belongs to a co-ray ofT , thendr(f ) = ∞, anddl(f ) is finite and coincides with
the length of the longest sectional path starting atf .

(b) If f belongs to a ray ofT , thendl(f ) = ∞, anddr(f ) is finite and coincides with th
length of the longest sectional path ending atf .

Proof. Let f :X → Y be an irreducible morphism of a co-ray ofT . Thenε′(X) is of
the form 0→ X → Y ⊕ X1 → τ−1X → 0 with X1 indecomposable, and there exists
infinite sectional path inT of the form

X = X0
f0−→ X1

f1−→ X2
f2−→ · · · → Xn

fn−→ · · · .

Then, by the dual of Corollary 1.6 [13], due to S. Liu, we conclude thatdr(f ) = ∞.
Let now

X0
f0−→ X1

f1−→ X2
f2−→ · · · → Xn

fn−→ · · ·

be a ray ofT . We are going to prove thatfk has finite right degreek + 1. The ray induces
a sectional path

Xk+1
gk+1−→ τ−1Xk

gk−→ τ−2Xk−1 → ·· · g0−→ τ−kX0

in T , and(g0 · · ·gkgk+1)f = 0, due to the mesh relations. This proves thatdr(fk) � k + 1.
To prove that the converse inequality holds, we use that there is also a sectional pat

Xk
gk−→ τ−1Xk−1

gk−1−→ τ−2Xk−2 → ·· · g0−→ τ−k+1X0

and thatXk+1 ⊕ τ−1Xk−1 is a summand ofε′(Xk). Using again Proposition 1.6 [13], w
conclude thatdr(f ) = k + 1. Thus we proved the statements concerning the right de
of f . Those concerning the left degree follow by duality.�
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Remark 4.12. Note that all irreducible morphism in a component of typeZA∞∞ have infi-
nite right and left degree by [13, Theorem 2.3].
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