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Abstract

We study the degree of irreducible morphisms in generalized standard convex components of the
Auslander—Reiten quiver of an artin algebra with the property that paths with the same origin and end
vertices have equal length. We call the components with this last prag@rtgonents with lengtin
particular, we give two criteria to determine wether the degree of such an irreducible morplgsm
finite or infinite. One of them is given in terms of the compositiong efith non-zero maps between
modules in the component. The other states that the left degree of an irreduciblg im&ipite if
and only if Kerf belongs to the component. We apply our results to irreducible morphisms over artin
algebras of finite representation type and over tame hereditary algebras.
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Introduction

The notion of irreducible morphism, introduced by Auslander and Reiten, has played
an important role in the study of the category modf finitely generated modules over
an artin algebrai. The connection with the radical of this category is well known, and
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is given by the fact that a morphism between indecomposable modules is irreducible if
and only if it lies in% \ "2, It is then important to further study this radical, in order to
get a better understanding of madIn particular, it is natural to look at the composition

of irreducible morphisms. The composition efirreducible morphisms belongs t".

An interesting question is when such a composition falls itd. A partial solution

to this problem was given by Igusa and Todorov, who showed that the composition of
irreducible morphisms on a sectional path does not belofitjtd.

In order to answer this question Liu [13,14,16] introduced the notion of degree of an
irreducible morphism, as follows.

Let A be an artin algebra and: X — Y an irreducible morphism in madl, with X
or Y indecomposable. Thieft degreed;(f) of f is infinite, if for each integen > 0,
each moduleZ € modA and each morphisrna € %"(Z, X) \ #"*+1(Z, X) we have that
fg ¢ W2(Z, V). Otherwise the left degree gfis the least naturak such that there is an
A-moduleZ and a morphisng € %" (Z, X) \ """ +1(Z, X) such thatfg € W"*+2(Z,Y).

Theright degreed, (f) of an irreducible morphisnf is dually defined.

This notion has been very useful in the study of the components of the Auslander—Reiten
quiverI'4 of an artin algebral.

We study the degree of irreducible morphisms in generalized standard and convex com-
ponentsl” of I'y having the property that two paths Ihhaving the same starting point
and ending poiny have equal length, called length fromto y. We call the components
with this last propertgomponents with lengtBongartz and Gabriel proved in [7] that the
Auslander—Reiten quiver of a simply connected algebra of finite representation type is a
component with length. We show that the convex directed components of a strongly sim-
ply connected algebra (not necessarily of finite representation type) are components with
length.

We prove that the compositiofi of n irreducible morphisms in a generalized standard
convex component with length of I'y belongs tar”+1 if and only if f = 0. We give two
different characterizations of the irredulglbmorphisms in generalized standard convex
components with length having finite left (right) degree. The first is given in terms of their
compositions with non-zero maps between modulds.iActually, we prove the following
theorem.

Theorem A. Let A be an artin algebra and™ a generalized standard convex component
of I'y with length. Letf : X — Y be anirreducible morphism withi, Y € I". Thend;(f) =
oo if and only if fg # 0 for each non-zero morphisgtn M — X with M e I".

Our second characterization allows us to know if the left degree of an irreducible mor-
phism f in a component is finite or infinite, depending on whether Kérelongs to the
component. More precisely we prove the following result.

Theorem B. Let A be an artin algebra/” a generalized standard convex componentof
with length andf : M — N an irreducible epimorphism with/, N € I". Thend;(f) = oo
if and only ifKer f ¢ I'.
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When we only assume that the componEnis generalized standard one of the above
implications is still true. More precisely, we have in this case thaf) < oo, provided
Kerferl.

We apply the above results to algebras of finite representation type proving the following
theorem.

Theorem C. Let A be an artin algebra of finite representation type afidM — N an
irreducible morphism between indecomposableodules. Then

If f:M — N is an epimorphism thed (f) < oco.
Moreover, if "4 is a component with length, then
If f:M — N is an epimorphism thed. (f) = co.

The above results refer to the left degree of irreducible morphisms. Dual statements
hold for their right degree (see Theorem 3.14).

Finally we give some applications and examples. First we use our results to determine
almost all irreducible morphisms with finite degree in the directed components of heredi-
tary algebras of typ&, and D,,.

Then we use Liu’s results in [13], to study the finiteness of the left degree of irreducible
morphisms in the directed components of hereditary algebras oﬁty,peThe same results
allow us to compute the degree of any irreducible morphism in the regular components of
a tame hereditary algebra.

The paper is organized in the following way.

In Section 1 we give some preliminaries results and recall some definitions. In Sec-
tion 2 we introduce the notion of component with length and study the relation with the
convex directed components of simply connected algebras and of hereditary algebras. In
Section 3 we prove Theorems A, B and C. Finally, in Section 4 we apply our results to
tame hereditary algebras.

1. Preliminaries

Throughout this papeA will denote an artin algebra, matdthe category of finitely
generated leftA-modules andi the Jacobson radical of ma@dand k an algebraically
closed field.

We denote byl"y the Auslander—Reiten quiver &f and byr andz~ the Auslander—
Reiten translations DTr and TrD, respectively. We are not going to distinguish between an
indecomposable modulé in modA and the corresponding vertgX] in I'4. By e(X) we
denote the almost split sequence ending at the non-projective indecomposable module
and by« (X) the number of indecomposable summands of the middle tersigdof. We
denote by’(X) anda’(X) the dual notions, respectively. This i$(X) is the almost split
sequence starting at the non-injective indecomposable madaledo’ (X) is the number
of indecomposable summands of the middle terrs @X).
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Now we recall some definitions and results from [13]. l4ebe an artin algebra and
f:X — Y anirreducible morphism in madl, with X or Y indecomposable. THeft de-
greed;(f) of f is infinite, if for each integer > 0, each modul&Z € modA and each
morphismg € R (Z, X) \ W*+1(Z, X) we have thatfg ¢ "' +2(Z, Y). Otherwise the left
degree off is the least naturak such that there is ald-module Z and a morphism
g € R™(Z, X)\ W*t1(Z, X) such thatfg € W"+2(Z, 7).

Theright degreed, (f) of an irreducible morphisnf is dually defined.

If f:X — Y is an irreducible morphism between indecomposable modules, then it is
enough to consider only indecomposable moddlésthe definition of left degree to prove
thatd;(f) = oo (see [9, 2.1]).

ApathY, - Y,_1— ---— Y1 — Yo=Y in I'4 is said to begresectionalf for eachi,
1<i<<n—1,Y_1=r1Yi41 implies thatY;_1 & tY;41 is a summand of the domain
of the right almost split morphism foY;, or equivalently,r~Y;_1 = Y;41 implies that
77 Y;_1 ® Y;41 is a summand of the codomain of the left almost split morphisnYfor

Next we recall some known definitions needed throughout the paper.

Let I be a component afs. ThenI" is generalized standardf R°°(X, Y) = 0 for all
X,Y e I', andI is convexf for every chainXg - X1 — --- — X,,_1 — X,, of non-zero
non-isomorphisms between indecomposable modules Xgth,, € I', eachX; belongs
to " fori =1,...,n — 1. Finally, I" is calleddirectedif there is no sequenc#y —
M1 — --- — M, of non-zero non-isomorphisms between indecomposabiaodules
with Mg = M,,.

Given a directed componeiiit of I'4, its orbit graph O(I") has as points the-orbits
O (M) of the modulesV in I'. There exists an edge betweérnM) and O (N) in O(I')
if there arem,n € Z and an irreducible morphism” M — "N or t"N — ™ M. The
number of such edges equals dim(z” M, t"N) or dim Irr(z" N, t™ M), respectively,
where Irn(X, Y) = R(X, Y)/R%(X, Y) andk = End X) /9 (X, Y) . A component™ of I'y
is of tree typeif its orbit graphO (I") is a tree.

Let A be a basic finite dimensional associative algebra (with unit) over the algebraically
closed fieldk. ThenA ~ kQ/I for some finite quiverY and some admissible idealof
the path algebraQ, and the paixQ, I) is called a presentation for.

Let now (Q, I) be a connected bound quiver. A relatipn=Y""" ; Ajw; € I(x,y)
is minimal if m > 2 and, for any non-empty proper subsetC {1, 2, ..., m}, we have
Zjej riw; ¢ 1(x, y). Awalkin Q fromx to y is a path of the quiver formed b9 and the

formal inverses:—! of the arrowsx € Q. That s, it is a composition;'a3? - - - ;" where

a; are arrows inQ ande; € {1, —1} for all i, with sourcex and targety. We denote by,
the trivial path atx. Let ~ be the least equivalence relation on the set of all walk@ in
such that:

(@) Ifa:X — Yisanarrow, them ta ~ e, oraa=t ~e,.

(b) If p=>"7"4 Ajw; is a minimal relation, them; ~ w; for all i, ;.

(c) If u~v, thenwuw’ ~ wvw’ whenever these compositions make sense.

Letx € Qo be arbitrary. The set1(Q, I, x) of equivalence classésof closed patha
starting and ending at has a group structure defined by the operaiian= ir.v. SinceQ
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is connected then this group does not depend on the choice\Wwe denote itr1(Q, I)
and call it thefundamental groupf (Q, I).

A triangular algebra is simply connected if, for any presentatiofn(Q, I) of A, the
fundamental groug1(Q, 1) is trivial.

An algebraB is a convex subcategory df if there is a full and convex subquivey’
of Q such thatB =kQ’/(I NkQ’). The algebra is said to bestrongly simply connected
if any full convex subcategory oA is simply connected. (See [17].)

2. Componentswith length

In this section we introduce the concept of component with length. The notion of length
of a walk appeared in the work of Bongartz and Gabriel [7] in a different context. Let

w be a walk,w = aje5? - --of" Wherea; € Q1 ande; € {1, —1} for all i. Then we set

U(w) = Y11 U(e") wherel(a;) = 1 for alli, while £(a; 1) = —1 (see [7]).
Let us recall that paths ifiy having the same starting vertex and the same ending vertex
are calledparallel paths

Definition 2.1. Let I be a component of 4. We say thatl” is acomponent with length
when parallel paths ifi” have the same length. Otherwise, we say fhas a component
without length.

Observe that a component bf; with length has no oriented cycles.

Definition 2.2. Let I be a component of’4 with length andX, Y € I". We say that the
length¢(X, Y) betweenX andY is n if there is a path fronX to Y in I" of lengthn.

There are many algebras having components with length. In [7], K. Bongartz and
P. Gabriel considered the homotopy given by the mesh relations and defined simply con-
nected quivers. The notion of componentwith length can be extended to translation quivers,
and we can state the following result, which has been implicitly proven in [7], in the proof
of Proposition 1.6.

Theorem [7]. LetI" be a component of a simply connected translation quiver. Thén
a component with length.

Proof. Let X € I'. By the definition of homotopy, the length functiérabove defined on
the set of walks is constant on each homotopy class. Now, ginisesimply connected,
the walks fromX to any givenY € I are homotopic to each otherm

On the other hand, by [11], we know thatAfis a strongly simply connected algebra
then any convex directed component/of is of tree type. Some classes of strongly simply
connected algebras have been completely described. In particular, in case that thedalgebra
is iterated tilted of euclidean type, derived tubular, tame tilted or tame quasi-tilted, it was
shown thatA is strongly simply connected if and only if the first Hochschild cohomology
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group H1(A) vanishes andi is strongJyZ free, that is to say, contains no full convex
subcategory which is hereditary of tydg (see for instance [1-4]). We state the following
proposition.

Proposition 2.3. Let A be a strongly simply connected finite dimensidrralgebra andl”
a convex directed componentif. ThenI” is a component with length.

Proof. In [7, Section 4.3], it has been proved that the orbit grayyif’) is a deformation
retract of the componett. By [11], O(I") is a tree. Ther is a simply connected trans-
lation quiver. Thus, by the theorem stated above [7], it follows Ih#& a component with
length. O

The converse of this proposition is not true, since there are components with length
whose orbit graph is not a tree. For example, the directed components of a hereditary
algebra over a field of typegpp are components with length, as the following results will
prove.

The remainder of this section is devoted to prove that the directed components of the
Auslander—Reiten quiver of a hereditary algeraver an algebraically closed fiekdare
components with length if and only if the ordinary quiverftioes not contain a subquiver
(not necessarily full or convex) of typ@,,q, with p #£q.

In all that followsk denotes an algebraically closed field.

We start by proving the following lemma:

Lemma 2.4. Let A be an artin algebra and™ a semiregular directed component Bf
without length. Lein > 0 be the least integer such that there are moded < I and
paths fromX to Y of different length, one of them of length Then all paths fronX to Y
are sectional.

Proof. Let C, ={y: X ~ Y/y is a path of lengttz}. We will prove that all paths irC,
are sectional. For a pathin C,,

y X=Xo—>X1—>--—> X, =Y

we denote by, the largest integer such that= Xo — X1 — --- — X, is a sectional
path. Now, we assume thé, is not empty and we choose a pathin C, such that

iy =mMin{i,/y € Cy}.

Itis enough to prove that, = n.
By hypothesis there is a path

wX=Yo—->Y1—---->Y.=Y
of lengthr # n and such that eithery or 1 has lengthm. First we assume that the semi-

regular component’ has no injective modules. Since any path of length one is sectional,
we also assume > 1.
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Suppose that,, < n. If i), = 1 thenX2 = t~1Xo. Since there is an irreducible mor-
phism Xo — Y1 then there is an irreducible morphisin — t~1Xo = X, and there exist
paths

Y- Xo—> > X,=Y and 1> Yo— .- > Y, =Y

of lengthn — 1 andr — 1, respectively, contradicting the minimality of. Thusi,, > 1.
SoX,»yOH ~ r’lX%_l. Since there is an irreducible morphis}(no_z — X%_l then we
have also an irreducible morphism

rix _2—> t1x 1.

iyo ivg

We can replace ifyg the path

X _o— X,'yo,l - X; — Xiy0+1

iy Iyg

by the path

XiVo_z — XiVo_l — t_lX,'yo_z — ‘L'_]'X,'yo_l
obtaining a pathy’: X — Y of lengthn such that, = i,, — 1. This contradicts the mini-
mality of i,,,, proving that,, = n.

In casel” has no projective modules the result follows by duality

Lemma 2.5. Let A be a hereditary k-algebrd, a directed component dfy andX — Y
an arrow. If there exists a path froid to ¥ in I of length larger thart, thenQ 4 contains
a subquiver of typel ,1 with p > 1.

Proof. First assume thaf is the preprojective componentand lgt— Y1 — --- —> Y,
be a path wittm > 1. Sincerl is directed then the modulés are pairwise different. Let
k be the least positive integer such thatY;};—o .., contains a projective module. Then
there are irreducible morphismsY; — t¥v; 1 for0<i <n — 1.

On the other hand we know by hypothesis that there is an arrow fota Y,,, which
induces an irreducible morphistiYg — t¥v,,.

Case 1. AssumerXY, is projective. Since there exists an irreducible morphiém,_; —

Xy, and A is hereditary, then*Y,_1 is projective. lterating this argument, we conclude
thatt*Y; is projective, fori =0, ..., n — 1. Thus,I” contains the subquiver

yy —— Y

d N

'CkYO thn
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where allt*Y; are different and projective, proving th@y has a subquiver of typg,,1
with n # 1.

Case 2. %Y, is not projective. Let be the largest integerQ + < » — 1, such that*y,
is projective. Thus**+1y; is defined fori > r and we get the following path of irreducible
morphisms

rk+1Y,+1 — tk+lY,+2 — e rk+1Yn.

Since there are irreducible morphismfs; — %Y, 1 andr*Yy — t¥Y, then we also have
irreducible morphisms**1y, 1 — ¥y, andr*+1y, — t*Yo.

Sincer is directed there are no oriented cycledinUsing this and the fact that'y;
is projective we get that all modules in the subquiver

e . .%-L—k"l‘lYn% thOS e Tkthl

N

'Ck+lY1+1 TkY[

of I'y are different and projective. S84 has a subquiver of typﬁnl with n £ 1, proving
the lemma in this case.

The result for the preinjective component follows by duality:

Proposition 2.6. Let A be a hereditary-algebra. Then the directed componentsgafare
components with length if and onlydf4 does not contain a subquiver of tygg,,, with

p#q.

Proof. If Q4 has a subquiver of typﬁpq with p # ¢ then the directed componentsiof
containQ 4 as a convex subquiver. Thus, they are components without length.

To prove the converse, we first assume that the preprojective compBneit 4 is
without length. We will prove that there exigt£ ¢ such thatQ 4 contains a subquiver of
type qu. First we will prove this in case there exists a particular type of cyclic walk, and
then we will show that such a walk always std. So we start by assuming that there is a
cyclic walk in P of the form

Pop—P1—--—Pi=P
where each edge stands for an arrewor <, such that:

(i) P;is projective forali =0,1,...,d.
(i) There existsz, with 0 < n < d, such that the modulek, ..., P, are pairwise non-
isomorphic, and als®,, P,+1, ..., Py are pairwise non-isomorphic.
(iii) The numberr of arrows in one direction is different from the numbeof arrows in
the opposite direction.
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If the modulesPy, ..., P; are pairwise non-isomorphic theh, would contain a sub-
quiver of typeZ,S. If not, there exist < j such thatP; >~ P;. Then we obtain two cyclic
walks of shorter length satisfying (i) and (ii), and such that one of them(saatisfies
also (iii). If all modules inC are non-isomorphic we are done. Otherwise we iterate the
procedure until we finally reach a cyclic walth non-isomorphic modules satisfying (i),

(i) and (iii), having a subquiver of typqu with p # ¢, as desired.

Let m be the least integer such that there exist indecomposable madaedY in P
and paths fronk to Y of different length, one of them of length. We assume that > 2,
since otherwise the result holds by the previous lemma, and we will prove that there exists
a cyclic walk between projective moduleatisfying (i), (ii)and (iii). Let then

y X=Xo—>X1—>---—> X, =Y
and
uwX=Yo—->Y1—---->Y, =Y

be paths withn = m. SinceI'y has no oriented cycles and by the minimalityref the
modulesXo, X1, ..., Xu, Y1, Y2, ..., Y, are pairwise different.
Then in? we have the following subquiver

X1—=Xo—> - —= Xy 2—>X;1
Yo = Xo Xn=Yn

Yi—>Yo—> - —> Yy p—> Y1

By applying ¥ to this subquiver if necessary, we may assume Hats projective.
Letky € {1,...,n —1,n} be the largest integer such th¥, is projective. Ifk; < n then
7 Xy, +1 is projective, because theean irreducible morphism fromXy, 1 to the projec-
tive moduleXy,. Letko € {k1+ 1, k1 + 2, ..., n} be largest so thatX;, is projective.

Iterating this process we find < k2 < - - - < k, such that the modules

X1,X2,..., Xiy,
TXig+1, TXkg 42, -+ TXp
and
" Xp+1, T Xy 42, -, T X

are projective. We construct a walk of irreducible morphisms between projective modules
Xo— = Xiy < 1 Xpy41—> - = X4, <—r2Xk2+1—> e TTX,

with r arrows in one direction and — r arrows in the opposite direction. Moreover, there
is always a non-sectional path frokh to % X; if k > 0. SoX; # t~*X; fori > j and
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k > 0 because all paths froiki to Y are sectional, according Lemma 2.4. Thus all the
projective modules in the walk are pairwise different.

In a similar way we find i a walk of irreducible morphisms between different pro-
jective modules

Y0—>o~—>Yt1<—rY,l+1—>.~—>th2<—1'2Y,2+1—>.~<—~~—>1'SYm

with m — s arrows in the same direction. Singg = Y,, andt” X,,, t*Y,, are projective it
follows thatr =s.

SinceXo = Yp andt” X,, = t*Y,,, combining the two walks we get a cyclic walk with
exactlyn arrows in one direction and in the opposite direction, safying (i), (ii) and (iii),
as we wish. Then we conclude that there exist ¢ such thatQ 4 contains a subquiver of
typeA,,.

The result for the preinjective componédallows by duality. Then we conclude that the
directed components df, are components with length.0

Finally, we remark that if a hereditary algebra contains a full convex subquiver of
type A, then itis not strongly simply connected. However, the directed componenfs of
may be components with length.

3. Onthedegreeof irreducible morphismsin componentswith length

In this section we are mainly interested in giving two different characterizations of the
irreducible morphisms in generalized standard convex components with length having fi-
nite left (right) degree.

In these componentsiit is possible to find a handy criterion to determine if the degree of
an irreducible morphism is finite, depending on whether KéCokerf) isin I".

Before we state our first characterization we prove a result useful for our purposes.

Proposition 3.1. Let I" in 'y be a generalized standard convex component with length.
LetX,Y e I such that’(X,Y) =n. Then

(@ W ti(x,v)=0.
(b) If g: X — Y is a non-zero morphism thepe R (X, ¥) \ "X, Y).
(€) W (X,Y)=M"(X,Y), foreachj=1,...,n.

Proof. (a) Assume that there is a morphisgn# 0 such thatg € #W*+1(X,Y), with
X,Y e I'. Then there exist an integer> 1, indecomposable modules, By, ..., Bs,
morphismsf; € R(X, B;) and g; : B; — Y with eachg; a sum of compositions of n
irreducible morphism between indecomposable modules suchgtaad ;_; g f; with
gi fi #0[6]. Sincel” is a convex component, the modulBse I", fori =1,...,s. More-
over, adl" is a generalized standard component, by [6, 7.5], gack — B; can be written
as fi = Y __1 ik, wherep;x is composition of irreducible morphisms, for=1, ..., r.
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So the pathg; uir : X — Y have length greater than n, contradicting thas a component
with length. Thusi*+1(x,Y) =0.

(b) Sincer" is generalized standard agdX — Y is not zero theg = ) 7 _; i, where
eachg; is a path fromX to Y. Since{(X, Y) = n, the length of eacly; is n. Hence
g € W' (X,Y). By (a) we know thati"t1(X, ¥) = 0. Sog € W' (X, Y) \ W' TL(X, V).

(c) Follows immediately from the fact thaf' is a component with length and
LX,Y)=n. O

The following corollaries are dict consequences of the proposition.

Corollary 3.2. Let X andY be modules in a generalized standard convex component with
length. If Hom(X, ¥) s 0 then there is a uniqué such that®*(X, ¥) \ ®W¥+1(x,Y) is
non-empty and suchcoincides witt¢ (X, Y).

Corollary 3.3. LetI" in I'4 be a generalized standard convex component with length. Then
the compositiory of » irreducible morphisms with modules iftis in %"*1 if and only if

f=0.

WhenT is a generalized standard convex component with length, given an irreducible
map and a morphism il”\%"*+1, their composition is im"+2 only if it is zero. As a
consequence we can state the following result:

Corollary 3.4. Let I" be a generalized standard convex componemoWith length. Let
f:X — Y be an irreducible morphism and lete R (Y, Z)\W*1(Y, Z), with X, Y, Z €

I'. Thenpf € W t2(X, Z) if and only ifpf = 0.

Proof. Let ¢ € W' (Y, Z)\W*t1(Y, Z) be such thatpf € W*12(X, Z). By Corollary 3.2
we know thaté(Y, Z) = n, sinceR" (Y, Z)\W"t1(Y, Z) is non-empty. Thert(X, Z) =

n + 1, becausef: X — Y is irreducible. Then we obtain from Proposition 3.1(a) that
M"1+2(X, Z) =0, and consequentlyf =0. O

In the preceding corollary the hypothesis tliathas length can not be omitted, as the
example below shows.

Example 3.5. Let A be the algebra given by the quiver:
X
&

5~—

2/1 3
N
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with relationspa = 0 andsy = 0. Then A is a triangular algebra of finite representation
type, tilted of typeA,,, and the Auslander—Reiten quivEg of A is the following:

<><>\vﬂvf

So the unique component &f; is a component without length. The irreducible morphism
£ is left almost split, sal, (f) = 1.

Let y = g3gog1 and u = f>f1. Considerp = y + u. This morphism belongs to
M2(Is, P)\M3(Is, P1), since u is a sectional path of length 2. We claim thaf €
M4(P3, P1) and¢f # 0. In fact, sincenf = 0 andgf is a sectional path of length 4,
we have thapf € W4 (Ps, P1)\N2(P3, P1).

In the next proposition we consider a simil&uation in a semiregular directed compo-
nent of 'y, having sectional parallel paths of different length.

Proposition 3.6. Let A be an artin algebra and™ a semiregular directed componentigf
without length. Lein > 0 be the least integer such that there are modute¥ € I and
paths fromX to Y of different length, one of them of length Lety, u be such paths, with
L(y) =n, £(n) = m. Assume that there is an irreducible mgp Z — X in I" such that
uf =0.Thenp =y +pisin W (X, Y)\R"L(X, ¥Y) andef € WHL(Z, Y)\R"H2(Z, V).
In particular, d.(f) < m.

Proof. By Lemma 2.4 we know that both pathsandu are sectional. It follows from the
minimality of m thaty f is also sectional, singef = 0. Sincey f is a composition ofi + 1
irreducible morphisms we know by [12] that it belong9ittt1(Z, Y)\®W*+2(Z, Y). Thus
of =yf +uf =yfeRtLZ, Y)\WH2(Z, Y). Sincen > m we obtain thapy =y + u
is in W (X, Y)\W"*TL(X, Y) and thereforel,. (f) <m. O

Now we state the first of our main theorems.

Theorem 3.7. Let A be an artin algebra and™ be a generalized standard convex compo-
nent of "4 with length. Letf : X — Y be an irreducible morphism with, Y € I". Then

(@) d,(f) =occifand only ifgf # 0 for each non-zero morphisgn. Y — M withM € I'.
(b) d;(f) = ifand only if fg # 0 for each non-zero morphisgt M — X withM € I'.
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Proof. (a) First assume that for each non-zero morphisni — M, with M € I", we
have thatg f # 0.

Considerg € W (Y, M) \ W"*+1(Y, M). Thusg # 0. By Corollary 3.3 we have that
L(Y,M) =n. Sincef:X — Y is irreducible we get that(X, M) = n + 1, and Propo-
sition 3.1(a) implies thait”*2(X, M) = 0. We assumed thagtf # 0, sogf ¢ W' T2(X, M)
and we conclude that. ( f) = co.

The converse is an immediate consequence of the definition of infinite right degree.

The result stated in (b) follows by duality.cO

From the above theorem we deduce the following useful result.

Corollary 3.8. Let A be an artin algebra. If” is a generalized standard convex component
of I'y with length then

(8) If f:X — Y is anirreducible monomorphism witk, Y € I" thend; f = co.
(b) If f:X — Y is anirreducible epimorphism witl, Y € I" thend, f = co.

Let A be an artin algebra and a generalized standard convex componenft pfvith
length. To determine if the degree of an irreducible morphism between indecomposable
modulesf : X — Y is infinite we only need to prove that the compositionfoivith non-
zero maps is non-zero. It would be interesting to know if it is enough to consider only
compositions off with paths inI"4. Though we do not know the answer in general, we
can prove that this is the case whefl™) < 2. Thatis,x(X) < 2 for everyX in I'. In fact,
we prove the following result.

Proposition 3.9. Let A be an artin algebra and™ a generalized standard convex compo-
nent of I’y with length such that(I") < 2. Let f: X — Y be an irreducible morphism
with X, Y € I'. Then the following conditions are equivalent

(@) dr(f)=o0.
(b) vf #0foreachnon-zeropath:Y — M in I".

Proof. (a) implies (b) is an immediate consequence of Theorem 3.7.

Now, assume that (b) holds. By Theorem 3.7 it is enough to prove;jhgt O for each
non-zero morphisng: Y — M with M € I'. SinceI" is a generalized standard convex
component theg € R (Y, M) \ W+1(Y, M) for somen > 0.

We prove thatgf # 0 by induction orm. Assume thak = 1, that is,g € R(Y, M) \
M2(Y, M). SinceY, M are indecomposable thenis an irreducible morphism. Therefore
g is a non-zero path and it follows by hypothesis that£ 0.

Assume now that the composition of an irreducible morphisim I” with a non-zero
morphism in%”~1\ %" is non-zero, whenever the composition/oivith non-zero paths
does not vanish.

Suppose that there exists a morphigm i’ (Y, M)\ R +1(Y, M) with M e I" such that
gf =0. Thusé(Y, M) = n. By [13, Lemma 1.3] the irreducible morphisy: X — Y is
such thatX is not injective. Since we are assuming (b) it follows tgfX) +# 1. Otherwise,
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f is minimal left almost split and there is a non-zero patl’ — t~1X such thatg f = 0.
Soa/(X) = 2. Consider the almost split sequence

4 T ’
0 x YD ygy 10, ~1x 0.

It is enough to prove that there exists a non-zero path~1(X) — M such thatyt’ = 0.
In fact, if this is the case, thepr £ 0 becauseér, t') is surjective. Thus the patbr satisfies
ytf =yt f' =0, contradicting (b).

We prove next the existence of sughusing the induction hypothesis. Singg =
0 e %#"*2 [13, Lemma 1.3], states that there exists a morphjsm~1X — M in modA,
g ¢ W' (r71X, M) such thatg + gt € ®"tL(yY, M) andqt’ € W' TX(Y’, M). Sincerl is
a component with length anf(Y, M) = n, we get thath”*1(Y, M) = 0 and therefore
—gt = g. It follows from Corollary 3.2 that the morphisgbelongs tor”~1(z~1x, M)
and not talh" (t~1X, M).

On the other handgt’ = 0 sinceqt’ € R TL(Y’, M) and¢(Y’, M) = n. Thus, since
g # 0 we know by the induction hypothesis that there exists a pashch thaty:’ =0,
proving the desired result and@ing the proof of the proposition.cO

One can easily find componenis satisfying the hypothesis of the proposition. An
example is given by the convex directed components of strongly simply connected string
algebras. In fact, such componeifitsatisfya(I") < 2 [8, p. 175], andy Proposition 2.3
we know that convex directed components are components with length.

Next we give another characterization of the degree of an irreducible morphism be-
tween indecomposable modules, which allows us to determine if the right (left) degree of
an irreducible morphism is finite depending on whether Ké€Cokerf) belongs to the
component.

Observe that iff : X — Y is an irreducible epimorphism (monomorphism) then Ker
(Cokerf) is an indecomposable module [5].

The following lemma will be very helpful in the sequel. F8t Y € I'y, we recall that
X is apredecessor of or thatY is asuccessor o if there exists a sequenéé= Xo —

X1 — ---— X; =Y of non-zero non-isomorphisms between indecomposable modules.
When X andY are in a generalized standard convex comporiérnhe non-zero non-
isomorphisms in the definition may be replaced by irreducible morphisms.

Lemma 3.10. Let A be an artin algebra and™ a generalized standard convex component
of I'y.

(@) Let g: X — M be a non-zero morphism witi, M € I" and let f: M — N be an
irreducible epimorphism such thgfiy = 0. ThenKer f belongs ta™ and is a successor
of X.

(b) Letg: N — X be anon-zero morphism withi, X € I" and f : M — N an irreducible
monomorphism such thatf = 0. ThenCokerf belongs toI" and is a predecessor
of X.
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Proof. We prove the first statement, the second follows by dualityLabdg be as in (a).
Theng factors through Key', becauseg’g = 0. Hence there is a morphisgh: X — Ker f
such thatg = j¢’, wherej :Ker f — M is the inclusion map angl £ 0. SinceX, M € I
andr is convex then Kef € I and is a successor &f. O

We are now in a position to prove the following criterion to determine if an irreducible
morphism has infinite left degree.

Theorem 3.11. Let I" be a generalized standard componentafand f: M — N be an
irreducible morphism withv, N € I".

(@) If Ker f e I" thend;(f) < oo.
(b) If Cokerf e I' thend,(f) < oo.

If I" is, moreover, convex and with length, then

(@) If f:M — N is an epimorphism thedy (f) = co if and only ifKer f ¢ I'.
(b') If f:M — N is a monomorphism thef) (/) = oo if and only ifCokerf ¢ I'.

Proof. (a) Letf: M — N be anirreducible epimorphismwitd, N € I" and consider the
inclusionj :Ker f — M. Sincer is a generalized standard component thén(X, Y) =
0 for eachX,Y € I'. Thenj ¢ R (Ker f, M). So there is an integet > 1 such that
j e fk(Ker f, M) \ Rkt (Ker £, M). Since fj = 0 it follows from the definition of left
degree thatl;(f) < oco.

The statement (b) follows by duality.

(&) First supposd;( f) is finite. This means that there is a non-zero morphisi —
M with X € I, such thatfg = 0, by Theorem 3.7(b). Then the above lemma implies that
Ker f belongs tol".

Assume now that Kef € I'. Then the inclusiorj : Ker f — M is a non-zero morphism
and fj =0. Thusd;(f) is finite, by Theorem 3.7(b).

The last statement follows by dualityD

As an application we have the following corollary.

(g182)" (f1f2) .
Corollary 3.12. Let0 » 1Z —= Y1 U Y, —= Z — 0 be an almost split sequence

with Y1 and Y indecomposable. Theler(g1) >~ Ker( f2). If, moreover,Z belongs to a
generalized standard convex component@fwith length, then;(g1) < oo if and only if
di(f2) < oo.

Proof. If g1 is a monomorphism then so fs, andd;(g1) = d;(f2) = co by Corollary 3.8.
So we may assume thai is an epimorphism. Sinc&g1g»)’ is injective it follows that
82|Kerg, 1S injective.

On the other handfzg2> = — f181, SOg2|Kerg, : Kergs — Ker f>. Using a standard argu-
ment we get thaft(Ker g1) = I(Ker f2), thus the monomorphisgs|kerg, : Kergi — Ker f2
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is an isomorphism, proving the first statement. The second statement follows from the first
and the preceding theoremQ

Remark 3.13. S. Liu proved in [13, Corollary 1.2] that if;(f2) is finite thend;(g1) <
di(f2).

Another interesting application of the above theorem is the following result.

Theorem 3.14. Let A be a finite dimensional-algebra of finite representation type, such
that I'4 is a component with length. Then

(@) If f:M — N is an irreducible epimorphism thefi( /) < co andd, (f) = oco.
(b) If f:M — N is an irreducible monomorphism thep( f) < oo andd;(f) = oco.

Proof. (a) Itis known that'"4 is connected and generalized standard. The result is a direct
application of Theorems 3.11 and 3.7

We remark that ifA is a finite dimensional algebra over an algebraically closed field
and ! is a standard component 6} thenI” is generalized standard [15]. MoreoverAif
is of finite representation type ard, is a component with length thefy is standard [7].

4. On the degree of irreducible morphisms over atame hereditary algebra

We start this section by applying our results to determine the degree of almost all irre-
ducible morphisms lying in the directed components of tame hereditary algebras Efptype
or D,,.

Note that such components are convex, generalized standard and with length. Since we
are dealing with tame hereditary algebras, we can use the defect associated to an indecom-
posable module to decide if the module is in the preinjective compdhefihus, for a
particular irreducible morphisnf in Z we can determine whether Kgrbelongs taZ in
this way (see [10, Proposition 1.9]). Then, usihg results of the gteding section one can
decide if the left degree of is finite. However, we are going to give a direct description
of the irreducible morphisms of finite degree, up to a finite number of them.

Then we turn our attention the hereditary algebras of q?peand determine the left
degree of any irreducible morphism in the directed components of these algebras. We know
that these components are not always with length, so the results of the previous section do
not apply to them. We use results due to S. Liu [13, Proposition 1.6 and Corollary 1.6] to
determine the degree of such irreducible morphisms.

On the other hand, we are going to consider the regular components of a tame hereditary
algebra. It is well known that these components are without length. Using again Liu’s
results we determine the degree of the irreducible morphisms between indecomposable
regular modules.

For the convenience of the reader we state now the above mentioned results of Liu.
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Proposition [13, Proposition 1.6]Let f: X — Y be an irreducible morphism of finite left
degree ifmodA with Y indecomposable. Assume that

Y,—-Y, 1—>---—>Y1—>Yo=Y

is a presectional path iy withn > 1. If X @ Y1 is a summand of the middle termag’)
thend;(f) > n.

Corollary [13, Corollary 1.6] Let f: X — Y be an irreducible morphism imodA with
Y indecomposable. Assume that there is an infinite presectional path

Y, =>Y, 1Y, 0—>--->Y1—>Yo=Y

in I'4, such thaty:1 & X is a summand of the domain of the left almost split morphism
ending atY. Thend; f = oo.

Dual results hold for the right degree.
4.1. Hereditary algebras of typg, for p =6, 7 and 8

Let A be a hereditary algebra of tyrﬁ;, for p =6, 7 and 8 and lef be the preinjective
component of’4. By Corollary 3.8, we know that the irreducible monomorphismg in
have infinite left degree. On the other hand, it follows from Theorem 3.11 that the right
degree of such morphisms is finite, since their cokernel & in

We also know, by Corollary 3.8, that the right degree of any irreducible epimorphism is
infinite.

Using the shape of the Auslander—Reiten quiver and arguments on the length of the
modules (similar to those in [6, VIII, 277-289]) we can determine which irreducible mor-
phisms inZ are monomorphisms, up to a finite number (see [9, 4.4]). On the other hand,
using the results of Liu stated above, one can determine the right degree of almost all
irreducible epimorphism between indecomposable preinjective modules.

We recall the following notation. Le§( — M) be the full subquiver of"4 given by all
modulesX e I'4 such that there is a pathi~ M and any such path is sectional.

Now, considerS = | |;c, S( — I;) wherel; is the indecomposable injective corre-
sponding to the vertex of the ordinary quiveQ of A.

Letr; be the maximum length of any sectional path endinfy @ndr = max;co,{r;}.

LetC ={X €Z/X is a predecessor of a moduleiS}. Then( is cofinite in indA
and the just mentioned results hold for irreducible morphisms with codomainMore
precisely:

Proposition 4.1. Let A be a hereditary algebra of typﬁp, with p =6, 7,8 and let

t
N (f1f2f3) B (818283)

0— 1uUByUBy3——> N—0

be an almost split sequence, within C. Then, fori =1, 2, 3,
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(@) f; is an epimorphisny;(f;) < oo andd, (f;) = oo.
(b) g; is a monomorphismi, (g;) < co andd;(g;) = oo.

Proposition 4.2. Let A be a hereditaryk-algebra of typeﬁp, for p=6,7and8. Let

o\t
0— N (1f2) N1U By (8182) N -0

be an almost split sequence within C. Then eitherf; or f> is a monomorphism. If; is
a monomorphism then

(a) g2 is a monomorphismi; (f1) = 0o, d;(g2) = oo andd, (f1) < oo, dr(g2) < 0.
(b) f2 andgj are epimorphisms{;(f2) < 0o, dj(g1) < oo andd,( f2) = oo, d,(g1) = oo.

We do not include the proof of these results, which are done following the ideas ex-
plained at the beginning of 4.1. The details can be found in [9].

4.2. Hereditary algebras of typB,, with n > 5

Using the shape of the Auslander—Reiten quiver and arguments similar to those used
in [6, VIII, 277-289], we can prove that the only irreducible monomorphisniséame the
left almost split morphisms between indecomposable modules (see [9, 4.4]), which have
left degree one. On the other hand, the left degree of any irreducible monomorphism is
infinite, by Corollary 3.8, and so is the right degree of irreducible epimorphisms.

So we know the right and left degree of all irreducible morphismg irexcept the
degree of the irreducible epimorphisms which are not minimal right almost split. We will
prove that the left degree of almost all such epimorphisms is infinite. We start with some
technical results.

Lemma4.3.LetT be the preinjective componentBf, whereA is a hereditaryk-algebra
of type D,,, with n > 5. Let X, M € 7 such thato’(X) # 1 and Hom(X, M) # 0. Then
there exists a path frot¥ to M that is a composition of irreducible epimorphisms.

Proof. We prove the result by induction on the lengttof the pathsX ~ M in . If
d = 1 then the irreducible morphisms startingdaaire epimorphisms, becaus&X) # 1.
Let £(X ~ M) =d > 1. Suppose that the result is true for paths of length smaller

thand. We write the pathX ~» M as the compositioX ~ M’ = M, with « an irre-
ducible morphism. Sincé(X ~ M’) < d, by the inductive hypothesis there exists a path

of irreducible epimorphismg : X ~~ M’. If M’ = Mis an epimorphism there is nothing
to prove. Otherwise/’ L Misa monomorphism. Thesm is left almost split, since the
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unique irreducible monomorphisms are the left almost split morphisms. Thus, we ave in
the subquiver

where without loss of generality we assume théit= M.

Theny:X ~ M’ is of the formX ~ tM ﬁi Mj, with X ~ M a path of epimor-
phisms orX = tM. In either case we can build a path of epimorphisms ftkno M,
throughM3. O

Corollary 4.4. Let A be a hereditary-algebra of typeD, with n > 5. Let X € Z be such
thata'(X) # 1. Then there is no monomorphigm X — M, with M indecomposable not
isomorphic toX.

Proof. Suppose there is a monomorphigmX — M which is not an isomorphism. Then
[(X) < I(M). This is a contradiction because byethbove lemma there exists a path of
epimorphisms fronX — M, sol(X) >I(M). O

Corollary 4.5. Let A be a hereditaryk-algebra of typeD, withn > 5. Let f: M — N be
an irreducible epimorphism withf € Z. If o’ (Ker f) # 1thenKer f ¢ I.

Proof. Assume that Kef € Z. The inclusion of Kerf in M is a proper monomorphism,
thus by Corollary 4.4¢’ (Ker f) =1. O

In the study of the remaining cases the following result will be useful.

Lemma 4.6. Let A be a hereditary-algebra of infinite representation type, X — M a
monomorphism, witkk, M € 7 andr > 1. Thenu does not factor through =" X.

Proof. Let = pop1 With 1: X — =X anduz:t X — M. If uis a monomorphism,
thenp is also a monomorphism. Using thatcontains no projective modules angre-
serves monomorphisms, we get a chain of irreducible monomorphisms

N L LD GRS N '

of arbitrary length, contradicting thatX) is finite. O
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We consider again the s€t= Lljer S(— I;). Note that only finitely many irreducible
morphisms iriZ end at a module i&. The following result holds for the remaining ones.

Proposition 4.7. Let A be a hereditaryk-algebra of typeD,,, withn > 5. Let M € 7 be
not injective andf : M — N an irreducible epimorphism which is not an almost split
morphism and such thaf ¢ S. ThenKer f ¢ Z andd;(f) = oo

Proof. Using Corollary 3.12 and the shape of the Auslander—Reiten quiver we obtain that
it is enough to prove the result whetiN) =
Let X =Ker f and letj: X — M be the inclusion. Supposg € Z. By Corollary 4.4
we have that’(X) = 1, so¢’(X) has indecomposable middle teffrwith «(Y) = 3. First
we analyze the case wheh= 7 XY, with k > 1. We have the almost split sequence

3
t
0— N (B1B2B3) I_l M, (a10203) N—0
i=1

with M = M3 and f = a3. Thent %X ~ M or 1% X >~ M>. Assume that %X ~ M.

We have that Imj = Ker f. Moreover,(0, 0, Ker f)! C Ker(az, az, f) = Im(B18283)".
Then there exists a submodulecC TN such that(818283)" (U) = (00 Ker f)'. Therefore
B1(U) = B2(U) =0 andBs|y : U — Ker f is an isomorphism. Now,/ C Ker 82 = t M»>,
sincees (M>) is a sequence with indecomposable middle term. Then there exists a monomor-
phism fromX to tM». Sincet M, ~ t—¥+1X with k > 1, there exists a monomorphism
from X to t=*t1X, contradicting the above lemma, and proving the resuN iand Y
belong to the same-orbit.

Now assumeV andY are in differentr-orbits. We illustrate the situation in the follow-
ing picture:

\/\/\/\/\

.% %.%.%.H.%.% —0—0

NN NN
OV,

NN\ \/\/\

.%.%.%.%.% —0—=0—0—>0

VAVAVAVAY;
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Consider a sectional path froM ~» Z with Z, Y in the samer-orbit. From the com-
mutative diagram of irreducible morphisms

N
M/ \.
N

we get that Kep ~ Ker f, by successive application of Corollary 3.12. Thus there is a
monomorphisny : Ker f = X — Z such that Imp = Kerg. Let

3
! hihoh
0 7 (818283) |_|Xi (h1h2h3) 17 50
i=1

be almost split, withX; = t %X and gz = g. Sinceh, is a monomorphism, we get that
(g1g)! is injective. Since Inp = Ker f and ¢ is injective, we get thatgig)'¢ is also
injective, and so ig1¢ : X — X1 = r ¥ X, contradicting that there are no monomorphisms
from X to t % X. Therefore Kerf ¢ 7 and by Theorem 3.14;(f) =oc0. O

4.3. Hereditary algebras of typé,

We know that any irreducible morphism between preinjective indecomposable modules
over a hereditary-algebra of typeX,, has infinite left degree. This follows from [13,
Theorem 2.3], because all almost sgltquences in the directed component$ gthave
exactly two indecomposable summands in the middle term. This result can also be proven
using the existence of certain presectional paths. More precisely, we prove that given any
irreducible morphismf between indecomposable modules over a hereditary algebra of
type A,, we can find an infinite presectional path in the preinjective compdheniding
at /. Moreover, whem > 2 such a path is sectional. Since the latter fact is interesting by
itself, we include its proof here. We start by proving the following lemma.

Lemma4.8. Let A be a hereditary artin algebra of typ&, with n > 2 and letm < n. Then
there exists a sectional path

thosip, g g, o R ke o, (4.1)
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wherel is the indecomposable injective corresponding to the vartaxQ 4,

2 ...__p

/

1 n+1

is the underlying graph o0 4, and0 < ko <k3 < -+ - < kpt1.

Proof. We prove the result by induction am. Letmm = 1. If 1 — 2 is an arrow inQ 4 there
exists an irreducible morphis# — I;. Otherwise 2 1 is an arrow inQ 4 and there is
an irreducible morphismal, — 1.

Now, letm > 1 and assume that the result holds#or 1. Then there exists a sectional
path of the form

A A e A 2k PR ] (4.2)
withO<r < <.
There is either an arrom + 1 — m oran arrown — m +1in Q4.
In the first case there are irreducible morphisis— 1,41 andt 1,1 — I,,. Thus

we also have an irreducible morphisﬁ'r+11,,,+1 — t/m[,,, and by composing it with the
above path we get the path

L) SRR LY AN 2y ey 1

which is clearly sectional. In a similar way, if there is an armaw—> m + 1 in Q4 then
there is an irreducible morphisif;+1 — I, and the required sectional path is

L1 — Ly — - — 12 — 1. O

Proposition 4.9. Let A be a hereditary artin algebra of typE,, with n > 1. Given an
irreducible morphismy : X1 — Xo in Z there exists an infinite presectional path

o= Xpgp1—> X — ---—>X1'—f>X0.
Moreover, ifn > 2 such a path is sectional.

Proof. Let

/

1 n+1

be the underlying graph @ 4, and letf : X1 — X be an irreducible morphism ih.
First considen = 1, soA is the Kronecker algebra ar@d, is 1= 2.
We may assume that eith&n = %215, Xo = t*1 11, or X1 = %111, Xo = t*215. In the
first casek1 = k2 and in the seconkb = k1 — 1.
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In caseX1 = t¥11,, Xo = tX11; we get a presectional path

kq+t

e tkl'HIz —>T nhL— - — tk1+112 — ‘L’k1+111 — tkllz —f> ‘L’kll]_. (4.3)

On the other hand, iK1 = t%17; andXo = %2~ 11, we build a presectional path

_ f _
Ll P S iy [ L ) Ly SR ey %

Thus we get the desired result in case 1.
Now, suppose > 2. By the above proposition there exists a sectional path

Tkn+11n+l N Tk” In N tkzlz — I (44)

With 0k <ka <o+ < kpya.

If there is an arrow > n + 1 in Q4 then there is an irreducible morphisip.1 — I1
and thus another/y — I,,11. By applying the functor to (4.4) and composing with the
morphismz I to 1,11 we obtain the sectional path

thoaitly sl ket s ket st s L

Now we may applyri*»+1+D obtaining a pathy;, for eachi > 0. The composition
-y -+ - y1Y0 IS an infinite sectional path, ending at the irreducible morphigm— 1,,11.

In case there is an arrow+ 1 — 1 we obtain, in analogous way, an infinite sectional
path ending at the irreducible morphidm— I,,;1.

Then we proved that there is either an infinite sectional path endihg-at 1,1 or at
Tl — Ih4a.

Now consider the given irreducible morphisfn X1 — Xp. Let I and I’ be injective
modules such thaX1 = "I and X = t*I’ with r, s >> 0. SinceA is hereditary, we have
s=rors=r—1. Sothereis anarroh— I’ or I — I'. We label the vertices of 4
so thatly = I, I,+1 = I’. Then there is an arrow + 1 — 1 whens = r, and an arrow
in the opposite direction otherwise. In any case, we appli the corresponding infinite
sectional path above constructed. We obtain an infinite sectional path endihgy at
©5I,41. Thisis, atX; — Xo, as desired. O

Corollary 4.10. Let A be a hereditary artin algebra of typE,,, withn >landf: X - Y
be an irreducible morphism, with € Z. Thend; (f) = oco.

Proof. Lete(Y) be the almost split sequence ending’at

O—-tY—-X®Z—>Y—0.
By the above proposition there exists an infigitesectional path ending at the irreducible
morphismg : Z — Y, such thatz & X is a summand of the domain of the right almost split

morphism forY. Then from the result due to S. Liu stated at the beginning of this section
[16, Proposition 1.6] we conclude thétf =oco. O
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4.4, The regular components

In this section we calculate the right and left degree of the irreducible morphisms be-
tween indecomposable regular modules in stable tubes or in components afAypof
the Auslander—Reiten quiver of an artin algebra.

Let 7 be such a component. We recall that a co-raf af an infinite sectional path
o> Xy —> X1 — - = X2 — X1 with X1 € 7 anda(X1) = 1. Dually, a ray of
7T is an infinite sectional paty; - X - --- — X,, - X,,—1 — --- with X1 € 7 and
a(Xy) =1.

An irreducible morphism in a stable tube belongs either to a ray or to a co-ray, and we
determine its degree in the following proposition.

Proposition 4.11. Let A be an artin algebra and assume that the comporemf I's is
either a tube or of typ& A.. Let f in I'y be an irreducible morphism. Then

(a) If f belongsto a co-ray of, thend, (f) = oo, andd; () is finite and coincides with
the length of the longest sectional path startingfat

(b) If f belongsto aray of, thend;(f) = oo, andd, (f) is finite and coincides with the
length of the longest sectional path endingfat

Proof. Let f:X — Y be an irreducible morphism of a co-ray @ Thene/'(X) is of
the form 0— X — Y & X1 — 71X — 0 with X; indecomposable, and there exists an
infinite sectional path ir¥” of the form

X Xo L X1 I %y Py x, I

Then, by the dual of Corollary 1.6 [13], due to S. Liu, we conclude éhéaf) = co.
Let now

Xo 2 x1 b Xy Lo x, s

be a ray of7. We are going to prove thag} has finite right degreke+ 1. The ray induces
a sectional path

Sk+1  — 8k — g
Xky1— T le—>t 2Xk_1—>---—>t kXo

in7,and(go---gkgr+1) f = 0, due to the mesh relations. This proves thaf;) < k+ 1.
To prove that the converse inequality holds, we use that there is also a sectional path

Xk LN T_le,]_ i 7,'_2ka2 SN LN ‘L'_k+lX0
and thatX;1 @ r~1X;_1 is a summand o (X;). Using again Proposition 1.6 [13], we

conclude thati, (f) = k + 1. Thus we proved the statements concerning the right degree
of f. Those concerning the left degree follow by dualitya
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Remark 4.12. Note that all irreducible morphism in a component of typ&3S have infi-
nite right and left degree by [13, Theorem 2.3].
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