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Abstract

Let A be a trivial extension of Cartan clags,. We find a combinatorial algorithm giving the
configurations ofZA, associated tot.
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Introduction

In this paper we will consider basic finite dimensional algebras over a fixed algebraically
closed fieldk. It is well known that an algebra of this type is isomorphic t&é Q 4/1,
whereQ 4 is the ordinary quiver associated #oand/ is an admissible ideal of the path
algebrakQ 4. That is, we have a presentatiof 4, 1) for the algebrad. For a quiverQ
we denote byDg the set of vertices and b@1 the set of arrows.
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Given ak-algebrad and a vertex of Q4 we will denote bysS; the simpleA-module
corresponding toj. So P; will denote the projective cover of;, and; the injective
envelope ofs;.

Let A be an iterated tilted algebra of Dynkin type see [2], and leT' (A) = A x D4 (A)
be the trivial extension oft by its minimal injective cogeneratdp (A) = Hom (A, k).
The set of verticesI's)o of the Auslander—Reiten quiver, of A can be embedded in
the stable pargI'r(4) of the Auslander—Reiten quiverr4y of T(A). Moreover, since
ZA — sIr(a) is the universal covering ofI'r(4), We get that the vertices df4 can be
embedded iZA, and in such a way that knowing the verticesZod corresponding to
A-modules we can obtain the arrows 6f, see [10]. So/ 4 is embedded iZA and we
want to describe this embedding explicitly. In [10] we divided this problem in two parts as
follows.

Let T be a trivial extension of finite representation type and Cartan elass

(1) Assume that we know the verticesaft corresponding to the radicals of the indecom-
posable projectiv&-modules. Determine the embeddinglof in ZA for any algebra
Asuchthatf (A) ~T.

(2) Describe an algorithm to detaime which subsets of vertices IAA represent the
radicals of the indecomposable projective modules over the trivial exteffision

The first problem was solved in [10]ds also [9]). The subsets of verticesZoh of the
second part have been considered by Chr. Riedtmann, who called them configurations, in
a more general setting [5,12—14]. The configunasi of selfinjective algebras of finite type
were computed in these works. One could useréisults for selfinjeéte algebras and then
decide which configurations correspond to trivial extension. With a different approach, we
present here a new algorithm giving directly the configuration of a given trivial extension
of Dynkin typeA,,. The caseéD, will be considered in a forthcoming paper. Both cases
have been studied in the first author PhD thesis [9].

Let A be atrivial extension of Cartan cla8g. The ordinary quive 4 of A is a union
of oriented cycles. We fix an appropriate oriented cytlef Q 4, and associated 6 we
define the height functioh : (Q A)o — N and the border functiod : (Q )0 — {—, +},
as follows. For a vertex, the quiverQ 4 can be written in a unique way as the union of
two connected subquive@;’i and Q}’i meeting at the vertei such thaQ;’i is a union
of cycles and containg. Thenh 4 (i) is the number of vertices @j”. On the other hand,

9, takes the value- in C, and is defined inductively on the cycles in such a way thét if
andC” are minimal oriented cycles meeting at the vert@ndd, is defined orC’, then
we defined , (x) = —a, (¢) for the verticesc of C” different froms. We may assume that
(Oa)o=1{1,2,...,n}and that the vertex 1 belongs only to the cy€le

Now we outline the algorithm. Leftx1, x2, ..., x,} be vertices inZA,, defined induc-
tively by the following rules:

(1) x1is an arbitrary vertex in the top border @A,
(2) if i > j is an arrow ofQ 4, x; = (a,b) andx; has not been defined, we sgt=
(a+hpa(i),n—ha@)+121)if 94() =+, andx; = (a + b, h 4 (i)) otherwise.
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Thenxi, x2, ..., x, define a lifting of the radicals Py, r P>, ..., r P, of the indecom-
posable projectivet-modules.

Though the algorithm is stated in a simple way and has an easy geometric interpre-
tation, proving that it works is technically complicated. We prove it by induction on the
number of minimal oriented cycles @¢f 4. Let I" be a trivial extension of Cartan clads
obtained fromA by eliminating an oriented cycle @ 4. The inductive hypothesis applies
to I” and we need to compare the universal coveritids — sI'r(ry andZA, — sI'r(4).

To do this we find an appropriate embeddingnodl” — modA of stable module cat-
egories, and an embeddidg: k(ZAy) — k(ZA,) lifting 1 :indI" — ind A through the
corresponding universal coverings.

We observe first that" = End, (P)°P for some projectived-moduleP. There are sev-
eral well-known embeddings of mddin modA given by M. Auslander. More precisely,
he described full subcategories of madvhich are equivalent to mald via the restriction
of the evaluation functor Hop(P, —) : modA — modI” to them. The one suited for our
purpose is the full subcatego@p consisting of theA-modules whose projective cover
and injective envelope have, respeely, their top and socle in ad®l/r P. As usual, for a
moduleM, addM denotes the full subcategory of mddwvhose objects are isomorphic to
sums of direct summands of. Let Cp be the full subcategory of mad induced by the
objects ofCp. Then the equivalence m@d— Cp induces an equivalence mdd— Cp
between the corresponding stable categories. By composing this equivalence with the in-
clusionCp € modA, we obtain the desired embeddingnod/” — modA.

We need to compare the mapg: andd 4, hy andh 4. The restriction ob4 to (Qr)o
is r. However the relationship betweér andh 4 is more complicated and is one of the
important technical difficulties in our proof.

1. Preliminaries

Let Q be a quiver. Given an arrow € Q1, we say it starts at(x) and ends a¢(«).
A pathinQ is either an oriented sequence of arrgws «,, - - - g With e(o;) = o(as 1) for
1<t <n, orthe symbok; fori € Qg. For any pattp = «, - - - 1 we defineo(p) = o(a1)
ande(p) = e(a,). If § is a path inQ, we denote by thesupportof § in Q. Thus,§ is a
subquiver ofQ having as vertices and arrows those belonging) & nontrivial pathp in
Q is said to be amriented cycldf o(p) = e(p). LetC = a,a,—1 - - - a2c1 be an oriented
cycle in Q. We callC minimal oriented cycléf all the verticeso(a1), o(a2), ..., o(ay)
are pairwise different. We recall that’ is afull subquiverof Q, if it is a subquiver ofQ
and for all vertices, j € Q' we have that each arroiv®- j of Q is also an arrow of)’.
A full subquiverQ’ of Q is calledconvexif for any pathag — a3 — --- — a; in Q, with
ao, a; € Q we haven; € Qg forall i.

The description of the quiver and relations of trivial extensions of Cartan dlassill
be needed throughout the paper. For this reason we state the following known result.

Proposition 1.1 [6]. Let A =k Q 4 /I be a trivial extension of Cartan clags,, withn > 1.
Then
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(@ (i) Q4 hasn vertices,
(i) Q4 is the union of oriented cycles and there are no loop@in,
(iii) any two minimal oriented cycles ¢f4, meet in at most one vertex,
(iv) every vertex € Q 4 belongs to at most two minimal oriented cycles,
(v) if Cq1, Co, ..., C, are minimal oriented cycles i@ 4 such that

CiNCa#%, CoNC3#W, ..., Cu1NCn#0,

thenC1 N C,,, = 0.
(b) The admissible ideal can be chosen such that it is generated by
(i) the paths consisting ef+ 1 arrows in an oriented cycle of length
(i) the paths whose arrows do not belaioga single minimal oriented cycle,
(iii) the differencey — ¢’, whereq andq’ are paths starting and ending at the same
vertices and such that there exists a pathvith vg and vg’ minimal oriented
cycles.

Definition 1.2. Let A be a trivial extension of Cartan class, (respectivelyD,,), and let
I' be a trivial extension of Cartan clafg (respectivelyDy). If C is a (nonzero) minimal
oriented cycle ofp » and QO is the union of the remaining cycles ¢f4, we say thatC

is anelimination cycleof Q 4 and thatl” is obtained fromA by eliminating the cycleC.
ThenC N Qr is a single vertex, and we also say that is obtained fromi” by inserting
the cycleC at z. Verticesx of Q where a cycleC can be inserted in order to obtain a
trivial extensionA of Cartan clas#\, (respectivelyD,) with n > k, are callednsertion
vertices

Remark 1.3.

(1) Suppose thatt is obtained from/I” by inserting the cycleC at the vertex;. Then
I ~Endy (4 P)°P where, P = ]—[iE(Qr)o AP;.

(2) Let A be a trivial extension of Cartan cla8g. Then a vertex of Q 4 is an insertion
vertex if and only if it belongs to a single minimal oriented cycle.

Example. Let A be the trivial extension of Cartan cla&g given by the quiver:

1 Cl 2 CZ 3 C3
. S N ’\‘4

| L P

whereC1, C2, andC3 denote cycles in the quiver. The elimination cycles@randCs, and
the insertion vertices are 1 and 4.

We will freely use properties of the module category modf finitely generated left
A-modules, the stable category madnodulo projectives, the Auslander—Reiten quiver
I'4 and the Auslander—Reiten translatians DTr andz ~! = TrD, as can be found in [3].
We denote by indi (respectively by indi) the full subcategory of mod (respectively,
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modA) formed by chosen representatives of the isomorphism classes of indecomposable
modules. LetX be an object of mod, then Po(X) and Io(X) denote respectively the
projective cover and the injective envelopeXf

Moreover, we will freely use the notions of locally finitecategory, translation quiver,
covering functor, well behaved functor and related notions. We refer the reader to [3,4,7,
11,12] for their definitions and basic properties.

Let A be a trivial extension of Cartan clagswith A a Dynkin quiver, andr : ZA —
sI'4 the universal covering of"4. Let M be an object of indi. In [10, 3.5] we introduced
the notion oflifting of 7'y to ZA at the vertexM. We recall that this procedure starts
by fixing an element/[0] of the fibrex ~1(M), afterwards we consider a slice of 4
starting atM and lift it through the universal covering: ZA — sI'4 to the unique slice
of ZA starting atM[0]. We iterate this procedure far1(M), t=2(M), ..., until all the
vertices ofs "4 have been lifted. The minimal connected subquivef gdfwhich contains
all the lifted slices is denoted byI"4[0] and is calledthe lifting of 'y to ZA at M.
Thenz|sr,01: s 'al0] = sT4 is a quiver morphism, which is a bijection on the vertices
of sI'4[0]. The inversepy : (sI'a)o — (ZA)g of this bijection defines an embedding of
sTAt0ZA. ForX eind A we denote by [i] the vertex: —"4 X[0] of ZA, whereX[0] =
em(X) (see [10]).

2. Thecategory mod End 4 (P)°P asasubcategory of mod A

Given an algebral and a projectivel-moduleP we consider the endomorphism alge-
bral” = End, (P)°P. We will study the relationship between the stable module categories
modI” and modA when A is weakly-symmetric. Let us start by comparing the module
categories mod' and modA. To do that, it is convenient to view mddas an appropriate
full subcategory of modi. Maurice Auslander showed several ways to do this. The most
convenient one for our problem is the following. Latbe an artin algebra an& be a
finitely generated projectivet-module. We denote bgp the full subcategory of mod
whose objects are the modulEssuch thatPy(X) € addP andp(X) € addig(P/r P). In
the next proposition we collect results on the equivalence bet@geand mod™, which
will be used throughout the paper.

Proposition 2.1. Let A be an artin algebra,P a finitely generated projectivd-module,
I' = End, (P)°P andCp be the category defined above. Then

(a) [3] The evaluation functoep = Hom, (P, —) :modA — modI” induces by restric-
tion equivalences of categoriasdP? — Pr andCp = modI”, whereP is the full
subcategory ofmodI” whose objects are the projectivémodules.

(b) [3] Let M be inCp. ThenM is a simpleA-module if and only iep (M) is a simple
I'-module. Moreovegp(M/rM) ~ep(M)/rrep(M).

(c) Let Q € Cp be anindecomposablé-module and leX € Cp be such thatrep(Q) =
ep(X). ThenX ~r,Q ifand onlyifr,Q €Cp.

Assume moreover thafi is weakly-symmetric. Then



172 O. Mendoza Hernandez, M.1. Platzeck / Journal of Algebra 281 (2004) 167-199

(d) X eCp ifand only if Po(X) and Ip(X) are inaddP. ThereforeaddP C Cp.
(€) ep(PA(X,Y)) =Pr(ep(X),ep(Y)) for X,Y € Cp, whereP4(X, Y) denotes the set
of A-morphismsf : X — Y which factor through a projectivel-module.

Let A be a weakly-symmetric artin algebr®,a finitely generated projectivé-module
andI" = End, (P)°P. We denote by p the full subcategory of mod whose objects are
the objects ofCp. Sinceep(PA(X,Y)) = Pr(ep(X),ep(Y)) we have that the functor
ep:Cp — modI" defined byep (f + Pa(X,Y)) =ep(f) + Pr(ep(X),ep(Y)) is well
defined. Moreover, sincep is a full and dense functor we get that the funetprinherits
these properties obtaining the following result.

Proposition 2.2. Let A be a weakly-symmetric artin algebr®, a finitely generated pro-
jective A-module andl” = End, (P)°P. Then the functoe, :Cp — modI" induced by
ep:modA — modI” is an equivalence of categories.

Throughout the paper we identify métwith Cp, and mod™ with Cp if A is weakly-
symmetric. The next proposition will be useful to know when an object of mbelongs
toCp.

Proposition 2.3. Let A be a selfinjective artin algebra? an indecomposable projective
A-module andX € modA. If X has no honzero projective summands then

(a) Hom, (P/socP, X) # 0if and only if P is a direct summand afy(X),
(b) Hom, (X, rP) #0if and only if P is a direct summand db(X).

Proof. This proposition can be proven using standard argumerts.

In the next theorem we describe the objects ofAnghich are notin ind’p.

Let C be ak-category and le¥:C — modk be a functor. Then Supp denotes the
support of the induced functdt: indC — modk, that is, the set of indecomposable objects
X € C such thatF'(X) #£ 0.

Theorem 2.4. Let A be a weakly-symmetric basic artin algebraAi= P LI Q then
ind A\ indCp = Supp Hom, (Q/socQ, —) U Supp Homy, (—, 7 Q).
Proof. Follows from 2.1(d) and 2.3. O

Example. Let A be the trivial extension of Cartan cla&g given by the quiver:

3e
\.4“]
/2

4°
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and the relations of 1.1(b). Le® = P, I P3 I P4 and Q = P;. The shaded regions
of the picture below show which vertices gf"4 are in SuppHom(Q/socQ, —) U
SuppHomy, (—, Q). The remaining vertices correspond to the objects ofjnd

Let A be a trivial extension of finite representation type and ¥t; be vertices o) 4.
The following fact will be useful later: there exists an arrbw> j in Q 4 if and only if
mA(T_erj, r P;) # 0. We will prove this result in the more general context of quasi-
schurian algebras. We recall from [8] that an algeltrig quasi-schuriarif it satisfies:

(8) dim;Homu (P, Q) <1 if P and Q are nonisomorphic indecomposable projective
A-modules and
(b) dim, Endy(P) = 2 for any indecomposable projectivemoduleP.

Proposition 2.5. Let A = kQ 4 /1 be a quasi-schurian selfinjectiealgebra, withl an
admissible ideal. If £ j are vertices oD 4 the following conditions are equivalent

(a) There exists an arrow%> j in Q4.
(b) Hom, (P;/socP;,rP;) #0.

Moreover, if one of the preceding conditis holds then the canonical epimorphism
Homy (P;/socP;, r P;) — Hom, (P;/SOCP;, r P;) is ak-linear isomorphism.

To prove this proposition we use the following two lemmas.

Lemma 2.6. Let A =k Q 4 /I be a quasi-schuria-algebra, with/ an admissible ideal.
Then for any vertices j € (Q 4)o the following conditions are equivalent

(a) There exists an arrow<> j in Q4.
(b) Homy(P;, P;) #0, and for anyf : P; — P; andg: P, — P; witht € (Qa)o, gf #0
implies that eitherf or g is an isomorphism.

Proof. Leté be a path ofQ 4. We denote by; the morphisnps : Pesy — Po(s) given by
ps(x) = x8.

(@) = (b). Follows from the fact that dipHomyu (P, P,) < 1 for ¢ # r, and
dim; rad Endy (P;) = 1 becauset is quasi-schurian.

(b) = (a). Hom (P}, P;) # 0 implies that there exists a nontrivial pathfrom i to j
whichis nonzeroim. Lety = éa, wherex is an arrow. Them, = pq o5 and consequently
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py factors through the projectivg for ¢ = e(«). By hypothesis we get that=i orr = ;.
From Lemma 2 in [8] we know that being quasi-schurian, the left or right composition of
an arrow and an oriented cycle is zerainTherefore is a trivial path, and consequently
y =« isan arrow from to j. O

Lemma 2.7. Let A be a selfinjectivé-algebra, P be an indecomposable projectiiemo-
dule andletr : P — P/socP be the canonical epimorphism. L@the an indecomposable
projective A-module not isomorphic t&, and letv:rQ — Q be the inclusion map. Then
the map® :Hom, (P/socP, r Q) — Homy (P, Q) defined by®d (g) = vgr is ak-linear
isomorphism.

Proof of Proposition 2.5. Leti # j be vertices 0D 4.

(@)= (b). Leti % j be an arrow inQ 4. Then there is a nonzero morphisfn P; —
P;, and by 2.7 we get that Hog{P;/ socP;, r P;) # 0. Thus, it is enough to prove that
the canonical epimorphism HQ{(IPj/SOCP],rP) — Hom, (P;/socP;,rP;) is injec-
tive. Let f: P;/socP; — r P; be nonzero in mod. Then the composition

Pj ELN Pj/SOCPj i> rpP; LN P;

is nonzero, where is the canonical epimorphism amds the inclusion map. Suppose that
f factors through a projective. Then there existse (Q 1)o and maps: : P;/ socP; —
Py, g: P, — rP; such thatgh # 0. Thus,vghm # 0 and from 2.6 we obtain that either
vg: P, — P; orhm: P; — P; is an isomorphism, and this is a contradiction.

(b)= (a). Assume Hor}g(P,/socP,,rP ) #0. Sincei # j we conclude from 2.7 that
Homy (Pj/socP;, r P;) ~ Hom,(P;, P;), and sinceA is quasi-schurian we obtain that
dimy HomA(Pj/soch, rbP)=1. Thus

Hom, (P;/socP;,r P;) = Hom,(P;/SOCP;,rF;).

Let nowg:P; — P; andh: P; — P; be nonisomorphisms. According to 2.6, to con-
clude that there exists an arroiw— j we only need to prove thdtg = 0. Sinceh
andg are not isomorphisms we can wrige= g'w, h = vh’, with g’: P;/socP; — P;,
h':P, — rP;, andm,v as above. Sincé’g’ factors through a prOJectNe module and
Hom, (P;/socP;,rP;) =Hom,(P;/socP;,rP;), we conclude thak’g’ = 0. Thushg =
vi'g'm =0, proving (a). O

Let I be a trivial extension of Cartan clags, or D,,. Let z be an insertion vertex
of Or and letA be the trivial extension obtained froii by inserting a cycleC at z
(see 1.2). Thed” ~ End, (4 P)°P, where, P is the projectiveA-moduIe]_[iE(Qr)oAP,~.

We saw in 2.2 that the evaluation functorinduces an equivalence of stable categories
ep:Cp— modrI”. Given a vertex € (Qr)o it is important to know when the-modules
AS; andr P; belong toCp. The following result gives the answer to this question.

Theorem 2.8. Let I" be a trivial extension of Cartan class,, or D,,, and letz be an
insertion vertex ofQ . Let A be the trivial extension obtained froi by inserting the
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cycleC =z < z1 < zp < -+ < z;—1 < z at z. Then the following conditions hold for
the projectiveA-module, P = ]_[,'E(Qr)0 AP;:

(@) aS; eCp andep(4S;) = rS; for any vertex of Q.
(b) raPi €Cp andep(raoPi) = rr P; for any vertex of Qr, i # z.

Pr oof. By 21(b) we get thatp(4S;) >~ rS; andep(rapP;) >~ rp P; for anyi € (Or)o-

Then to obtain the result it is enough to prove that € Cp for anyi € (Qr)oandry P; €

Cp foranyi e (Qr)o not equal tez. T

~ Let X € modA be such thatX has no nonzero projective summands. By 2.4 we

have thatX e Cp if and only if Hom, (4 Pj/soc, P;, X) = 0= Hom, (X, rsP;), for

Jj=121,22,...,Zm—1. Being A weakly symmetric, these equalities hold for= S;, if i #

71, ..., Zm—1. SOWe only need to prove thatthey hold $0=r4 P; fori # z, z1, .. ., Zm—1.
Since the syzygy functos2:modA — modA is an equivalence of categories,

and £2(4S;) >~ ra P;, we get that Hom(r4 P;, raPj) ~Hom,(4S8i,48;) =0 because

i # j. On the other hand, there is no arrow starting & (Qr)o \ {z} and ending at

Jj €1{z1,22, ..., zm-1}. By 2.5 this implies that Hom(4 P;/socy Pj,raPi) =0, prov-

ing (b). O

In the next proposition we collect results on the irreducible morphisms ofimand
modA, which will be useful in Section 4.

Proposition 2.9. Let A be a trivial extension of Cartan class with A a Dynkin diagram.
Let P be a projectiveA-module,l” = End, (P)°P and lete, : Cp — modI” be the equiv-
alence of categories induced by the evaluation functaP aThen for anyX, Y € indCp
we have

(@) If f:X — Y isirreducible inmodA, thenep (f):ep(X) — ep(Y) is irreducible in
mod!".

() Let X & My 2 ... Iy, 75 v be a sectional path insIs and f =
frenfr-- i M ¢Cpforalli =1,2,...,r, thenep(f):ep(X) = ep(Y) is ir-
reducible inmodl".

(c) If f:X — Y in modA is not irreducible ande p (f) :ep(X) — ep(Y) is irreducible
in mod!", then for each chain of irreducible morphismsiia A

X=Mo My % My oM L M =Y

with nonzero composition we have thidf ¢ Cp, foralli=1,2,...,r — 1.
Proof. The proofis straightforward and follows from the following lemman

Lemma 2.10. Let A be a trivial extension of Cartan class with A a Dynkin diagram. If
X —> My — ---— M, — Y is asectional path ig "4 then

SuppHomy, (X, —) N SuppHony (—,Y) ={X, M1,...,M,,Y}.
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Proof. Let 7 :ZA — sI'y be the universal covering fl"4, and letgI"4[0] be a lift-
ing of gI'y to ZA at X [10, 3.5]. Then the sectional path - M1 — --- —> M, —
Y lifts to a sectional pathX[0] — M;[0] — --- — M,[0] — Y[0] in ZA. By the
isomorphisms Supf(ZA)(x, —) — Supp_Hom, (7 (x), —) and Supg(ZA)(—,x) —
Supp_Hon), (—, 7 (x)) induced by the universal covering:ZA — sI's [10, 3.3] it is
enough to prove that

Suppk(ZA)(X[0], —) N Suppk(ZA)(—, Y[0]) = {X[0], M1[0], ..., M,[O], Y[O]}.

This equality is a consequence of the fact thigd] — M1[0] — --- — M,[0] — Y[O] is
a sectional path iZA and of the shape of the supports of the funciaA)(x, —) and
k(ZA)(—,y). O

3. Configurationsarising from trivial extensions

Let A be a trivial extension of Cartan clads, C an elimination cycle oD 4, andI" a
trivial extension obtained from by eliminatingC. The main result of this section gives a
lifting to ZA,, of the radicalr P, for any vertex: of the cycleC. This is an important step
in the proof of our main theorem, since, bei@)o = (Qr)o U (C)o, it will allow us to
use inductive arguments on the number of cycles of the quiver.

We recall (see [12]) that if” is a stable translation quiver akdl") the mesh-category
associated td@", a configuratiorC of I" is a set of vertices of" satisfying:

(a) for any vertexx € Iy there exists a vertex € C such that(I")(x, y) #0,
(b) k(I')(x, y)=0if x andy are different elements af,
(¢) k(I'(x,x)=kforall x eC.

Remark 3.1. Let A be a Dynkin diagramy be a selfinjective algebra of Cartan class
LA — sTa be the universal covering of translatlon quivelg, = {rP;: i € (Qa)o}
andCA =7"1(C,). From [12] we know thaCA is a configuration oZA andC, is a
configuration ofs "4 . We recall that the Nakayama permutation: (ZA)o — (ZA)o and
the Loewy lengthn 4 of k(ZA) satisfy the equality

T MA = vit‘l.

Moreover, if A is a trivial extension then the fundamental gralfys "4, x) associated

with 7 : ZA — 54 is generated by™4, see [1,5].
The points in the shaded area in the following picture, are those of

Supd((ZAn)(-xv _) = Supd((ZAn)(_v VA,, (-x))s

wherex = (p, q).
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(P+¢-n,n) (p,n) (p+4-1,n)

ZAn

(p1) (p+4-1,1)  (p+n-1,1)

Remark 3.2. The picture illustrates the next proposition in the case A,,.

rE[0] Pz/soch[O] rB[1]

SA10]

Proposition 3.3. Let A be a trivial extension of Cartan clasg with A a Dynkin di-
agram, and letz be a vertex ofQ4. Then for a lifting sI'4[0] of sI'y to ZA at
rP, we have thatSuppk(ZA)(t~1r P.[0], —) N Suppk(ZA)(—, r P.[1]) = {S.[0]} and
va(rr P[0]) = S.[0] = v (r P[1]).

Proof. By definition we have thatrP,[1] = t=™4rP,[0]. We proved in [10, 3.1]
that Sup(ZA)(x, —) N Suppk(ZA)(—, vi(x)) = {va(x)}. Using thatt "4 = vAfl
we obtain that Supp(ZA)(t~1r P.[0], —) N Suppk(ZA)(—, r P,[1]) = {vat~1r P.[0]}.
On the other hand, Hop(P;/socP;, S;) # 0 and _Hom,(S;,rP;) # 0. So S;[0] €
Suppz~1r P,[0], —) N Supg—, r P.[1]) and therefore, 7 ~1r P,[0] = S.[0], proving the
result. O

Proposition 3.4. Let A be a trivial extension of Cartan class with A a Dynkin diagram.
The following conditions are equivalent for vertideg j of Q 4:

(a) There exists an arrow%> j in Q4.
(b) For any lifting s "'4[0] of sI'4 to ZA we have that eithek(ZA)(r—erj[O], rP;[0]) #
0or k(ZA)(z~1r P;[0], r P;[1]) #O.

Proof. By 2.6 we have that there exists an arrow® j in Q4 if and only if
Hom, (P;/socP;,rP;) # 0. Then the proposition is now an easy consequence of Re-
mark 3.6 in [10]. O
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We introduce now the notions of height functions and bordef&Ap. To do that, we
label the vertices oA\, as follows:

1 2 3 n-1n
O—0—@ oo *o—o

Definition 3.5. The positive heightin ZA,, is the functioni; : (ZA,)o — {1,2,...,n}

defined byi;" (p, g) =n — ¢ + 1, and thetop borderis the sef{(p,n): p € Z} of vertices
of ZA,. Likewise, thenegative heighin ZA,, is the functiom:;; : (ZA,)o — {1,2,...,n}

defined by, (p, q) = ¢, and thebottom borderis the sef{(p, 1): p € Z} of vertices of
ZA,.

Remark 3.6. For any verteX(p, ¢) € ZA, we have that; (p, q) is the “distance” from
the bottom border oA, to (p, ¢), andi; (p, ¢) is the “distance” from the top border of
ZA, to the verteX(p, g).

(P+q-n,m)

+
INEX)

B 0.0

®.D

Proposition 3.7. Let A be a trivial extension of Cartan clags,, j a vertex ofQ 4, and let
sI'4[0] be alifting ofsI'4 to ZA,,. Then

(a) »P;/socP; is indecomposable if and onlyriiP;[0] belongs to a border oZA,,,
(b) if there is an arrowi < j in Q 4 andr P; >~ P;/socP;, thenr P;/socP; is indecom-
posable.

Proof. The proof of (a) is straightforward and (b) follows from the description of the
presentation ford givenin 1.1 O

Proposition 3.8. Let A be a trivial extension of Cartan clags,, withn > 1. For any vertex
z of Q 4 the following conditions are equivalent

(i) zis aninsertion vertex of) 4.

(ii) The projectiveP, associated tq is uniserial.
(iif) rP,[0] belongs to a border af.A,,.
(iv) S.[0]= P;/rP;[0] belongs to a border oZA,.

In particular, the number of verticese 0 4 such thatr P,[0] belongs to a border dfA,
is larger thanl, and coincides with the number of insertion verticeof.
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Proof. The result follows from the description ol given in 1.1, the fact that the
cosyzygy functos2—1:modA — modA is an equivalence of categories, and the equality
S, =27'rpP). O

The following proposition is the main reswait this section and will be useful throughout
the paper.

Proposition 3.9. Let A be a trivial extension of Cartan clags,, and letC = .2 < %1 «
-+« m-1 « 2 be an oriented cycle o 4 such thatz1, ..., z,,—1 are insertion vertices
of Q 4. Then for any liftings "4 [0] of sI'"4 to ZA,, atr P,, we have

(a) rP,[0] belongs to a border dZA,, andt~'r P, [0l =r P, ,[0] for 1<t <m — 1,

(b) {r P.[0]} = Suppk(ZA,)(z~*r P,,_,[0], =) N SUPPK(ZA,)(—, Tr P, [1]),

() hi(rP;[0]) =n —m + 1, wheree = + if r P,,[0] belongs to the top border &A,,
ande = — otherwise.

The next picture illustrates the situation whel, is in the top border oZA,,.

TPZI[O] ¢ oo rPZ [0] P [0] Terl[l] szl[l]

m-1 Zm-1

m vertices

Proof. SinceC =z < z1 < -+ < z,—1 < zisaminimal oriented cycleand, ..., ;-1
are insertion vertices oD, we get by 3.8 that the projectiv®,, is uniserial for
i=12,...,m—1, andtherefore

P, /socP, ~rP,, ..., P, ,/SOCP, ,~rP, ..

Then by 3.7 we obtain (a). Singg_1 < z andz < z1 are arrows oD 4, we deduce from
3.4 that

r P,[0] € SUppk(ZA,) (t~r P, ,[0],—) and t~1rP,[0] € Suppk(ZA,)(—, r P, [1]).
Hence
r P.[0] € Suppk(ZA,) (t 1 P.,, [0, —) N Suppk(ZA,) (-, tr P;,[1]).

SincerP,, ,[0] and P, [1] are in the same border dfA, we get that this inter-
section of supports contains an unique vertex. Thus S(ma,l)(t—erzm_l[O], -)nN
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Suppk(ZA,)(—, Tr P, [1]) = {r P;[0]}. This intersection determines the height of the ver-
texrP,[0]. O

Let A be a Dynkin diagrama a trivial extension of Cartan class, andx : ZA —
sI'4 the universal covering of I"'4. We recall that the Nakayama permutatighhas the
following property: for each vertex of ZA there exists a pathv:x — va(x) whose
imagew in the mesh-categori(ZA) is not zero, andv has longest length among all
nonzero paths starting at Furthermore, it can be proven that commutes with the
translationt of ZA. So,v, induces a permutation, on (sI4)o, since the fundamental
groupli(sI4, x) is generated by™4. That is, the following diagram is commutative

7ZA —2 5 7A

VA
sI'a —— sI'a

In the following proposition we prove that, is the syzygy functor whent = A,,.

Proposition 3.10. Let A be a trivial extension of Cartan clags,, and lets2 : modA —
modA be the syzygy functor. Then for akiye ind A we have that

QX)=v4(X) and 271X) =t (X).

Proof. We know that2 commutes with the translation= DTr of ¢I"4 and preserves
sectional paths (see Chapter X in [3]). Then to prove that v4 on gI4 it is enough to
see that2 = v, on a section ok I"4. From 3.8 we have that there exists a simgleno-
dule S in a border ofgI"4. LetS — --- — X be a sectional path of lengthin sI"4. Then
rP =8(S)— ---— £2(X) is also a sectional path of lengthwhereP is the projective
cover ofS andv,(S) =r P (see 3.2).

T'P?QS

5 8

S0 R2(X) =va(X) (see 3.1) and we get th& andv, coincide on the section starting
ats, proving that2 = v,. Thus2 1 =t~1v,, since2?=7"1. 0O

Corollary 3.11. Let A be a trivial extension of Cartan clags,, let 2 : modA — modA
be the syzygy functor, and I&tc ind A. Then
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(a) SuppHom (X, —) = SuppHom, (—, 22(X)),
(b) SuppHom (—, X) = SuppHom, (712(X), -).

Proof. Using 3.1 and 3.3 from [10] we have that Supp Hpi®, —) = Supp Hom), (—,
v4(X)). Thus, the corollary follows from 3.10.0

4, Theembedding of SFEndA(P)OP in sy

Let I be a trivial extension of Cartan clags, and letz be an insertion vertex of
Qr. Consider the trivial extension of Cartan clas#\,+,,—1 obtained fromI" by insert-
ing a cycleC atz. We recall thatl” ~ End, (P)°P where P is the projectiveA-module
]_[ie(Qr)oAPi' In Section 2 we saw that the evaluation funatger. modA — modI” al-
lows us to identify mod™ with the full subcategorgp of modA. Moreover the functoe p
induces the equivalence of stable categasiesCp — mod/". Let: :mod/” — modA be
the full and faithful functor obtained by composing the inverse equivaleneg of p —
modI" and the inclusiop € modA. In this section we will study the behavior of the ir-
reducible morphisms of mad through the embedding mod/” — modA. We start with
some preliminaries.

Let A be a full subcategory of ind. We denote byA the full subquiver of "y whose
vertices correspond to the objects4f

Let C be ak-linear category and led be a class of objects id. We denote by
LA={X eC: C(X,—)|4 =0} the left orthogonal category ofl, and by A+ = {X €
C: C(—, X)| 4 = 0} the right orthogonal category of.

Proposition 4.1. Let I be a trivial extension of Cartan clags,, andz be an insertion
vertex of Q. Let A be the trivial extension obtained from by inserting the cycl€ =
e gpr<zatz LetP =]l p,),aPi Q= ]_I:,":—llAPZi, B=
SuppHom, (—,r4Q), B’ = SuppHom, (Q/socQ, —), X = LB andy =B+t n indCp.
Then

(a) X andY are the connected componentsmdCp in sI'4. Moreover, we have the fol-
lowing picture.

SPA

rA_le

TA'F:'C; TA’PZM-I TA‘F.’Z’]
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(b) 2B =B, where2~1:modA — modA is the cosyzygy functor. Therefdral A \
indCp =BU 1B
(c) X= (Bt andY =+(B)NindCp.
(d) For any morphismyf : M — N inindCp, the following conditions are equivalent
(d1) ep(f):ep(M) — ep(N) is irreducible inmodr,
(d2) there is a sectional patM = Mg - M1 — Mo — --- — M,_1 — M, =N in
s’y withr > 1and such thaM; ¢ indCp for j=1,2,...,r — 1.
(e) ForanyM, N e€indCp the following conditions are equivalent
(e1) f:M — N isirreducible inmodA.
(&2) M,NeXorM,NeY,andep(f):ep(M)— ep(N) isirreducible inmodrI".
(f) The functore :indCp — modI” induces by restriction isomorphisms of quivers

XS ep(X) and Y = ep(Y).
(9) ep(taASy) =rrP;.

Proof. (a) We know by 2.4 that ind \ indCp = BU B'. Let n: ZAy+n—1 — sla be
the universal covering of I'4. SinceZA,,+.,—1 has no oriented cycles, it will be easier to
prove (a) if we liftsI"4 to ZA,,+n—1. Sincez; is an insertion vertex o) 4 we have by
3.8 that the simple, S, lifts to some border oZA,,+,—1, which we may assume is the
top border. Lets I'4[0] be a lifting of sI"4 to ZA,,+,—1 at 4S;,. Using 3.2 we determine
the position of4 S, [0], 74 P;,[0] and 4 S, [1] in ZA,+—1. On the other hand, 3.9 gives
the position ofr4 P, [0], r 4 P,[0l, ..., ra P;, ,[0]. Using 3.2 again we can complete the
following picture.

Syl0]  eee 48, (0] WSalll eee a8l

m=-1 m-1
Py

nB,l0]  tee n P, !_llﬂ] ""j\le[l] S TAB’/mq[l]

It follows from the definitions of3 and B’ that the lighter shaded area of this picture cor-
responds tar ~1(B U B') (in fact, in this picture we just sketché?{0] U B’[0] U B[1]). By
[10, 3.3] we know that the covering induces bijections SUBEZA,1,-1)(x, —) =
SuppHomy, ((x), =) and Sup@(ZA,;+,-1)(—, x) — SuppHom, (—, 7 (x)) for any
vertex x of ZA,+,—1. Now (a) follows by looking at the supports of the functors
k(ZAm+n-1)(x, =) andk(ZA;+n—1)(—, x).

(b) We know that2 ~1(r, Q) = Q/r4 Q. Therefore2 1B = SuppHom, (—, 0/r4 Q)
= SuppHom, (Q/socQ, —), as follows from 3.11 or just from the above picture.
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(c) Follows from (b) and the above picture.

(d)Letf:M — NinindCp.

(d1) = (do). If f:M — N isirreducible in modt thenM — N is sectional anddy)
holds withr = 1.

Suppose thaf : M — N is not irreducible in modi. Since f # 0 and A is of finite
representation type we obtain from 2.9(c) a nonzero patd = My — M; — --- —
M]_; — M{= N in k(sI'x) such thatM;. ¢Cpfor j=12...,t—1. LetS be the
set of nonzero path#f = My - M1 — --- — M,_1 — M, in k(sT4) such thatM, €
CpandM; ¢ Cp for j =1,2,...,r — 1. It follows from (a) thatS contains a unique
sectional patly : M = Mg — M1 — ---— M,_1 — M, in sI"4. Moreover, any path of
factors througty in k(sI"4) and so doeg.. Sinceep(f):ep(M) — ep(N) is irreducible
in modI” we get thatM, = N, proving that(d;) implies (dy).

(d2) = (dy). Follows from 2.9(a), (b).

(e) Follows from (a) and (d).

(f) Follows from (a) and (e). B

(9) We observe that, S, is on a border o§"4 and belongs to the sectidf) s, starting
at S.. Sinceep(4S;) ~ S, (by 2.8) ande, induces an isomorphism of quivexs—
ep(X) we get the following picture.

Ep(T4Sz)

Therefore by 3.10 we obtain thag (t4S;,) =vr(rS;) =rrP;. O

The partition{X, Y} of indCp induces through the equivaleneg:Cp — modI" the
partition{e, (X), ep(Y)} in indI". Moreover, we proved that, (t4S;;) >~ rr P;.

TPy

€p(X)

€p(Y)
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The embedding: modI” — modA induces a map: s — sI'4 defined as follows. Let
a:M — N be an arrow ingI'r. Then by 4.1(d) we know that there is only one sectional
path ingI", starting at (M) and ending at(N). We define («) to be such sectional path.
It is not difficult to see that ifo is a mesh relation iR ' then:(p) is zero ink(sI4).
Therefore the mapinduces a functor, denoted also byk (s I'r) — k(sT4).

Coroallary 4.2. The functon : k(sI'r) — k(sI"4) above defined is full and faithful. More-
over, an arrowx belongs to one of the quivees (X), e, (Y) if and only if: («) is an arrow
ingly.

5. Theembedding of k(ZA,) in k(ZA,+m—1)

Throughout this sectio” is a trivial extension of Cartan clags,, z is an insertion
vertex of O, and A is the trivial extension of Cartan clags,,,,—1 obtained fromI”
by inserting a cycleC, =z < z1 < 72 < -+ < z—1 < z a@tz. In Section 4 we stud-
ied the embedding: modI” — modA and we showed that this functor induces a map
1:sI'T — sI'x and a full and faithful functor:k(sI'r) — k(sx). Letw . ZA,, — sI'r
andn’:ZA,+m-1 — sI'a be the universal coverings @i andsI"4, respectively. We
will define a functor® : k(ZA,) — k(ZA,+mn—1) in such way that the following diagram
is commutative:

(2]
k (ZAn) —k (ZAn+mfl)

Fl lp,

indl" ———— ind 4,

whereF andF’ are well-behaved functors induced by the coverimgsdr’ respectively.
In order to describ@, we lift the partition{e » (X), e o (Y)} Of sI'r (respectively{X, Y} of
sI4) throughz (respectivelyr’) in an appropriate way. To do that, we introduce some
definitions.

Let O be a subquiver dfA,,. We recall that the convex closure C@my) in ZA,,, is the
smallest convex subquiver @fA,, containing the set of vertica3p of Q. Letx € ZA,, be
a vertex in a border dZA,,. We define the following full subquivers @A, :

X, = Cony({x, v;nz(x)}) and Y = ConV({va, (x), flv;nl(x)}).

The picture below shows the shape &f and ), in ZA,, if x is a vertex of the bot-
tom border ofZA,,. We observe that;nz(x) = "~1x. Moreover, whem (x) = rj- P, then
7(Xy) =X andw Q) =Y.
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il

Vv, (T v, (T)
An J An
Yz
Xy
,l:n—lI T -l

Let Z be a subquiver oZA,. For any integei the shifted quiverZ[i] is t " Z, and
Z[Z] = U,z Z1i]. Moreover, for any vertex belonging to a border afA, we define
the partition{C}'[i], C{ [i]: i € Z} of ZA,,, where

ct— Y, Iif x isin the bottom border dZA,,,
* 71 X if x isinthe top border oZA,,,

- — X, if x isin the bottom border cfA,,,
* 7|y, if xisinthe top border oZA,.

The following picture illustrates the situation whens a vertex of the top border &A,, .

This partition induces in a natural way tfsggnature functions, = §; : (ZA,)o —
{—., +}, defined bys, (y) = — if y € C[Z], andé, (y) = + otherwise.

The four pictures given in the preceding section, illustrating kdy can be considered
insidegI'4 by inserting the “bands3 and3’, suggest the following definition.

Definition of the functow : k(ZA,) — k(ZA,;+m—-1)

Let x be a vertex in a border &A,,. Then we have the partitiofC;"[i], C; [i]: i € Z}
of ZA,,. Using this patrtition, we will define the functdr = &, .

Definition of® on the vertices of/A,,
e For(p,q)eC; UCH

(».q9) if (p,q) € C; andx is in the bottom border dZA,,,
D(p,q)=1 (p+m—1y¢q) if (p,q) e C; andx is in the top border oZA,,
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o &(y)=@(y[-iDli]if y e CE[i]andi #0.

Definition of® on the arrows oZA,,
Lety % z be an arrow ofZA,,. By the definition of® on the vertices oZA,, we obtain
that there is a unique sectional pathin ZA,+,,—1 starting at® (y) and ending atb (z).
Thenwe defin@ (@) = y. We observe thab («) is an arrow irZA 4., —1 ifand only if « is
an arrow ofC:[ j] for some integej and some = —, 4. Moreover, it is not difficult to see
that, if p is a mesh relation iZA,,, then® (p) is zero ink(ZA,+n—1). Therefore the map
& ZA, — ZA,+m—1 induces a fully faithful functo® = @, : k(ZA,) — k(ZA,+m-1).
The rest of this section is devoted to study the behavior of the partition and the signature
functions ofZA,, under the functo®, as well as other properties df.

Letx:ZA, — sI'r be the universal covering gf";-. Sincez is an insertion vertex of
Or we have by 3.8 that ~1(r- P,) belongs to a border &A,,. Then we obtain a functor
& =, k(ZA,) = k(ZA,1nm—1) foreachx € 7= 1(r P,).

The next picture illustrates the following lemmajf P, lifts to the top border oZA,,.

0] bz

Syl0] eee 48

S0

(0] cee mlz, 0] iz, [1]

Lemma5.1. Letz be an insertion vertex af -, and{X, Y} the induced partition oihdCp
in sI'4 defined iMd.1 Letr : ZA, — sI'r andx’: ZA,+m—1 — sI'a be the universal cov-
erings ofsI'r and s ', respectively. Let I'-[0] be a lifting of I to ZA,, at t=1rf P,
andx = rr P,[0].

We fix a lifting ofs "y t0 ZA,+m—1 at 4S,, by choosings S, [0] € 7' ~1(4S,,) such
that 4, [0] = v;imil(@(x)), where® = @, 1 k(ZA,) — k(ZA,+m—1). Then

(@) sIr[0]=ConuC; UC;) andsI4[0] = Con\,(cg(x) UCqx))-

(b) For any vertexy of a border ofZA,, we have that

o (CEHcC

y _ sPx(¥)
v)<€Cq, ) and & =4 10 Dy

n+m—

(€) imlx, 1 Xx — Xandir|y, : Y — Y are isomorphisms of quivers.
(d) n'®|x, 1 X, — Xandr' @[y, Y, — Y are isomorphisms of quivers.
(e) n’'® =m.
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Proof. (a), (b) and (d). The proofis straightforward.

(c) Follows from 4.1(f).

(e) Follows from (c), (d) and the fact that the group of automorphismx,ofrespec-
tively ) is trivial. O

Theorem 5.2. Let I" be a trivial extension of Cartan class,, z an insertion vertex of
O and A the trivial extension obtained fromi by inserting cycleC, =z <—z1 < --- <«
Zm-1 <z atz. Letx :ZA, — sI'r andxn’: ZA,+m—1 — sl 4 be the universal coverings
of sI'r and s 4, respectively. Let I'[0] be a lifting of s I'r to ZA,, at 1 P, and let
x =rr P;[0].

We fix a lifting ofsI" t0 ZA,4m—1 at 4S;, by choosings S, [0] € 7' ~1(4S,) such
that 4 S;,[0] = v';\)12+zn—l(®(x))' where® = &, . k(ZA,) — k(ZA,+m-1). Then

(a) For any vertex of O we have thatp satisfies
_[raPl0] ifr#z,
(al) ¢(rFPI[O])_ {TASZ]_[]‘] |ft:Z
(a) @(rS:[0]) = AS:[0].
(b) Let F’: k(ZA;,+n—1) — ind A be a well-behaved functor induced by. ZA ;-1 —
sIa. Then there exists a well-behaved functBr k(ZA,) — indI" induced by
7. ZA, — sI'r such that the following diagram is commutative

®
k(ZAn) —— k(ZAm1n-1)

Fl lp

indl" ———— ind 4,

Proof. (a) Lett € (Qr)o. We prove(ay) only, since(ag) can be proved analogously.
If t =z then®(rr P;[0]) = t(4S;,[1]) follows from the definition of¢. Assume that
t # z. Then by 2.8 we obtain thay, P, € Cp and:(rr P;) =ra P;. Thus, by 5.1(e) we get
7'®(rp [0]) =17 (rp P[0]) =1 (rp P;) = r 5 P;, proving (a).

(b) From 5.1(e) we have that’® = 7. Now, we go on to defing” on the ar-
rows of ZA,. Let x %> y be an arrow ofZA,, we defineF(a) = ep F'®(a) where
ep =Hom, (P, —):Cp — modI" is the equivalence of categories giving in 2.2. Then we
have a functo : k(ZA,) — ind I". Moreover, by 4.1(d) we get that, F'& (@) is irre-
ducible in mod" for any arrowx < y of ZA,. O

6. Construction of the configuration associated to atrivial extension of Cartan
classA,

Let A be atrivial extension of Cartan clads, and letr : ZA, — sI"4 be the universal
covering ofsI"4. In this section we give an algorithm to determine the configuratipn
of ZA,, associated tol. We recall thaC, = 7 ~1(C4), whereC, is the set of vertices of



188 O. Mendoza Hernandez, M.1. Platzeck / Journal of Algebra 281 (2004) 167-199

sI'4 representing the radicals of the indecomposable projedtineodules. We define the
subsetP(A, ZA,) of ZA, and prove that P (A, ZA)IZ] = ;5 rP(A, ZAY)[i] is the
desired configuration. We start with some useful definitions.

Definition 6.1. Let (p, g) be a vertex oZ.A,,. We associate to this vertex the sectiéij;_q)
andS(*p)q) of ZA, starting at(p + 1, n) and(p + ¢, 1), respectively. '

(P+1.n)

x =[P g

(p+a. 1)

Definition 6.2. Let A be a trivial extension of Cartan clags, and letC be a minimal
oriented cycle oD 4. We callC cycle of referencaf C meets at most one of the remainder
cycles ofQ 4.

Definition 6.3. Let C be a cycle_ of reference i@ 4. For each vertex € O 4 we have that
C induces a partitiodQ ", 07} in 0 4, defined as follows:

(a) the quiversQ;’i and Qj}’i are full connected subquivers ¢f 4 which meet only at
the vertex,
(b) O ;" is union of minimal oriented cycleswd contains the cycle of reference

Definition 6.4. Let C be a cycle of reference i@ 4. Associated ta” we define théneight
mapha =ha,c:(Qa)o— N andtheborder mapip =da,c: (Qa)o— {—,+} by:

e h4(i) is the number of vertices of the quinjg”.

e 34(x) =+ forany vertexx of the cycleC, anda 4 is defined inductively on the remain-
ing cycles as follows. Le€” andC” be different minimal oriented cycles which meet
at the vertex and assume that, is defined orC’, then we defind 4 (x) = —d(¢) for
the verticest € (C")g, x # t. The function—9,:(Q4)o — {—, +} is obtained from
a4 following the rules—— =+ and—+ = —.
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Example. Let A be the trivial extension of Cartan cla&g given by the quiver:

The cycles of reference i@ 4 are:C1, C4, Cs. In the following table we give the height and
border maps associated to the reference cy@lesd(Cs.

i€c(Qao12345678
dae +++-—++— -
hae, 11652211
ac, ——+—-——-—+++
hace, 11342711

Let C be a cycle of reference @ 4 andt an insertion vertex belonging th The pair
(C, ) induces anaximal treeZ¢ ; in Q 4, which is obtained fronQ 4 by deleting exactly
one arrow (chosen in appropriate wdgm each minimal oriented cycle @ 4. To obtain
7c., we start by deleting the arrow 6fstarting at. Let nowC’ andC” be different minimal
oriented cycles o) 4 meeting at the vertex, and assume that an arrow ©f has been
deleted, then we delete the arrow®f starting at’.

Now we are in a position to define the s§t(A, ZA,) = {717,» € (ZAy)o: i € (Qa)o}.
Afterwards we will prove that P (A, ZA,)[Z] = U,z rP(A, ZA,)[i] is the desired con-
figuration.

Definition 6.5. Let C be a cycle of reference i@ 4, ¢ an insertion vertex belonging t§ u
a vertex of the top border &A,,, and7¢ , the tree defined above.
We define the setP(A, ZA,) of vertices ofZA,, by the following rules:

() rP=u,
(i) Let i — j be an arrow of/; ; and assume thatP; is defined. Them P; is the vertex
in S with heighthy*® (- P;) = h 4 (i).
J

We observe that (ii) can be stated as follows: # j is an arrow ofQ 4, x; = (a, b)
andx; has not been defined, then we set= (a +h (i), n —h(i)+ 1) if 94() =+, and
x;i = (a + b, h4(i)) otherwise.
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Remark 6.6. If x andy are insertion vertices ap » and there is an arrow — y in 7 ,,
thenr Py, r P, are consecutive vertices in the corresponding bord&of.

Example. Let A be the trivial extension of Cartan cla8g given after Definition 6.4. We
choose&’; as a cycle of reference and we fix the vertex 2. The table gives the values of
d4,c, andh 4 ¢, onthe vertices 0D 4.

ic(Qao12345678
o, T -+ - -
hae, 11652211

The arrows ofl¢, pare: 2«<- 1,1+ 3,3« 4,4« 6,6« 7,6 < 5,5«8.
In the following picture we indicate the vertices 8P (A, ZAg) with small black
squares.

~~ N
TE TR

\/

AV v:

AR
AN

AN ~~
TE, TP,

Theorem 6.7. Let A be a trivial extension of Cartan clags,, C a cycle of reference,an
insertion vertex belonging t6', andu a vertex in the top border dfA,,. Letx : ZA, —

sI"4 be the universal covering gfl"4 which lifts the radicak 4 P, to u, andsI"4[0] be the
lifting of "4 to ZA,, atrP; such that- P,[0] = u. LetrP(A, ZA,) = {rP; € (ZA,)o: i €

(Q A)o} be the set associated to these data. Then

(@) Ca =rP(A, ZAIZ],

(b) 7(rP;) =rP; foranyi € (Q a)o,
(©) h*(r P[0]) = ha(i) for anyi € (Q )o.

We will prove this theorem by induction on the number of minimal oriented cycles
of Q4. In order to do that, we deleta minimal oriented cycle of 4 obtaining a trivial
extensionl”, getting the functionst 4, iy, 84, d. The restriction 0B, to (Qr)ois dr.
However, the relationship betweén andh is more complicated, as we can see in the
following example.
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If we eliminate the cycle’ of Q4 we obtain that the quive@ - is C. Letx be a vertex
of C. If x #zthenh,(x) =1=hp(x). On the other handi 4 (z) is equal to the number
of vertices ofC’ andh - (z) = 1. To get a closer relation betweén andhi - we introduce
the notion of free and linked vertices.

Definition 6.8. Let A be a trivial extension of Cartan clads, and letC andC’ be minimal
oriented cycles 00 4. LetC = Cq, Co, ..., C; = C’ be a chain of minimal oriented cycles
of Q4 suchthal(Ci)oN(Cit1)o={x;} foranyi =1,2,...,r — 1. We say that the vertices
X1, x2,...,x—1 are(C, C)-linkedand that the remaining vertices 6f, are(C, C’)-free

Example. In the example given after 6.4 the vertia@s, C4)-linked are: 34, 6.

Proposition 6.9. Let A be a trivial extension of Cartan clags, and letC be a cycle of
reference inQ 4. Let I" be the trivial extension obtained fror by eliminating a cycle’
different fromC. For any vertex; € (Qr)o we have thati4(z) = ha c(z) andhr(z) =
hr.c(z) are related as follows

h ( ) _ hI‘(Z) if zis (C, C/)-fl‘ee,
AT hr) + 1(Col =1 i zis (C, C)-linked

Proof. The proof is straightforward. O

We also need to know the relationship between the border and signature furéctions
ands,,, which will be important in the inductive step in the proof of the theorem.

Proposition 6.10. With the hypothesis of the theorem,@&tin 0 4 be another minimal ori-
ented cycle with at least one insertion verteX hen for any vertex in Q 4 the following
conditions hold

r4P,[0] _Jaatx) if x is (C, C"-freg
S Pel0]) = { “9(x) if xis (C.C')-linked

Moreover,hf’,“(")(rPx[O]) = 1if x is an insertion vertex of 4.

Proof. We assume that eithgd , = C U C’ or C’ is not an elimination cycle, because
otherwise the proof goes on likewise by considering the trivial extenSiobtained from
A by eliminating the cycl&®’. We choose a cycl€” of Q 4 in the following way:

If Qo=CUC’, thenC” =C. If Q4 is the union of more than two minimal oriented
cycles and”’ is not an elimination cycle, the@” is an elimination cycle different fror@'.
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Consider a chain of different minimal oriented cyclés= C1, C»,...,Cp_1,C¢ = C”
with (C)o N (Ciy1o#@fori =1,2,...,¢—1. Let

Cl=" MM D2 Dl

where{y,} = (C¢—1)0N (Ce)o. Theny; is (C’, C")-linked.

Let I" be the trivial extension of Cartan cladg_,1 obtained fromA by eliminating the
cycleC”. Theny, is an insertion vertex i@ r and therefore the radicaf P, lifts to some
border ofZA,—;+1 (see 3.8) and induces the partiti(:(ﬂ;rpyt opli ], CrJrer, oylil i €Z} of
ZAn—:+1. We will assume that the vertex Py, [0] is in the bottom border G£A, ;41 (in
the other case the proof is similar). Hence

[0
5251;1[1] (rF Py, [O]) =

The idea of the proofis to use the embedding: @, . p, (0] : k(A,—1+1) — k(A,) given
in Section 5 to compare the partitiom€r;P7[0][i], C:“rpy[o][i]: i € Z} of ZA,—;4+1 and
{C;AP.[O][i], Crﬁpy[o][i]: i € Z} of ZA,,. We may assume that-(z) = — (otherwise the

proofis similar). Then P,[0] € C,. P,,10] [Z]. The shaded regions in the following picture

correspond to the partitiofC, » (o[i], CrJrer, olil: i € Z}.

ZAn-t+1

TrE, [0] TrE,[0] e (1] reE,[1]

As observed before 5.1, by applyidg= &, p,, (0] to this partition we obtain the indicated
shaded regions.
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ZAy MR __ nB e TR

@B [0l=ryR 0] OTrE, 0]

Considering in the last picture the partition associated to the vej;tEX 0] we obtain

5;/,}2[0] (rA P, [0]) I &ZAPZ[O] (rAPyj [o]) =+, fori<j<t, and

s PO (4 PIO]) = —.

For this we use thab (r P,[0]) = r4 P;[0], by 5.Xa&;).

Now we prove the proposition by induction on the number of cycle®af If this
number is two, therC” = C andd,(y;) = + for all j. Comparing with the values of
5,’,APZ[0] just obtained we have that thegmosition holds for the vertices @f. On the
other handz € C’ and 82”1[0] (raP,[0]) = —. Since all vertices irC’ different from y;
are insertion vertices, the radicals of the corresponding projective modules lift to the same
border orZA,,. So 5,’,APZ[0] coincides on them and takes therefore the valyavhich is
also the value o8 4, on them. Thus the result holds also for the vertice€ gand therefore
for all vertices ofQ 4.

Suppose now thaP 4 is the union of more than two minimal oriented cycles. By the
inductive hypothesis we know that

5L Pa1O)

ar(x) if x is (C, C')-free
—or(x) if xis(C,C")-linked.

By 5.1(b) we have thas’" /Y- P, [0]) = 6 (@ (rr P [0]) = 85470 4 Py,

for anyx € (Qr)o, x # y:. The last equality follows from 5.2(g since® = &,.p, [0].
On the other hand) andd, coincide in(Qr)o.This proves that

@ (rr P[0])
n

A P;[0] _Joaax) if x is (C, C')-free
o (VAPX[O])_{—aA(x) if x is (C, C")-linked

forallx € (Qr)o\ {y}.
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So we only have to prove that these equalities hold for vertices C”, this is, for
y1, ..., yi—1, ¥:. This follows from the following facts:

(a) We have that

P[0
81 (raPyi[0]) = —.

So by the induction hypothesis we get that(y,) = — and consequentlys (y;) = —.
This value coincides withj,” F:10] (ra Py, [0]), andy; is (C, C’)-free. Therefore the first
equality holds fory,.

() 8,274 Py, [0]) = =04 (Py,I0]) = +, and 94 (31) = —d4(y)), for all j =1,...,
r—1. O

Now we are in a position to prove the main result of this section.

Proof of Theorem 6.7. Itis enough to prove (b), which implies (a) and (c). The proof will
be carried out by induction on the number of minimal oriented cycle3 of

Case |. Suppose thatQy, = C = .1 « 2 «— ... « 1 is a minimal oriented cy-
cle. We may assume that the fixed vertexdnis + = 1. Then by 39 we have that
rP1[0], r P2[0], ..., r P,[0] are consecutive vertices in the top bordeZéf,, andr P1[0] =

7 P1. On the other hand, it follows from 6.6 thaPy, P, . . . , r P, are also consecutive ver-
tices in the top border ¢A,,. Thusr P;[0] = r/ﬁ,» for anyi, so (b) holds.

Casell. Suppose thap 4 has at least two minimal oriented cycles. Bt = .7 < .21 «
.- %m=1 « % pe an elimination cycle different from, and letC’ be a minimal oriented
cycle such thatC)o N (C")o = {z}.

Qu o C’
C

Let I be the trivial extension of Cartan clags,_,,+1 obtained fromA by eliminat-

ing the cycleC”. We can assume thaf P,[0] is in the bottom border oZA, _,+1,
since otherwise the proof is similar. Lét = ®,,.p (0] : k(ZA,_n+1) — k(ZA,) be the
embedding given in Section 5. Lete ZA,_,,+1 such that®(v) = u. Using @ we
compare the setsP(I", ZA,—_+1), relative toC, r and v, andrP (A, ZA,), relative

to C,r andu. The shaded regions of the following picture correspond to the partition
{Crpoli], Cp)li]: i € Z) Of ZAy 1.
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reB 1]

The functor® = @, . p,[0; Sends the above partition to the shaded regions of the following
picture.

B0 W00 == 1z, 10 B Bl ==+ 1P (1
ZAy
* o 0
@ rrP [01 TFP (0] i) TrP [
By 6.10 we havedr(z) = —, sincerp P,[0] is in the bottom border oZA,,_,,+1. We

assume that the theorem holds for algebras with less cyclesth&p it holds forI". In
particularn/(ﬁ) =rr P; foranyi € (Qr)o, wherex': ZA,—m+1 — s denotes the
universal covering of I'r.

In all that follows we use the notation; = ;F,', X = r/AE. Thus, to prove the theo-
rem we need to prove that(X;) =r, P;, for anyi € (Q 4)o.

We start by proving tha® (x;) = X; for a giveni € (Qr)o \ {z} implies thatr (X;) =
ra P;. In fact, by the inductive hypothesis we know thzd’(ﬁ) =rrP;. Thusm(X;) =
7®d(x;) =’ (x;) = t(rr P;) = ra P; (see Section 5 and Theorem 2.8). So we will prove
that® (x;) = X; fori € (Qr)o\ {z}. We start by proving two lemmas.

Lemma A. With the preceding notations and hypothesis xldie a vertex ofZA,_,,;+1.
Then

(&) (ST ¢ S;'E(x), if x and r~1x belong to the same cquanent of tle partition
(Crrpioli] C po)lil: i € Z} OF ZA, 1.

@) @S] o) € 7\ Flor
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(&) If x =rr P;[0] for somej € (Qr)o\ {z}, thenx and t~1x belong to the same com-
ponent of tie partition{C;er[O][i], C:;PW[O][i]: i€Z}of ZA,_mi1.

100 (@ (1)) = OO ’
(a4) n,(;(x() ) "i"(;ai(x) wheres(x) = 8" Zﬂ(x).
hy (P (X)) =h, " () +m =1,

(as) hi" (@ (x;)) =ha(i), fori € (Qr)o.

Proof. (a;) and(as) follow easily from the definition of> (see Section 5) and the follow-
ing two pictures.

By
@ rr P, [0] pre
m—1 veértices
(a¢) Follows from the next picture i (z) = —. The other case is similar.
A () A (1) R Y DU VY P

[ORSYA() Dt 'R 0] ®rrE (]
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(ag) Follows from the fact that
Hom,(rr Py,rr P;) =0 fork #i.

(as) Since we assumed that the theorem holddTave know thahir_fil)ﬂ(x,») =hr(),
and the result follows fromg4, using 6.9 and 6.10. 0O

Lemma B. With the preceding notations and hypothesis,ilet j be an arrow ofQ
belonging to the maximal tre&- ; (see6.5). Then

(b1) If i, j #zthend(x;) € sgA(j(?).
(b2) If i =z andx; =rrP[d], thenx; =rrP;[d], andrs P,[d] € Sg/zij)) Moreover,
' (ra P[d]) = ha(2).

Proof. (by) By the definition of »P(I", ZA,—n+1) we have thatx; € Sfjr("). From
Lemma A(a1), (ag) we know that

r @) 94 ()
D (S S Sgl)

sincedr (i) =da(i). S0P (x;) € SgA(fc’j)), proving that(b;) holds.

(b2) Assume that = z, that is, we have an arrow— j in Qp with 9y (z) = —. First
we assume that, = r Pz[0]. By induction we know that, P,[0] € Sg(x/). Sincej #z
the situation is the following: '

ZAn-m+i

@ 7‘1-}3;'[0]
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We know thatn’(x;) = rr Pj, and the first picture shows that, more precisely,=
rr P;[0]. The second picture shows that

raP[01 €Sy poy @Nd By (raP:[0l) =m=hs(2),

proving (b2) whend = 0. If d is an arbitrary integer, the result is proven using an appro-
priate shifting. O

We are now in a position to finish the proof of (b) in the Theorem 6.7.il€etQ 4)o.
First we prove that (x;) = X; fori € (Qr)o, i # z. We observe tha? (x;) = X;, because
®(v) =u.

Leti € (Qr)o, leti — j be an arrow ofQ  belonging to the maximal tregc ; (see
6.5) and assume thdt(x;) = X;. o

If both i, j are different from, then® (x;) € S% (’), by (b1) of Lemma B. From(as) of
Lemma A we know that

RO (@ (x;)) = h (i),

so®(x;) = X; in this case.

Let nowi = z, so that we are considering an arrow> j. Since we are assuming that
n'(x;) =rr P, thereisd so thatx, = rr P.[d]. We are assuming thdt(x;) = X ;, so(by)
of Lemma B states that

raP.ld] es%@ and 124 (ra P,[d]) = ha(2).

That is, X, = r P;[d], and therefore (b) holds far. Assume finally thay = z. Then the
arrow considered is — z. So, the vertex is (C, C’)-free becausé — z is an arrow of
the maximal tre€¢ ;. Thereforedr(z) = dr (i) = 34 (i), and using thak , = r, P;[d] we
obtain that(ap) of Lemma A means that

o (si0) < (7).

Z

Since we are assuming thgte Sfc’[(“ we obtain® (x;) € Sf(f(i). This, together with(as)
of Lemma A, implies thatp (x;) = X;. )

We finished the proof that(X;) =rs P; for anyi € (Qr)o. So, to end the proof of
the theorem we only need to prove this latter equality for the remaining vertic@s of
This is, forzi,z2,...,zm—1. We know that tha@ =raP;[d], and we may assume
thatd = 0, since otherwise we apply an appropriate shifting. Then from the picture pre-
ceding Lemma A we obtain th@ =raP;[1], and thereform =r,P;[1] for
i =121,22,...,2m—1 (See also Remark 6.6), proving (b) in this case and ending the proof
of the theorem. O
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