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a b s t r a c t

In this work we propose a generalization of the solution for light propagation in turbid

media given by the diffusion approximation (DA), based on the calculus of the photon

coordinates momenta. The main results of the proposed approach are: (1) the

contributions of the scattering coefficient ms and the anisotropy factor g are explicitly

separated, and (2) the minimum number of collisions N for which the DA is valid can be

inferred. We demonstrate that when the number of collisions, N, is large our solution

tends to that of the diffusion equation, but for those cases with small N or when the

absorption coefficient, ma , cannot be considered as much smaller than the reduced

scattering coefficient, msu, our solution remains useful. Validation using Monte Carlo

simulations, taken as a standard, is presented for both situations. Comparisons with

results from other authors are also provided.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Photon propagation inside turbid media is described
by the radiative transfer equation (RTE)1 [1,2]. It contains
three optical parameters, namely the refractive index n,
the scattering coefficient, ms and the absorption coeffi-
cient, ma. When the number of interactions of the photon
with the medium is large enough, the RTE can be replaced
by the diffusion approximation (DA). In this case, the new
parameter msu� msð1�gÞ, being g ¼/cosyS the mean
value of the cosine of the polar scattering angle, y, can
be defined. Conditions for validity of the DA are that the

characteristic dimension of the medium, d, must satisfy
db1=msu, and that ma5msu.

In this work we construct a solution for infinite media
that expands the solution for the DA being still valid if the
conditions mentioned above do not hold. The mean values
and the dispersion of the photons path lengths remain
expressed in terms of ms,ma and g, showing the individual
contributions of ms and g to msu. In this way, for a given
number of collisions, N, it holds N=ms � vt, where 1=ms is
the mean free path between collisions and v is the speed
of light inside the medium, v= c/ n. Our approach retrieves
the solution of the DA for high number of collisions,
calculating for which values of N the conventional
solution for the DA is valid. It must be stressed that even
though we treat only the case of the diffusive photons (in
the sense that g is strictly o1), our solution also includes
the cases for which N is not very large and when the
condition ma5msu is not satisfied. Additionally, we show
that the distribution of path lengths containing most of
the photons, (the diffusive pulse) starts at t4r=c, as
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1 The concept of ‘‘photon’’ is used here in a phenomenological sense

and what is meant by ‘‘photon’’ is a discrete packet of energy which is

launched to study the moments of the distribution in light propagation

when multiple scattering is present.
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expected for diffusive photons. The proposed solution is
based on some articles in which the moments of multiple
scattering are calculated [3–5]. Even though it is well
known that for a few number of collisions, effects of
polarization may be of relevance, we will not address this
issue in this contribution, along the lines of Ref. [6].

Our contribution is organized as follows: in Section 2,
we present a brief review of the moments of the path
lengths distribution, we introduce our main assumptions
and treat two special cases. In Section 3, our general
formula is constructed and we discuss the generalization
with respect to DA, showing some validations by
comparison with Monte Carlo simulations. Finally, we
present the main conclusions.

2. Moments of multiple scattering

Refs. [3–5] make use of probabilistic models to
calculate the moments of the path length distribution
when multiple scattering is present. Since the results
given by these authors are essentially equal, we will
choose the presentation of Ref. [5] because of its
simplicity.

The basic idea is summarized in the following. If every
single photon is launched in direction z and in its first step
it covers a distance l0 , successive positions of the photon
will be given by consecutive use of the Euler angles matrix
(with the choice of the azimuthal angle f¼ 0, see Fig. 1).
Thus, first and second expectation values can be
calculated. The main results will be written in terms of
the number of collisions, N; they may be expressed as a
function of time by the relation N¼ msvt, being v the
speed of light in the medium. These results are:

R 1. First order moments: For photons launched along
the z axis, the first moments for the spatial coordinates,
which can be physically taken as the coordinates of the
center of the photons ‘‘cloud’’ are given by

/zNS¼
1

ms

1�gN

1�g
, /xNS¼ 0, /yNS¼ 0: ð1Þ

From the former equation we can get these first
moments that, for the case Nb1 results, taking into

account that for go1, ð1�gNÞ=ð1�gÞ � 1=ð1�gÞ, that is

: ð2Þ

R 2. Second order moments: The corresponding second
order moments, m2, from which the variances
s2 ¼m2�m2

1 can be calculated are, in terms of N, given by

/z2
NS¼

2

3m2
s ð1�gÞ

N�
1�gN

1�g2
ð�2þgþg2þ2gNþ1Þ

� �
, ð3Þ

and

/x2
NS¼/y2

NS¼
2

3m2
s ð1�gÞ

N�
1�gN

1�g2
ð1þgþg2�gNþ1Þ

� �
:

ð4Þ

Now the limiting values are, for Nb1, and taking into
account that for go1, ð1�gNÞ=ð1�g2Þ � 1=ð1�g2Þ:

: ð5Þ

R 3. Variances: With the values obtained above it is
now possible to find the variances for every set of
parameters ma,ms, g and N; this will be used later to build
up the most general expression of our proposed solution
(given in Eq. (8)). The photons cloud propagating inside
the medium can thus be interpreted as an ellipsoid
centered at coordinates ð/xNS,/yNS,/zNSÞ with semi-
axes sx,sy,sz given by the square roots of the correspond-
ing variances: sz ¼ ½/z2

NS�/zNS
2
�1=2 and sx ¼ sy ¼

½/x2
NS�

1=2. For Nb1, and 0rgo1, longitudinal and
transverse axes are equal, that is, sz ¼ sx ¼ f2N=

½3m2
s ð1�gÞ�g1=2.
The case g=1: Expressions (2) are of utmost importance

for the solution presented in this work, since from its
interpretation we can introduce the following two
physically grounded assumptions: first, this equation tell
us that g=1 refers to ballistic photons, and thus, this is
equivalent to think that the proposed model implicitly
contains a ballistic peak at position r¼ vtð �N=msÞ. That
means that in our solution we can include a term with a
Dirac delta function, dðt�r=vÞ, for the ballistic photons, as
it is done by Paasschens, who solved analytically the
radiative transfer equation [6]. Second, it is possible to
assess without any loss of thoroughness that, provided
that, diffusive photons will arrive at any point r after the
ballistic ones, the solution will contain for this second
kind of photons a Heaviside function, Hðt�r=vÞ-

HðN�msrÞ. In practical applications, the ballistic photons
are of little importance because, for a given propagation
distance r, their number decays as e�ðmaþmsÞr , and
diffusive photons are present in the most important
proportion.
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Fig. 1. Schematic drawing of scattering in a random medium; the source

emits a thin light beam in the z direction. The step lengths taken by the

photons are symbolized by the vector lengths, lj. At each scattering

position, a new azimuthal angle, f, and a new polar angle, y, are

required.
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3. Construction of a generalized formula for infinite
media

Our goal is to construct a formula that, for the simplest
case of an infinite medium and for Nb1 (or for long t),
tends to the known solution for the DA. To our end we
take into account that for Nb1 and go1 (i.e., the
diffusive photons) the probability density will take the
Gaussian form predicted by the law of large numbers:

lim
Nb1

Wðx,y,z;NÞ ¼
e�ðma=msÞN

ð2ps2Þ
3=2

exp �
x2þy2þðz�/zNSÞ

2

2s2

 !
m�3,

ð6Þ

where /zNS¼ 1=½msð1�gÞ� and s2 ¼ 2N=½3m2
s ð1�gÞ�.

Generalizing for all values of N and g, it is then possible
to write, for photons incident in the z direction, and taking
into account that their behavior in directions x and y is
identical (that is s2

x � s2
y Þ,

Wðx,y,z;NÞ

m�3
¼

e�ðma=msÞN

ð2ps2
x Þ

exp �
x2þy2

2s2
x

� �

1

ð2ps2
z Þ

1=2
exp �

ðz�/zNSÞ
2

2s2
z

 !
, ð7Þ

where the values of /zNS,s2
x � s2

x ðN,ms,gÞ and s2
z �

s2
z ðN,ms,gÞ are given in Eqs. (1), (3), and (4), respectively.

Note that the mean value /zNS in the last exponential
function is irrelevant for infinite media, but it is of
utmost importance if dealing with semi-infinite or slab
geometries.

As stated above, when stressing the importance of
Eq. (2), diffusive photons will arrive at a given position
r=(x2+y2+z2)1/2 later than the ballistic ones: there are no
diffusive photons detected until tZr=vðNZmsrÞ; it is thus
necessary to include a Heaviside function, HðN�msrÞ,
accounting for this fact. It should be noted that this
statement is not introduced ad-hoc, but is the result of the
analysis of Eq. (2). Then, the complete solution, for all
values of g, takes the form

Fiðx,y,z;NÞ

m�2s�1
¼

vexp �
ðx2þy2Þ

2s2
x

þ
ðz�/zNSÞ

2

2s2
z

 !" #

ð2ps2
x Þð2ps2

z Þ
1=2

HðN�msrÞexpð�maN=msÞ, ð8Þ

with s2
z and s2

x given, as already mentioned, by Eqs. (3)
and (4), respectively.

It is known that the Gaussian distribution (8) is valid
for large N; however, comparison of our results with those
from Paasschens [6], shows that for the case where the
optical parameters are similar to those of biological
tissues and for a thickness as thin as z=2 mm, both
results agree within 10% for NZ10 and, for z=4 mm, they
agree within 5% for NZ6. Both situations are clearly not
represented by the DA. It is important to remark that,
even though we treat only the diffusive photons ðgo1Þ,
our solution is more general than the one provided by
Eq. (6); this is based on both the presence of the function
HðN�msrÞ and the different expressions for s2

x and s2
z .

3.1. The diffusive photons; comparison with the solutions

given by the diffusion approximation

It can be shown that Eq. (8) describes all type of
scattering of photons in turbid media, included those
known as ballistic and snake. While for turbid media of
biological interest, those are not of importance, diffusive
photons constitute the greater proportion of all detected
ones. Accordingly to our model, they follow the law given
in Eq. (8) for go1.

3.1.1. The case ma5msu

It is interesting to compare the values of Fi given by
our Eq. (8) and those given by the DA. It is verified that for
small values of z there is a clear discrepancy between both
solutions (see below); however, as z becomes larger both
solutions tend to the same values inside the whole
interval of N=ms (or equivalently, vt). To introduce a
quantitative criterion, let us consider ms and g similar to
those found in biological tissues. For this case ðmsubmaÞ,
when the distances between source and detector satisfy
d\8=msu, the maxima of both distributions are almost
coincident [7,8]. As an example, in Fig. 2, we compare the
MC outcomes with both the values from the diffusion
approximation and from this work for a distance between
source and detector d=30 mm. The parameter values are:
ma ¼ 0:01 mm�1, ms ¼ 5, g=0.8, msu¼ 1 mm�1 and n=1.

On the contrary, for values of the absorption coeffi-
cient, ma, much greater than those found in biological
tissues, this coincidence is lost and both the solutions
differ because the DA is no longer valid, whereas our
solution is useful. This fact will be shown immediately
below.

3.1.2. The combined case: do8=msu and matmsu

For the cases involving biological tissues, the absorp-
tion coefficient ranges from ma � 0:005 mm�1 for normal
tissues to approximately ma � 0:03 mm�1 for tumors,
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Fig. 2. Comparison of the normalized path lengths distribution (PLD)

when the diffusion approximation holds: d=30 mm ð48=ms uÞ,ma

¼ 0:01 mm�1 ,ms ¼ 5, g=0.8, ms u¼ 1 mm�1 and n=1. Note that for this

case both, diffusion theory and our proposal, fit well the Monte Carlo

outcome, which is taken as a validation standard.
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while the reduced scattering coefficient is about
msu� 1 mm�1 (see for example [2]). Thus, for biological
applications, the condition ma5msu required by the DA is
always satisfied.

On the other hand, our solution allows to visualize
what happens for cases in which maomsu (but not
ma5msu). In Fig. 3, we present the case where there are
two exceptions to the validity of the DA: do8=msu and
matmsu. In effect, now d=5 mm and ma ¼ 0:5 mm�1; the
other parameters are as presented in Fig. 2 . Note that,
whereas the DA makes nonsense, because it shows non-
physical photons for N=msod ðor tod=vÞ, our solution
and the MC outcomes are nearly coincident.

3.2. Comparison with MC outcomes from other authors

As a complementary validation of our procedure for
physical conditions far from those required by the DA, we
present in Fig. 4 the percent difference,

Eq: ð8Þ�DA

DA
ð9Þ

for a 4 cm thick, nonabsorbing slab with msu¼ 2 cm�1, n=1.4
and for two values of the anisotropy factor, namely g=0.0
and 0.5. In this figure it can be seen that for short times,
o500 ps , there is no agreement between DA and our
approach. Moreover, the discrepancy depends on the value
of g, being positive for g=0.5 and negative for the isotropic
case, g=0. For larger times, the percent error rapidly tends to
values o5%. This result should be compared to that of Fig. 6
in the paper by Martelli et al. [9], where the same
calculation as in Eq. (9) is shown, but using Monte Carlo
simulations instead of the result of Eq. (8). The agreement
between both figures is very remarkable.

4. Conclusions

In this contribution we have constructed, starting with
the first and second moments of the path length distribu-
tions, an improvement with respect to the solution given
the DA, presented in terms of the path lengths, N=ms

(or, equivalently, in terms of ct). In our proposal, the
independent contributions of ms and g are evident in
Eqs. (1), (3) and (4); for Nb1 it naturally happens that
msu¼ msð1�gÞ.

We have verified that our approach produces values in
accordance with the MC outcomes even in the case where
there are two strong exceptions to the validity conditions
of the DA: do8=msu and matmsu (Fig. 3). Therefore, the
importance of the proposed solution is not restricted to
the biomedical optics field.
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represents the case for g=0. This results must be compared with Fig. 6 in
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