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a b s t r a c t 

Diabetes mellitus is a disease that affects glucose homeostasis. The World Health Organization informs 

that there are over 347 million people in the world with diabetes. The diagnosis and characterization of 

glucose homeostasis in different metabolic conditions are subjects of great importance with high clinical 

impact. There are many mathematical models that describe the glucoregulatory system in detail. How- 

ever, the use of these models is limited because they have a large number of mathematical equations 

and parameters and they require complex methodologies to estimate of them. This forced to work with 

average values that decrease the validity of results and the applicability of the models. In this study 

two mathematical models for rats with diabetes mellitus were developed. The difference between these 

models and others lies in the possibility of obtaining all parameters for each animal from simple mea- 

surements (glucose and insulin plasma levels). Moreover, the models allow to measure in vivo the differ- 

ent physiological processes involved in glucose homeostasis in animals: insulin secretion and its plasma 

clearance, absorption of insulin from a subcutaneous injection, the liver handling of glucose, intestine 

absorption of glucose, glucose uptake rate of insulin-independent tissues, glucose uptake rate of insulin- 

dependent tissues, and renal glucose excretion. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Biological control of plasma glucose level involves several

actors and tissues. One of the main factors is insulin. When

his hormone fails to control plasma glucose levels, a disease

nown as diabetes mellitus arises. There are two types of diabetes

ellitus: diabetes mellitus type 1 (DMT1), where insulin secretion

s decreased, and diabetes mellitus type 2 (DMT2), where tissues

re deficient in insulin response. 

Usually, the fasting plasma level of glucose is measured to

valuate the glucose homeostasis. Sometimes, normal values of

lasma glucose are the consequence of high insulin plasma level.

oreover, high values of insulin could be associated to high

nsulin pancreatic production or low insulin clearance. Thus, a
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ethod for evaluating insulin secretion and clearance separately

ould be very important and useful. 

There are many indexes for the evaluation of insulin resistance:

GIS ( Mari et al., 2001 ), homeostasis model assessment of insulin

esistance (HOMA-IR) ( Matthews et al., 1985 ), quantitative insulin

ensitivity check index (QUICKI) ( Katz et al., 20 0 0 ), Matsuda index

 Matsuda and DeFronzo, 1999 ), Avignon index ( Pisprasert et al.,

013 ), Stumvoll index ( Stumvoll et al., 20 0 0 ). These indexes can be

btained from fasting glycaemia and fasting plasma insulin level,

rom data obtained after an oral glucose tolerance test (OGTT) or

fter an intravenous glucose tolerance test. However, there are

ot enough tests for measuring insulin secretion. Hyperglycaemic

lamp ( DeFronzo et al., 1979 ), intravenous glucose tolerance test

 Pacini et al., 2013 ), and HOMA index ( Matthews et al., 1985 ),

llow the measurement of β-cell function. Nevertheless, the first

wo techniques need invasive and complex processes involving a

isk for animals ( Pacini et al., 2013 ). In addition, hyperglycaemic

lamp needs anaesthesia that usually disturbs glucose metabolism

https://doi.org/10.1016/j.jtbi.2017.12.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.12.001&domain=pdf
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Fig. 1. Model for rats with DMT2. 

Solid lines represent flow of glucose or insulin, dotted lines represent stimulatory 

(arrowhead) or inhibitory (blunt) effect. G: plasma glucose level (mg/dl), I: plasma 

insulin level (pmol/l), D: amount of glucose in the intestine (mg), U: amount of 

glucose in urine (mg). D 0 : amount of glucose incorporated by the diet (mg), k 0 : 

plasma glucose uptake from diet constant (dl −1 .min −1 ), k 1 : production of pancre- 

atic insulin rate constant (pmol.dl/min.mg.l), k 2 : rate constant of glucose uptake in 

insulin-dependent tissues, tissues di (mg.l/dl.min.pmol), k 3 : rate constant of glucose 

uptake in insulin-independent tissues, tissues ii (mg/min.dl), k 4 : uptake constant 

(for glycogenesis) or glucose release (by glycogenolysis and/or gluconeogenesis) by 

the liver (mg.l/dl.min.pmol), k 5 : rate constant of glucose renal excretion (min −1 ), k 6 : 

plasma clearance of insulin (min −1 ). 
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( Behdad et al., 2014; De Oliveira et al., 2013; Xiao et al., 2013 ).

Intravenous injection of glucose is challenging in rats without se-

dation or anaesthesia. HOMA index can be used to measure β-cell

function from fasting glycaemia and fasting plasma insulin level

through a computer model ( Levy et al., 1998 ) using the software

HOMA Calculator v.2.2 (Diabetes trials Unit, University of Oxford,

available from http:/ www.dtu.ox.ac.uk/homacalculator/index.php ).

Although this index can be calculated easily, it only measures

insulin resistance and β-cell function, and it can be calculated

with glycaemia between 50–500 mg/dl and plasma insulin level

between 20–400 pmol/l. As a consequence HOMA index can be

used in human beings, however, lower or higher plasma glucose

and insulin levels are frequently found in rats, which difficult the

use of HOMA index ( Di Loreto and Rigalli, 2009 ). 

Moreover, these methods are not able to measure other physi-

ological processes involved in plasma glucose control such as liver

handling of glucose or glucose uptake rate of insulin-independent

tissues, glucose uptake rate of insulin-dependent tissues, and renal

glucose excretion, and absorption of insulin from a subcutaneous

injection (when insulin is administered). 

In a previous work, a mathematical model of glucose-insulin

system (System 1) and the methodology for the estimation and op-

timization of all the parameters were developed ( Lombarte et al.,

2013 ). This model was validated through in vivo experiments

which demonstrated that the model represents adequately the

changes of plasma glucose and insulin levels through time. More-

over, the model was used to evaluate changes in glucose home-

ostasis in other studies ( Brenner et al., 2014; Lombarte et al., 2016 ).

The model consists of 3 differential equations that represent the

variation of plasma insulin levels ( Eq. (1 )), plasma glucose levels

( Eq. (2 )), and glucose amount in the digestive system ( Eq. (3 )). 

d I/d t = k 1 G − k 6 I (1)

d G/d t = k 0 D − k 2 I − k 3 − k 4 
(
I − I pi 

)
(2)

d D/d t = −k a D (3)

System 1. Mathematical model for healthy rats. 

Eq. (1 ) includes parameters that represent secretion ( k 1 ) and

plasma clearance of insulin ( k 6 ). Eq. (2 ) includes parameters asso-

ciated to liver function ( k 4 , I pi ), intestinal absorption ( k 0, ), insulin

dependent tissues ( k 2 ) and insulin independent tissues ( k 3 ) activ-

ities. Finally, Eq. 3 includes the amount of glucose in the digestive

system (D) and the rate constant of glucose absorption ( k a ). 

In the current study, two mathematical models for diabetic rats

were developed based on the model described previously; and

used to measure in vivo the different physiological processes in-

volved in glucose homeostasis in animals with different metabolic

conditions. 

2. Model for rats with DMT2 

2.1. Model formulation 

Fig. 1 shows a representative diagram of the biological model

used for the development of the mathematical model for rats

with DMT2. Unlike the model for healthy rats, the present model

includes the kidney and urine, where glucose is excreted. This

compartment was include due to diabetic subjects excrete glucose

in urine when plasma glucose level is higher than a threshold

value ( Bales et al., 1984 ). 

The model for DMT2 have 4 differential equations that repre-

sent variations of plasma glucose level (G) and plasma insulin level

(I), amount of glucose in the digestive system (D) and amount of

glucose in urine (U), (System 2). 

d I/d t = k 1 G − k 6 I (1a)
 D/d t = −k a D (3a)

 G/d t = k 0 D − k 2 I − k 3 − k 4 ( I − I pi ) − k 5 ( G − G u ) H (4)

(G ) : 
 = 1 siG > G u 

 = 0 siG � G u 

(5)

 U/d t = k 5 ( G − G u ) H (6)

System 2. Mathematical model for rats with DMT2. 

Eq. (1 ) represents variation of plasma insulin level. The term

 1 G represents pancreatic insulin secretion, which is regulated by

lasma glucose level; and the -k 6 I term represents plasma clear-

nce of insulin. 

Eq. (3 ) represents variation of glucose in the intestine and the

 a parameter is the rate constant of glucose absorption. 

Eq. (4 ) represents variation of plasma glucose level. The term

 k 4 (I-I pi ) represents hepatic handling of glucose. It is a positive

erm when plasma insulin level is lower than I pi (indicating the

ontribution of glucose to plasma by glycogenolysis and gluco-

eogenesis) and it is a negative term when plasma insulin level

s higher than I pi (indicating the glucose uptake of glucose by

iver for glycogenogenesis, glycolysis, or synthesis of lipids). I pi is

 parameter that represents plasma insulin level when the liver

hanges from glucose uptake to production. The - k 3 term repre-

ents glucose uptake by insulin-independent tissues. The - k 2 I term

epresents glucose uptake by insulin-dependent tissues and k 0 D

he variation of plasma glucose level due to oral glucose adminis-

ration. The - k 5 ( G - G u )H term represents renal excretion of glucose.

 u is the glucose renal threshold that is the value of plasma glu-

ose level when renal transport of glucose is saturated and glucose

egins to be excreted in urine. H is a function of glycaemia ( H ( G ))

http://www.dtu.ox.ac.uk/homacalculator/index.php
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Fig. 2. Plasma glucose level as a function of time on a fated rat with diabetes. 

Squares points represent plasma glucose level. Continuous line represents the fit 

obtained with Eq. (7) . 
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Fig. 3. Estimation of k 5 and G u parameters. 

The dots represent the values of the amount of glucose (mg) in urine. The solid line 

represents the adjustment made with Eq. (12) . 
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nd it is defined by sections ( Eq. (5 )) in order to represent renal

xcretion of glucose. When plasma glucose level is lower than G u ,

 is zero and there is not renal glucose excretion. In contrast, when

lasma glucose level is higher than G u , H is 1 and the renal glucose

xcretion depends on the difference between G and G u . 

Eq. (6 ) represents variation of glucose in urine, where the k 5 
arameter is the rate constant of glucose urine excretion. 

.2. Estimation of parameters 

All parameters were estimated by fitting different functions

o the values of plasma glucose and/or insulin obtained after

ifferent experiments. 

.2.1. Estimation of k a , k 0 , k 1 , k 2 , k 3 , k 4 , k 6 and i pi 

These parameters were estimated using an OGTT. Animals

eceived a glucose dose (0.3 g/100 g body weight) by orogastric

ube ( Lupo et al., 2009 ), after 8 h of fasting. Blood samples

ere obtained before (0 min) and after glucose administration

5, 10, 15, 30, 60, 90, 120, 180, 240, 300, 360 min). Plasma

lucose and insulin levels were measured as stated in the ap-

endix. k a , k 0 , k 1 , k 2 , k 3 , k 4 , k 6 and I pi parameters were estimated

rom glucose and insulin plasma levels using a script devel-

ped for R environment that was made using the methodology

eveloped for healthy rat ( Lombarte et al., 2013 ). This script

ould be downloaded from http://hdl.handle.net/2133/10176 or

ttp://www.biologiaosea.com.ar/software.html . 

.2.2. Estimation of k 5 and G u 

The k 5 and G u parameters were estimated from glucose levels

n urine and plasma. Animals were placed in metabolic cages

ith water ad libitum and without food. Urine and blood were

ollected at definite time intervals. Subsequently, glucose levels in

lasma and urine were measured and values were used to make

he adjustments described below. 

In fasting diabetic rats, plasma glucose levels decrease linearly;

ig. 2 shows representative values of one rat. 

Thus, glucose can be adjusted with Eq. 7 ( Fig. 2 ). 

 = G 0 − k f t (7) 

Eq. (6 ) represents the variation of urinary glucose excretion as

 function of the difference between G and the threshold glucose

 G u ). 

 U/d t = k 5 ′ ( G − G u ) (6a) 

Replacing G in Eq. (6 ), by Eq. (7 ), and integrating with respect

o time: 
 

dU = 

∫ 
k 5 ′ 

(
G 0 − k f t 

)
d t −

∫ 
k 5 ′ G u d t (8) 
 = 

∫ 
k 5 ′ G 0 d t −

∫ 
k 5 ′ k f td t −

∫ 
k 5 ′ G u d t (9) 

 = k 5 ′ G 0 t −
k 5 ′ k f 

2 

t 2 − k 5 ′ G u t + c (10) 

 = k 5 ′ ( G 0 − G U ) t −
k 5 ′ k f 

2 

t 2 + c (11) 

The urinary excretion of glucose ( U ) through time ( t ) is a

uadratic function of time with coefficients a, b and c ( Eq. (12 )),

hese coefficients are obtained by fitting experimental values with

q. (12 ) ( Fig. 3 ). 

 = bt − a t 2 + c (12) 

 = 

k 5 ′ k f 
2 

(13) 

 = k 5 ′ ( G 0 − G u ) (14) 

From Eqs. (13 ) and (14 ) k 5 and G u were obtained as following: 

 5 ′ = 2a k f (15) 

 u = G 0 − b k 5 ′ (16) 

 u = G 0 − b k f 2a (17) 

In these equations, G 0 is the plasma glucose level at the begin-

ing of the fasting state, a and b are parameters of the non-linear

tting and k f the slope of the linear function, which fits plasma

lucose levels as function of time. 

Fig. 3 shows the fitting using Eq. (12 ) that allows to obtain the

alues of a and b that are then used to obtain the parameters G u 

nd k 5 . 

.3. Parameter optimization 

Parameters were estimated in rats IIM β/Fm. This strain of rats

evelops DMT2 in adult life ( Calderari et al., 1989, 1987 ). Five

ale-adult rats ( > 300 days), body weight: 422.4 ± 31.4 g, were

sed. Estimated parameters were used as initial values for the

ptimization process using the Simulink tool of MatLab software. 

In Fig. 4 measured insulin and glucose plasma levels are shown,

ith the curves obtained from the model after the parameters

ptimization process. The proximity of the curve to the measured

alues indicates that the model reproduced properly the behaviour

f plasma glucose and insulin levels. 

Table 1 shows the values of the optimized parameters of each

at of DMT2 group. 

http://hdl.handle.net/2133/10176
http://www.biologiaosea.com.ar/software.html
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Fig. 4. Parameters optimization curves in a rat with DMT2. 

Plots show the plasma Insulin level (top) and plasma glucose level (bottom) in a rat from DMT2 group after an intake of glucose. The squares points represent the measured 

values of plasma insulin level and plasma glucose level; and the continuous lines the curves obtained from the optimization process. 

Table 1 

Parameters optimized of rats with DMT2. 

G u I pi k 0 k 1 k 2 k 3 k 4 k 5 k 6 k a 

210.9 617.3 0.008 0.155 1.56E −003 1.911 0.020 0.150 0.050 0.010 

232.0 1103.9 0.026 0.330 2.35E −004 2.342 0.008 0.258 0.052 0.060 

447.9 1136.5 0.001 0.586 4.51E −005 1.907 0.185 1.402 0.144 0.003 

320.3 1356.1 0.011 0.398 3.48E −004 1.496 0.016 1.163 0.094 0.025 

213.8 1293.9 0.020 0.432 3.08E −005 19.928 0.011 0.135 0.059 0.002 
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3. Model for rats with DMT1 

3.1. Model formulation 

Fig. 5 shows a representative diagram of the biological model

used for the development of the mathematical model for rats

with DMT1. The present model includes three new compartments

and/or organs respect to the model of healthy rats. These new

compartments are: the subcutaneous compartment where insulin

is injected, the kidneys, and urine where glucose is excreted. 

In animals with DMT1, the insulin secretion is very low or

null thus the k 1 G term could be omitted. Therefore, animals need

exogenous insulin treatment; usually insulin is administrated by

subcutaneous injection. In order to include in the model this

situation, a new term has been added to Eq. (18) : k Y, where
7 d  
 represents the amount of insulin in the subcutaneous com-

artment and k 7 the rate constant of incorporation of exogenous

nsulin to plasma. Furthermore, a new equation was introduced

n the model ( Eq. (19 )), which represents the variation of insulin

evel in the subcutaneous compartment. The other equations are

he same than in DMT2 model ( Eqs. (3 )–(6 )). 

 D/d t = −k a D (3b)

G / dt = −k 4 ( I − I pi ) − k 3 − k 2 I + k 0 D − k 5 ( G − G u ) H (4a)

(G ) : 
 = 1 siG > G u 

 = 0 siG ≤ G u 

(5a)

U / dt = k 5 ′ ( G − G u ) H (6b)



M. Lombarte et al. / Journal of Theoretical Biology 439 (2018) 205–215 209 

Fig. 5. Model for rats with DMT1. 

Solid lines represent flows of glucose or insulin, dotted lines represent stimulatory 

(arrowhead) or inhibitory (blunt) effects. G : plasma glucose level (mg/dl), I: plasma 

insulin level (pmol/l), D : amount of glucose in digestive system (mg), Y : amount of 

insulin into subcutaneous compartment (UI), U : amount of glucose in urine (mg). 

D 0 : amount of glucose incorporated from diet (mg), k 0 : plasma glucose uptake 

constant from digestive system (dl −1 .min −1 ), k 1 : production rate of pancreatic in- 

sulin constant (pmol.dl/min.mg.l), k 2 : rate constant of glucose uptake in insulin- 

dependent tissues, tissues di (mg.l/dl.min.pmol), k 3 : rate constant of glucose up- 

take in insulin independent tissues, tissues ii (mg/min.dl), k 4 : uptake constant (for 

glycogenesis) or glucose release (by glycogenolysis and/or gluconeogenesis) by liver 

(mg.l/dl.min.pmol), k 6 : plasma disappearance of insulin constant (min −1 ). Y 0 : sub- 

cutaneous insulin dose (IU), k 7 : rate constant of incorporation to plasma of exoge- 

nous insulin (pmol/l.min.UI), k 5 : rate constant of glucose renal excretion (min −1 ). 
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Fig. 6. Scheme for the residuals method used for calculation of k 8 . 

The black squares represent the logarithm of plasma insulin level after subcuta- 

neous injection of insulin. The solid black line represents the fit using Eq. (22 ), 

which slope is k 6 . The dotted black line represents the extrapolation of this function 

to times before insulin maximum (I MI ), black circles show the logarithms of resid- 

ual insulin. The dashed line represents the second linear regression, which slope is 

k 8 . 

Fig. 7. Fit performed to estimate k 6 . 

The black squares represent the logarithm of plasma insulin levels after maximum 

insulin plasma level obtained with a subcutaneous injection of insulin. The solid 

black line represents the fit using Eq. (22 ), which slope is k 6 . 
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 I/d t = −k 6 I + k 1 G + k 7 Y (18) 

Y/dt = −k 8 Y (19) 

System 3. Mathematical model of rats with DMT1. 

.2. Parameter estimation 

.2.1. Estimation of k a , k 0 , k 1 , k 2 , k 3 , k 4 , k 6 , I pi , k 5 and G U 

These parameters are estimated in the same way as explained

or DMT2 rats. 

.2.2. Estimation of k 6 , k 7 and k 8 
In order to estimate k 7 and k 8 , a dose of long acting porcine

nsulin was subcutaneously injected (ISCI) and plasma glucose and

nsulin levels were measured for 6 h. Different fits from plasma

lucose and insulin levels allow obtaining these parameters. 

Estimation of k 8 and k 6 
The parameter k 8 can be estimated using the residuals method

 Gabrielsson et al., 2007 ). This method consists in: considering

hat after the maximum plasma insulin level, the processes that

rovide insulin to plasma are negligible compared to those that

onsume it. In this situation, insulin variation as function of time

an be represented by Eq. (20 ). This differential equation can be

olved to yield Eq. (21 ), where I MI is the maximum insulin value

eached during the experiment and k 6 the plasma clearance of

nsulin (due to its action in the tissues). 

 I/d t = −k 6 I (20) 
 = I MI e 
−k 6 t (21) 

Applying logarithm on both members of Eq. (21 ) , Eq. (22 ) is

btained: 

n I = ln I MI − k 6 t (22) 

Therefore, the slope of the plot of the logarithm of plasma

nsulin level as a function of time from its maximum value

epresents the plasma disappearance of insulin (k 6 ), ( Fig. 6 ). 

Using the regression parameters, the values of insulin for times

efore the I MI could be calculated. Subtracting these values to the

easured values of plasma insulin; the values that estimate resid-

al insulin present in subcutaneous space are obtained. Finally, the

inear regression of the logarithm of the residual insulin values

ersus time allows to obtain a straight line which slope represents

he absorption rate of insulin from the subcutaneous space ( k 8 ),

 Fig. 6 –8 ). 

Estimation of k 7 
A dose of insulin ( Y 0 ) is injected to an 8 h fasted rat. Immedi-

tely after insulin injection, the processes that remove insulin from

lasma are negligible with respect to those that provide insulin to

lasma. For this reason we consider negligible the term k 6 I . This

ssumption is supported by significant increase in plasma insulin

oncentration. Pancreatic insulin secretion in animals with DMT1

s very low or null; therefore, the term ( k G ) is negligible respect
1 
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Fig. 8. Fit performed to estimate k 8 . 

The black squares represent the logarithm of residual insulin values after using the 

residual method. The solid black line represents the fit used to estimate k 8 . 

Fig. 9. Graph of the fit made to estimate k 7 parameter. 

The black dots represent the values measured during the ISCI of insulin. The con- 

tinue line represents the adjustment made for k 7 estimation (with Eq. (25 )). 
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to plasma incorporation of exogenous insulin ( k 7 Y ). According to

these simplifications, the equation that represents the variation of

plasma insulin Eq. (18 )) could be reduced to Eq. ( (23) : 

d I/d t = k 1 G − k 6 I + k 7 Y (18a)

d I/d t = k 7 Y (23)

 = Y 0 e 
−k 8 t (19a)

Replacing Y with Eq. (19 ), which represents the content of in-

sulin in the subcutaneous space, in Eq. (23 ), Eq. (24 ) is obtained: 

d I/d t = k 7 Y 0 e 
−k 8 t (24)

The solution of Eq. (24 ) represents plasma insulin levels as a

function of time, for times close to the insulin injection ( Eq. (25 )) 

I = I 0 + 

k 7 Y 0 
k 8 

(
1 − e −k 8 t 

)
(25)

k 7 is obtained by fitting the values of plasma insulin levels

between 0 and 15 min after insulin injection with Eq. (25 ). k 8 is

a parameter obtained using the method of the residual, Y 0 is the

amount of insulin injected, and I 0 is plasma insulin level measured

at the beginning of the experiment (time = 0 min). Fig. 9 shows

plasma insulin levels used to calculate the parameter k . 
7 
.3. Parameters optimization 

Parameters were estimated in rats with DMT1 ( n = 7) using the

reviously described methodology. In 70-days old female Sprague

awley rats, body weight: 260.2 ± 40.6 g; DMT1 was induced

hrough intraperitoneal injection of streptozotocin (60 mg/kg body

eight dissolved in sodium citrate solution pH = 4.5) ( Di Loreto

nd Rigalli, 2009 ). The disease development was assessed after

8 h of injection when fasting plasma glucose levels were higher

han 200 mg/dl (376.4 ± 67.60 mg/dl), Mann Whitney test was

sed for a single sample, p < .05. Animals were treated with

ubcutaneous insulin in order to maintain plasma glucose values

elow 200 mg/dl. The insulin treatment was suspended 24 h be-

ore parameters estimation. The estimated parameters were used

s initial values for the optimization process using the Simulink

ool of MatLab software. 

The parameters estimation in DMT1 rats was achieved by two

xperiments: OGTT and ISCI, thus two optimization processes were

erformed. 

Fig. 10 shows the plasma levels of glucose and insulin obtained

sing the model for an animal with DMT1 and the values mea-

ured after OGTT. 

Fig. 11 shows curves of the same variables (plasma levels of

lucose and insulin) generated by the model after the optimiza-

ion process compared to experimental values of plasma glucose

nd insulin after the ISCI. Plots obtained after the optimization

rocess demonstrate that the proposed model produces glucose

nd insulin curves comparable to the measured values. 

Table 2 shows the values of the optimized parameters of each

at of DMT1 group. 

.4. Numerical simulation 

In order to understand the system behaviour, simulations were

one using the MatLab Simulink library. Simulation plots were

ade with the values of the parameters estimated and optimized

n rats, and then some theoretical modifications in parameters

alues were generated. In this paper we show data from simula-

ion with two glucose intakes (1500 and 2500 mg), and with two

oses of subcutaneous insulin injection (0.5 and 1 IU). 

Fig. 12 shows the plots of plasma glucose and plasma insulin

evels that were obtained from simulation after the intake of

wo different amounts of glucose. As expected, higher intakes of

lucose produce higher plasma glucose levels. 

Simulations of plasma glucose and insulin levels were made

ith two values of subcutaneous insulin (0.5 and 1 UI). In the case

f a higher dose of insulin, higher values of plasma insulin and

ower values of glycaemia were expected. 

Plasma glucose and insulin levels obtained during the simula-

ion are shown in Fig. 13 . 

.5. Validation of the model: evaluation of the diagnostic capability 

f k 1 parameter to detect insulin secretion and comparison with 

OMA-IR index 

ROC analysis was performed in order to evaluate the diagnostic

apacity of k 1 to detect low insulin secretion. This analysis was

ade employing k 1 parameter values obtained from Control group

healthy rats that have normal insulin secretion) and DMT1 group

rats with DMT1 that have low insulin secretion). 

Simultaneously, ROC analysis was done with % β cell function

alculated in Control and DMT1 group. ROC curve for k 1 and % β
ell function were compared as detailed below. 

The k 1 parameter value was significantly lower in

MT1 (0.0172 ± 0.006) group compared to Control group

0.1987 ± 0.059), Mann–Whitney p < .05. 
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Fig. 10. Parameters optimization curves in a rat with DMT1 after an OGTT. 

Plots show plasma Insulin levels (top) and plasma glucose levels (bottom) in a rat with DMT1 after an OGTT. The dots represent the measured values of plasma insulin and 

glucose levels; and the continuous line the curves obtained from the model. 

Table 2 

Optimized parameters in rats with DMTI. 

G u I pi k 0 k 1 k 2 k 3 k 4 k 5 k 6 k a 

387.0 298.5 0.004 0.002 1.53E −05 3.543 0.127 0.047 0.002 0.007 

350.6 125.2 2.130 0.024 0.0019 1.383 6.119 0.338 0.100 0.070 

315.4 152.8 0.007 0.050 0.0747 12.314 0.277 0.013 0.092 11.12 

220.6 129.5 0.031 0.025 0.0 0 02 6.819 0.071 61.73 0.085 0.016 

472.3 82.6 0.044 0.042 0.0061 3.010 0.058 0.914 0.102 0.023 

190.1 18.7 3.326 0.001 0.3153 37.422 5.370 0.064 0.103 0.100 

352.4 156.3 0.160 0.002 0.0067 2.244 0.017 0.009 0.170 0.206 

 

o  

t  

w  

t

 

0  

t  

d  

T  

d  

a  

h  

a  

l  

w  

r  

p

 

a  

T  

T  

f  

i  

f  

s

The diagnostic capacity of k 1 parameter to determine low rate

f insulin secretion was evaluated by ROC analysis. Fig. 14 shows

he ROC curve for k 1 parameter. The area under the curve (AUC)

as 1 with a confidence interval of 95%: 1–1, these values indicate

hat k 1 is a useful test for detecting low insulin secretion. 

The threshold obtained for the k 1 parameter was

.051 pmol.dl/l.min.mg. Therefore, rats with a k 1 value lower

han 0.051 (units are omitted) has low insulin secretion. The

iagnostic test has 100% of sensitivity and 100% of specificity.

hese values indicate that all rats with low insulin secretion are

etected by the test and none rats with normal insulin secretion

re considered with low insulin secretion. In other words, the test

as no false negatives or false positives. Moreover, the test has
 positive predictive value of 100%, this indicates that a k 1 value

ower than the threshold represents, in 100% of the cases, rats

ith low insulin secretion. A value of k 1 higher than the threshold

epresents normal insulin secretion in 100% of the cases (negative

redictive value = 100%). 

ROC analysis of % β cell function shows a threshold of 70.7% and

n AUC of 0.60 with a confidence interval of 95%: 0.362–0.8328.

he diagnostic test has 90.9% of sensitivity and 50% of specificity.

he ROC test shows that the ROC curve for k 1 was not different

rom the ROC curve for % β cell function ( p > .05). These results

ndicate that k 1 parameter is as useful diagnostic test as % β cell

unction for the estimation of insulin secretion but has better

ensitivity and specificity. 
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Fig. 11. Parameters optimization curves in a rat with DMT1 after an ISCI. 

Plots show plasma Insulin levels (top) and plasma glucose levels (bottom) in a rat with DMT1 after an ISCI. The dots represent the measured data of insulin and glucose; 

and the continuous line the curves obtained with the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

k 2 , k 4 and I pi parameter values in rats with DMT1 treated with fluoride. 

The median and range of parameter values k 2 , k 4 and I pi found in DMT1 rats treated 

with fluoride (15 ppm) in drinking water compared with the values found in DMT1 

rats that did not receive fluoride (0 ppm). Different letters indicate statistically sig- 

nificant differences, Mann Whitney test p < 0.05. 

Parameter Fluoride 

0ppm 15ppm 

k 2 0.006 (1.5 × 10 −5 –0.315) a 0.033 (0.014–0.165) a 

k 4 0.127 (0.018 −6.119) a 0.519 (0.0 0 0 −0.635) b 

I pi 129.53 (18.76 −298.52) a 267.68 (241.92–1143.70) b 

a

(  

o  

w  

a  

i  

p  

p

4

 

h  
3.6. Application of the model: effect of fluoride in rate constant of 

different physiological processes involved in glucose homeostasis 

The model for rats with DMT1 was used to measure the

effect of fluoride in rate constant of different physiological pro-

cesses involved in glucose homeostasis like: insulin secretion

( k 1 ) and its plasma clearance ( k 6 ), the liver handling of glucose

( I pi , k 4 ), intestine absorption ( k a and k 0 ), glucose uptake rate of

insulin-independent tissues ( k 3 ), glucose uptake rate of insulin-

dependent tissues ( k 2 ), and renal glucose excretion, G u and k 5 .

Fluoride is a disturbing substance for the glucose-insulin system

( Lombarte et al., 2015 ). Plasma glucose and insulin level were

measured after an ISCI in animals with DMT1 treated with fluo-

ride in drinking water. Data were obtained from an experiment

conducted by researchers of the Department of Biochemistry,

Faculty of Dentistry, University of Sao Paulo, Bauru, Brazil, with

whom the Bone Biology Laboratory works in collaboration. In this

experiment rats with DMT1 were treated with NaF in the drinking

water (15 ppm) for 30 days. The DMT1 state was induced by

injection of streptozotocin ( Lobo et al., 2015 ). Parameters of the

mathematical model were estimated in these rats and then these

values were compared with values of the DMT1 group. 

The studies performed in Brazil had demonstrated that fluoride

increases insulin sensitivity in rats with DMT1 and that this

increase is accompanied by changes in the expression of liver

and muscle proteins ( Leite et al., 2014 ). Therefore, we focus the

2  
ttention on the k 2 parameter (insulin sensitivity), k 4 and I pi 

liver function parameters). Table 3 shows the median and range

f these parameters. Fluoride treatment increased k 2 parameter

hich represents tissues insulin sensitivity (mainly skeletal muscle

nd adipose tissue), but this increase was not statistically signif-

cant different between groups. However, when assessing liver

arameters a statistically significant increase was found in both

arameters I pi and k 4 ( Table 3 ). 

. Discussion and conclusions 

A mathematical model of glucose-insulin system applicable to

ealthy rats was developed in a previous study ( Lombarte et al.,

013 ). In the present research two new models for rats with DMT1
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Fig. 12. Levels of plasma glucose (top) and plasma insulin (down) obtained during simulation with two different values of ingested glucose in a rat with DMT1. 

Solid lines represent de curves generated when a dose of 1500 mg glucose was administered and dashed line when the dose is increased to 2500 mg glucose. 
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f  
nd DMT2 were performed. There are lots of mathematical models

hat describe in detail the glucoregulatory system but they have

 large number of mathematical equations and parameters; that

equire complex methodologies for their estimation ( Bergman,

970; Fabietti et al., 2006; Hovorka et al., 2004; Kovatchev et al.,

009; Sorensen, 1978 ). This forced to work with average values

hat decrease the validity of results and the applicability of the

odels. Unlike models developed by other researchers, the models

escribed in this study have a reduced number of parameters. This

eature allows the estimation of all the parameters of the model

or each rat, using only plasma glucose and insulin measurements

common findings in clinical analysis laboratory of low complex-

ty). This is a highlight advantage that could allow using the model

n human beings. The in silice simulation showed that the model

epresents adequately the variations of glucose and insulin levels

enerated by the intake of different amounts of glucose and by

ifferent doses of insulin injection. 

This study demonstrates that the value of the parameter k 1 is a

ood diagnostic test for the evaluation of insulin secretion in rats.

he parameters of the models are easily calculated from glucose

nd insulin plasma levels employing a script developed by the

uthors. The proposed methodologies not only enable the measure

f k 1 but also other parameters that represent the function of:

iver, dependent and independent insulin tissues, etc. 

The models proposed and the developed methodologies allow

s to obtain all the parameters for each animal. Obtaining individ-

al parameters for each rat avoids the use of average population

alues. The availability of individual parameter values for each
at allows quantifying each of the main processes of homeostatic

rocess that involves the control of blood glucose in rats. In other

tudies the model was used to evaluate changes in processes

nvolved in glucose homeostasis ( Brenner et al., 2014; Lombarte

t al., 2016 ). 

The indisputable advantage of the mathematical models of

his study over other models is the simplicity of the calculation

nd the ability to get all the parameters for a single individual.

owever, it has some disadvantages: (1) the model overestimates

he values of plasma glucose level after 150 min in OGTT. This

roblem caught the attention of the authors and futures modifi-

ations of the models will be introduced; (2) the lack of in-depth

escription of some homeostatic processes. More complex models

nvolve more detailed descriptions of these processes ( Bergman,

970; Fabietti et al., 2006; Hovorka et al., 2004; Kovatchev et al.,

009; Sorensen, 1978 ), but their usefulness is limited because

hey lack a mechanism for obtaining the parameter values in each

ndividual application or require very expensive techniques that

re not available in most of the diagnostic centres. 

In this work, the new model for DMT1 rats was used to mea-

ure the effect of fluoride in DMT1 rats. The variation observed

n the parameters of the model confirms the effects described in

revious studies. 

Thus, this work allows: to validate the use of mathematical

odelling as a tool to study the different physiological processes

nvolved in glucose-insulin homeostasis in individuals with dif-

erent metabolic states, and to obtain a unique set of parameters

or each individual, which may be used to develop strategies for
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Fig. 13. Levels of plasma glucose (top) and plasma insulin (down) obtained during the simulation with two different values of insulin injected into a rat with DMT1. 

Solid lines represent de curves generated when a dose of 0.5 IU of insulin was administered and dashed line when the dose is increased to 1 IU of insulin. 

Fig. 14. Roc curve of k 1 parameter of Control and DMT1 groups (sensitivity vs 

specificity). 

Area under de curve: 1, confidence interval of 95%: 1–1, threshold: 

0.051 pmol.dl/l.min.mg, sensitivity: 100%, specificity: 100%, positive predic- 

tive value: 100% and negative predictive value: 100%. 
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lucose control using an insulin infusion pump. An infusion pump

oupled to a continuous glucose sensor in blood constitutes an

rtificial pancreas. These devices would allow restoring control of

lood glucose and they are an appropriate promising solution for

iabetes treatment. 
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PPENDIX 

. Animals 

Experiments were carried out in Sprague Dawley and IIM β/Fm

ats, fed with balanced food (GEPSA, Pilar, Córdoba, Argentina)

nd tap water ad libitum . The animal room had a dark/light cycle

f 12 h/12 h and temperature of 23 ± 1 °C. Blood samples were

btained from the vein of the tail in heparinized tubes; they were

entrifuged and plasma was saved at −20 °C to measure glucose

nd insulin concentrations. All experiments were performed in

ccordance with the international ethical guidelines of animal

are ( Olfert et al., 1993 ). The protocol was approved by the Ethics

ommittee, School of Medicine, Rosario National University. 

http://dx.doi.org/10.13039/501100002923
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. Glucose oral administration (OGTT) 

Animals with 8 h of fast received glucose (0.3 g/100 g body

eight) by orogastric tube. Blood samples were obtained before

nd after glucose intake (0, 5, 10, 15, 30, 60, 90, 120, 180, 240,

00, 360 min). 

. Subcutaneous injection (ISCI) 

Subcutaneous injection was applied for insulin (regular porcine

nsulin Betasint, Laboratorios beta SA. Buenos Aires, Argentina)

nd was performed in the abdominal area ( Lupo et al., 2009 ) with

 sterile 25 G disposable needle was used. Blood samples were

btained before injection and after 5, 10, 15, 30, 60, 90, 120, 180,

40, 300, 360 minutes. 

. Glucose measurement 

Glucose concentration was spectrophotometrically measured 

ith a commercial kit (Wiener Laboratorios, Rosario, Argentina) in

 Perkin Elmer lambda 11 spectrophotometer. 

. Insulin measurement 

Measurement of blood insulin levels were carried out by RIA

sing a commercial kit (Ria kit Rat insulin, Millipore Corporation,

illerica, MA, USA). 

. Statistic analysis 

Data were expressed as median and range. Mann-Whitney test

as used for comparisons of data between two groups. In all

ases, differences were considered significant when p < .05. 

ROC analysis was performed to evaluate the diagnostic abil-

ty of parameters k 1 and HOMA-IR, with the package pROC

 Robin et al., 2011 ). All statistical analyses were performed with

he computer programme R 2.14.1 (R Foundation for Statistical

omputing. R, 2011 ). 
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