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The low-energy sector of the mesonic spectrum exhibits some features which may be
understood in terms of the SO(4) symmetry contained in the QCD-Hamiltonian written
in the Coulomb Gauge. In our previous work, we have shown that this is indeed the
case when the Instantaneous Color-Charge Interaction (ICCI) is treated by means of
nonperturbative many-body techniques. Continuing along this line of description, in
this work we calculate the width of meson states belonging to the low portion of the
spectrum (E < 1 GeV). In spite of the rather simple structure of the Hamiltonian used
to calculate the spectra of pseudoscalar and vector mesons, the results for the width of
these states follow the pattern of the data.
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1. Introduction

The QCD is at low energy a highly nonperturbative theory. Continuous efforts
are undertaken to treat QCD nonperturbatively, a regime where the Lattice Gauge
Theory (LGT)1 is considered to be the only one which can do this from a fundamen-
tal basis. In the description of low-lying hadron states2,3 and of high-lying meson
states4 some progress has been made. In LGT, the rotational symmetry is broken
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and it requires some effort to recover the continuum limit. The complete spectrum
cannot be obtained and, in addition, the numerical effort is considerable.

There are other attempts, like the use of the Dyson–Schwinger equations,5 which
succeeded, for example, in explaining the chiral symmetry breaking.6 However, also
these attempts suffer from some drawbacks, like truncation schemes applied in the
functional approach which need to be controlled and tested.

Therefore, it is worth investigating alternative methods, which require much
less numerical effort and maintain spherical symmetry. For example, in Ref. 7,
the QCD-Hamiltonian at low energy was diagonalized in a continuum basis in
momentum space, using for the Coulomb interaction a static, confining potential.
In Ref. 8, a general calculation of baryon states was performed, allowing high-spin
couplings of the quarks. But also there, the numerical calculation required a lot of
time (months), whose origin is in the continuum momentum basis, which makes it
difficult to localize a state.

Before trying to perform a realistic treatment, it is useful to start from a sim-
plified model. Such a method was applied in Ref. 9, were the kinetic energy term
of the QCD-Hamiltonian was diagonalized within the harmonic oscillator basis.
The oscillator basis consists of already localized states with the disadvantage of
not being relativistic, which requires larger matrices. In fact, a practical treatment
always boils down to looking for the optimal basis. The model, including a static
confining potential, was presented in Ref. 10, for a QCD motivated Hamiltonian for
light quarks. It was shown that a description of low-lying physical meson states can
be given in terms of the eigenstates of the Casimir operator of the SO(4) group,
since a sector of the QCD-Hamiltonian possesses such a symmetry. In the same
work,10 it was shown that the pion-like meson state is an eigenstate of the Casimir
operator, of the singlet SO(4) representation, with zero energy.

In Ref. 11, the chiral and flavor symmetries, present in the above-mentioned
SO(4) limit of the QCD-Hamiltonian discussed in Ref. 10, were broken and a (2+1)-
flavor description for light and strange quarks was used. The effective Hamiltonian
was diagonalized in a basis of quark–antiquark pairs by applying the Random Phase
Approximation (RPA) method. The motivation of this contribution is to test a
simple procedure for the calculation of the decay width within the SO(4) model,
for meson-like states. This will help in establishing, furthermore, the limitations of
the SO(4) model space for the description of physical mesons.

The method is introduced in Ref. 12, which is based on the interaction of a
physical state with its background states. We calculate the width of meson-like
states in the basis of effective degrees of freedom contained in the SO(4) model of
Refs. 10 and 11. Although the model is rather simple, it has the advantage of a
relatively small number of effective degrees of freedom, a feature which facilitates
the identification of physical states by their quark contents. Our hope is that the
manner to determine the decay widths can be applied to more involved models,
until we reach the full QCD at low energy.
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The paper is organized as follows. In Sec. 2, we briefly describe the essentials
of the QCD-SO(4) model, introduce its RPA treatment and the formalism used to
calculate the width of the states. In Sec. 3, we present and discuss the results of
the calculations. Finally, we summarize our conclusions in Sec. 4.

2. Formalism

2.1. SO(4) model and its RPA solutions

In Ref. 10, the SO(4) Hamiltonian was proposed, using a similar expression
as obtained in Ref. 13, i.e., it reflects the same structure of a realistic QCD-
Hamiltonian.

Using

Â =
∑
m

C†
2mC1m,

B̂ =
∑
m

C†
2mC1−m,

Ĉ = Â†,

D̂ = B̂†,

Ê =
∑
σ,m

(−1)σ

2
C†

σmCσm

F̂ =
∑
σ,m

(−1)σ

2
C†

σmCσ−m,

(1)

where the C†
σm and Cσm are creation and annihilation operators, respectively, of

particles in the substate (m) of the upper 2 or lower 1 level of the SO(4) model
space, and with the association

Â = Ĵ+, Ĉ = Ĵ−, Ê = Ĵ0,

B̂ = V̂+, D̂ = V̂−, F̂ = V̂0,
(2)

the Hamiltonian acquires the structure

HRPA[SO(4)] = (εfC†
2m,fC2m,f − εf ′C†

1m,f ′C1m,f ′) − a7V̂0 + a2V̂
2
0 + a3Ĵ

2
0

+ a6V̂0Ĵ0 +
a1

2
(Ĵ+Ĵ− + V̂+V̂−)

+
a5

2
(Ĵ+V̂− + V̂−Ĵ+ + h.c.) + b((Ĵ+ + V̂+)(Ĵ+ + V̂+) + h.c.).

(3)

This Hamiltonian is ordered into contributions Hij , where i refers to the number
of creation and j to the number of annihilation operators appearing in each term.

This general Hamiltonian for quarks and antiquarks has one-body terms H11 +
H20 + H02 and two-body terms H22 + H31 + H13 + H40 + H04. In Ref. 11, we have
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implemented the RPA method and found meson-like solutions for a Hamiltonian of
the following form:

HRPA = H11 + H22 + H40 + H04, (4)

where each term of the Hamiltonian is expressed in terms of the SO(4)-group gen-
erators obtained for a system of particles and holes described in Ref. 10.

Four sets of parameters are used for the coefficients (ai, b) of the Hamiltonian of
Eq. (3) leading to four different scenarios for the low-energy meson-like spectrum.10

The sets of parameters and the corresponding solutions are denoted by Set-1,2,3
and 4. The calculated spectrum, for each set of parameters, has 16 eigenvalues
which are associated to physical meson-states, according to their dominant flavor
content and energy, as we shall discuss later on. The values are listed in Ref. 10.
These energies and wave functions are used to calculate the widths of the states, in
the manner described in the next section The procedure is taken from Ref. 12

2.2. The width of the states

The Hamiltonian is written

H = H0 + V, (5)

where H0 is the Hamiltonian of Eq. (3) mapped onto the RPA basis

H0 =
∑

n

ERPA
n γ†

nγn (6)

with n = 1, . . . 16. The operator γ†
n (γn) creates (annihilates) the nth one-phonon

state. The interaction term (V ), describes the interactions not included in the RPA
treatment.11 To calculate the width of a state |a〉 = γ†

a|0̃〉, we assume that the basis
can be separated in a set of reference states {|a〉} and a background {|α〉} with N

elements, such that12

H0|a〉 = Ea|a〉,
H0|α〉 = Eα|α〉,

〈a|V |a〉 = 0,

〈αj |V |αj′〉 = Vαj ,αj′ = 0 ∀ j, j′,

〈a|V |αj〉 = Va,αj = Vαj ,a = real,

(7)

leading to the Hamiltonian-matrix

H =




Ea Va,α1 Va,α2 Va,α3 · · · Va,αN

Va,α1 Eα1 0 0 · · · 0

Va,α2 0 Eα2 0 · · · 0

. . . . .

Va,αN 0 0 0 · · · EαN




. (8)
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Any eigenstate of the Hamiltonian of Eq. (5) can be written as

|E〉 = ca(E)|a〉 +
∑

j

cαj (E)|αj〉. (9)

So that

H |E〉 = ca(E)(H0 + V )|a〉 +
∑

j

cαj (E)(H0 + V )|αj〉 = E|E〉, (10)

where

〈a|H |E〉 = Eca(E) = ca(E)Ea +
∑

j

cαj (E)Va,αj ,

〈αj |H |E〉 = Ecαj (E) = ca(E)Va,αj + cαj (E)Eαj .

(11)

The above equations and the normalization condition 〈E | E〉 = 1 lead to the
amplitudes

cαj (E) = −ca(E)
Va,αj

(Eαj − E)
,

(ca(E))2 =


1 +

∑
j

(
Va,αj

)2

(Eαj − E)2




−1

.

(12)

Then, the mean value of the energy, Ē, and the width, Γ, of the state with E ≈ Ea

are given by the expressions14

Ē = Ea(ca(E))2 +
∑

j

Eαj (cαj (E))2,

Γ = 2σ = 2


(Ea − Ē)2(ca(E))2 +

∑
j

(Eαj − Ē)2(cαj (E))2




1
2

.

(13)

Note, that the main ingredients for the determination of Γ and Va,aj are the expan-
sion coefficients ca(E) and cαj , the first for the physical reference state and the
second for the background states, both expanded in the basis. With their knowledge
and the help of the first line in Eq. (11), the matrix elements Va,αj are determined.
These Va,αj are in general not the same but similar within a set, which justifies the
use of the approximation of a constant coupling V (see further below). To obtain
the value of V an average over all value Va,αj has to be applied. Note, that the V

is not adjusted to the width of a particular state but rather is a consequence of the
expansion coefficients evaluated in the basis of SO(4).

3. Numerical Analysis of the Solutions: Energy and Widths of
Meson-Like States

The low-energy scalar-meson states have large widths.15 This is the case of the state
tentatively identified as f0(500) (or σ) with a width of about 400–700 MeV. The
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existence and the structure of this scalar-meson state has been rather controversial
since it could be interpreted as a four-quark state or as a two-meson molecule.16

In Ref. 13, we were able to identify scalar-mesons as solutions of a nonperturbative
approach based on the use of many-body methods. However, scalar-meson states
are beyond the reach of the minimal SO(4)-model developed in Refs. 10 and 11 since
angular or radial excitations are needed to get quark–antiquarks meson-like states
of positive parity. For pseudoscalar mesons up to 1 GeV, the data indicate that
they have narrower widths while broader widths are reported for vector mesons.
That is the case of the ρ-meson. In Table 1 we list the values taken from Ref. 15.

The width of the η′(957) state is about 0.02% of the mass of the state. Because
of this rather small value it will be considered as an isolated state. For the rest
of the states, their widths vary between ≈ 1% and 20% of their masses and they
will be calculated using the formalism presented in the previous section. In the
following, we shall perform a case-by-case analysis of the results obtained with each
set of parameters of the Hamiltonian of Eq. (3). They are listed in Table 2. The
meaning of this parametrization, their values and the effects of it upon the meson
spectrum have been discussed in detail in Refs. 10 and 11.

We have solved the RPA-eigenvalue problem and classified the eigenvectors by
inspecting their flavor content in order to establishe a correspondence between the
RPA spectrum and physical states. The results of such a procedure are given in
Table 3.

Due to the SO(4) symmetry of the Hamiltonian the ρ- and ω-like states appear as
a mixture, as well as the kaon (K, K∗)-like states.10 The breaking of this degeneracy
is beyond the SO(4) scheme since it requires the inclusion of radial and orbital
excitations. As seen from the results listed in Table 3 for the set 1 there was only
one possible state, at 716.44MeV, that resembles the flavor structure of the η and η′

states. We have assumed that these states are degenerate. The φ-like states obtained
for set-1, show a small energy difference of about 22MeV. For the calculations we
will consider that the state at 1011MeV represents the physical meson φ(1020)

Table 1. Observed values of the widths Γ of pseudoscalar
and vector mesons. The values are given in units of [MeV]
and they have been taken from Ref. 15.

Width\State η ρ ω K∗ η′ φ

Γ 1.3 147.8 8.5 50.8 0.2 4.3

Table 2. Parameters of the Hamiltonian of Eq. (3). The
values are given in units of [MeV].

Set a1 a2 a3 a5 a6 a7 b

1 100 50 200 −300 100 −150 45.00
2 100 100 200 0 50 −50 58.12
3 100 −100 200 0 100 −150 54.37
4 100 150 200 0 0 0 54.37

1850001-6
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Table 3. RPA energies, in units of MeV, for the eigenvectors associated to

physical states15 accordingly to the structure of their wave functions. The
values in parenthesis indicate the degeneracy of each state. The sum of the
degeneracies of each set equals the number of eigenvalues of the RPA basis.

State Set 1 Set 2 Set 3 Set 4

π 184.81 (1) 164.49 (1) 187.27 (1) 201.37 (1)
ρ ω 579.10 (3) 590.31 (3) 364.98 (3) 622.56 (3)
η 716.44 (1) 670.06 (1) 735.12 (3) 741.59 (1)
η′ 965.95 (1) 895.17 (1) 1042.88 (1)

K K∗ (low) 780.00 (4) 780.00 (4) 402.11 (1) 780.00 (4)
K K∗ (high) 827.55 (3) 863.27 (3) 780.00 (4) 930.00 (3)

φ
1011.00 (1)

1086.41 (3) 1039.89 (3) 1087.43 (3)
1033 (3)

state, and that the other φ-like-states belong to the background. The set-3 gives
in the kaon-like sector of the spectrum one state at low energy (402.11MeV) as
compared with the results obtained with the other sets of parameters. This state
resembles more likely the pseudoscalar kaon and it will not be considered for the
width analysis. For the rest of the kaon-like states of Set-1,2,3,4, the formalism
presented in the previous section will be implemented in order to determine their
widths.

Following the use of the formalism of the previous section, we have calculated
the energy centroids and the average interaction for each of the states. The average
value of the interaction which produces the broadening of the states is shown in
Table 5.

As said before, the calculation of the width depends upon the choice of physical
and background states and the nature of each state is being determined by the
composition of its wave function in terms of quark–antiquark pairs. To give an idea
about the structure of the RPA eigenvalues in Figs. 1–4, we show the collectivity
of the states obtained with the different sets of parameters. The corresponding
amplitudes are represented by the number of pairs which contributed to each meson-
like state.

Table 4. Calculated width Γ Eq. (13) of the states,
in units of MeV. The values have been obtained as
described in the text. The result quoted for Set 3,
sector K,K∗(high) corresponds to the vector state
since Set 3 distinguish the K state from the K∗
state.

State Set 1 Set 2 Set 3 Set 4

ρ ω 147.84 147.46 147.14 147.23
η 1.2 1.32 1.30 1.32

K K∗ (low) 50.82 50.90 50.63
K K∗ (high) 50.74 50.81 50.99 50.99

φ 4.30 4.32 4.29 4.32
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Table 5. Energy centroids Ē and averaged interaction energy V , in units of MeV, for
each of the sets of parameters considered in the calculations.

Set 1 Set 2 Set 3 Set 4

State
Ē V Ē V Ē V Ē V

ρ ω 598.91 45.15 610.43 45.5 367.87 34.5 645.69 50.00
η 716.44 0.20 670.06 0.20 735.12 0.29 741.59 0.20

K K∗ (low) 787.03 14.05 783.11 12.80 781.36 12.60
K K∗(high) 825.80 12.35 862.75 12.10 779.61 12.30 930.36 12.10

φ 1011.04 0.65 1086.39 1.02 1039.88 0.96 1087.40 1.02

η, η

φ

0.0 E[GeV]0.2 0.4 0.6 0.8 1.0 1.2

π

ρ, ω

K, K∗

K, K∗

ph − pairs

0

10

(a)

0.0 E[GeV]0.2 0.4 0.6 0.8 1.0 1.2

φ

π

ρ, ω

K, K∗

K, K∗

ph − pairs

0

10

(b)

Fig. 1. Set-1: Structure of the RPA-eigenvalues, in terms of the number of particle (quark)–
hole(antiquark) pairs. The upper inset (a) shows the complete RPA spectrum. In the lower inset
(b) the composition of the background-states is shown.
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0.0 E[GeV]0.2 0.4 0.6 0.8 1.0 1.2

ph − pairs

0

10

π

K, K∗

η

ρ, ω

η

K, K∗

φ

(a)

0.0 E[GeV]0.2 0.4 0.6 0.8 1.0 1.2

ph − pairs

0

10

π

K, K∗ η

ρ, ω

K, K∗

φ

(b)

Fig. 2. Same as Fig. 1, for the Set-2 of parameters.

0.0 E[GeV]0.2 0.4 0.6 0.8 1.0 1.2

ph − pairs

0

10

π

ρ, ω

K η

K∗ η φ

(a)

Fig. 3. Same as Fig. 1, for the Set-3 of parameters.
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0.0 E[GeV]0.2 0.4 0.6 0.8 1.0 1.2

ph − pairs

0

10

π

ρ, ω

K η

K∗ η

φ

(b)

Fig. 3. (Continued)

ph − pairs

0

10

0.0 E[GeV]0.2 0.4 0.6 0.8 1.0 1.2

π

ρ, ω

η

K, K∗ η φ

K, K∗

(a)

ph − pairs

0

10

0.0 E[GeV]0.2 0.4 0.6 0.8 1.0 1.2

π

ρ, ω

K, K∗ η

φ

K, K∗

(b)

Fig. 4. Same as Fig. 1, for the Set-4 of parameters.
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For example, the amplitudes for the case of the ρ, ω-like states are listed for the
four different sets in the Tables 6, 8, 10, 12 and Tables 7, 9, 11, 13. These are the
the coefficients appearing in Eqs. (9) and (11).

In all the scenarios shown before, the kaon sector of the SO(4) spectrum gives
two different energies for the kaon-like states. The energy-gap between them is
smaller, for Sets-1, 2 and 4, than the observed energy separation. The analysis
of Set-3 indicates two well separated kaon-like states. Their energies correspond
to 402 MeV and 780 MeV, which are comparable to the physical pseudoscalar

Table 6. List of the coefficients ca(E) = ca and cαj (E) = cαj (Ω) for the meson–
like states of Set-1 and their corresponding degeneration (Ω).

Ref. state ca cπ(1) cρ(2) cK(low)(3) cK(high)(2) cφ(3)

ρ, ω 0.4932 −0.0514 −0.5772 0.1371 0.1061 0.0536
η, η′ 0.9999 −0.0003 −0.0014 0.0031 0.0018 0.0006

K,K∗(low) 0.5554 −0.0127 −0.0355 −0.4253 0.2673 0.0332
K, K∗(high) 0.7366 −0.0137 −0.0338 −0.1336 −0.4438 0.0492

φ 0.9986 −0.0007 −0.0015 −0.0028 −0.0035 0.0294

Table 7. |ca(E)|2 and |cαj (E)|2 values for the meson-like states of Set-1 and their cor-
responding degeneration (Ω).

Ref. state |ca|2 |cπ|2(1) |cρ|2(2) |cK(low)|2(3) |cK(high)|2(2) |cφ|2(3)
ρ, ω 0.2432 0.0026 0.3332 0.0188 0.0113 0.0029
η, η′ ≈1 ≈0 ≈0 ≈0 ≈0 ≈0

K, K∗(low) 0.3085 0.0002 0.0013 0.1809 0.0714 0.0011
K, K∗(high) 0.5426 0.0002 0.0011 0.0179 0.1970 0.0024

φ 0.9973 ≈0 ≈0 ≈0 ≈0 0.0009

Table 8. List of the coefficients ca(E) = ca and cαj (E) = cαj (Ω) for the meson-like states
of Set-2 and their corresponding degeneration (Ω).

Ref. state ca cπ(1) cρ(2) cK(low)(3) cK(high)(2) cη′ cφ(3)

ρ, ω 0.4878 −0.0478 −0.5780 0.1467 0.0946 0.0658 0.0484
η 0.9999 −0.0003 −0.0025 0.0018 0.0010 0.0006 0.0004

K,K∗(low) 0.6486 −0.0130 −0.0396 −0.4233 0.1304 0.0499 0.0289
K, K∗(high) 0.7170 −0.0121 −0.0297 −0.0853 −0.4731 0.1028 0.0423

φ 0.7029 −0.0007 −0.0014 −0.0023 −0.0032 0.0060 0.5028

Table 9. |ca(E)|2 and |cαj (E)|2 values for the meson-like states of Set-2 and their corresponding
degeneration (Ω).

Ref. state |ca|2 |cπ|2(1) |cρ|2(2) |cK(low)|2(3) |cK(high)|2(2) |cη′ |2 |cφ|2(2)

ρ, ω 0.2379 0.0023 0.3341 0.0215 0.0089 0.0043 0.0023
η ≈1 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

K, K∗(low) 0.4208 0.0002 0.0016 0.1792 0.0170 0.0025 0.0008
K, K∗(high) 0.5142 0.0001 0.0009 0.0073 0.2239 0.0106 0.0018

φ 0.4941 ≈0 ≈0 ≈0 ≈0 ≈0 0.2529
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Table 10. List of the coefficients ca(E) = ca and cαj (E) = cαj (Ω) for the meson-like states of
Set-3 and their corresponding degeneration (Ω).

Ref. state ca cπ(1) cρ(2) cK(low)(1) cη(2) cK(high)(3) cη′(1) cφ(2)

ρ, ω 0.7238 −0.2122 0.4157 0.2569 0.0580 0.0525 0.0423 0.0339
η 0.7095 −0.0003 −0.0005 −0.0006 0.4982 0.0045 0.0012 0.0006

K∗ 0.7131 −0.0142 −0.0200 −0.0218 −0.1296 −0.3849 0.0949 0.0369
φ 0.7033 −0.0007 −0.0010 −0.0011 −0.0022 −0.0026 −0.0047 0.5026

Table 11. |ca(E)|2 and |cαj (E)|2 values for the meson-like states of Set-3 and their correspond-
ing degeneration (Ω).

Ref. state |ca|2 |cπ|2(1) |cρ|2(2) |cK(low)|2(1) |cη|2(2) |cK(high)|2(3) |cη′ |2(1) |cφ|2(2)
ρ, ω 0.5240 0.0451 0.1729 0.0660 0.0034 0.0028 0.0018 0.0011
η 0.5035 ≈0 ≈0 ≈0 0.2482 ≈0 ≈0 ≈0

K∗ 0.5086 0.0002 0.0004 0.0005 0.0168 0.1481 0.0090 0.0013
φ 0.4947 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 0.2526

Table 12. List of the coefficients ca(E) = ca and cαj (E) = cαj (Ω) for the meson-like states
of Set-4 and their corresponding degeneration (Ω).

Ref. state ca cπ(1) cρ(2) cK(low)(3) cK(high)(2) cη′(1) cφ(2)

ρ, ω 0.4413 −0.0480 −0.5824 0.1845 0.0818 0.0577 0.0516
η 0.9999 −0.0003 −0.0016 0.0052 0.0010 0.0006 0.0005

K,K∗(low) 0.6834 −0.0143 −0.0483 −0.4147 0.0666 0.0355 0.0300
K, K∗(high) 0.6995 −0.0113 −0.0260 −0.0506 −0.4931 0.0884 0.0603

φ 0.7004 −0.0008 −0.0015 −0.0023 −0.0045 −0.0165 0.5045

Table 13. |ca(E)|2 and |cαj (E)|2 values for the meson-like states of Set-4 and their corre-
sponding degeneration (Ω).

Ref. state |ca|2 |cπ|2(1) |cρ|2(2) |cK(low)|2(3) |cK(high)|2(2) |cη′ |2(1) |cφ|2(2)
ρ, ω 0.1948 0.0023 0.3393 0.0341 0.0067 0.0033 0.0026
η ≈1 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

K, K∗(low) 0.4671 0.0002 0.0023 0.1720 0.0044 0.0013 0.0009
K,K∗(high) 0.4894 0.0001 0.0007 0.0025 0.2431 0.0078 0.0036

φ 0.4906 ≈0 ≈0 ≈0 ≈0 0.0003 0.2545

K(495) and vector K∗(892) kaon-states. This scenario reproduces approximately
the experimental energy-difference, thus within the SO(4) scheme the kaon-like
state to be associated with the physical pseudoscalar kaon is the one obtained
with the Set-3. Even though the energy of low-lying kaon-like states obtained with
Sets-1, 2 and 4 are not in good correspondence with the observed energy of the
pseudoscalar K-state, and a clear identification of both the pseudoscalar and vector
kaon-like states is not feasible, we have used both kaon-like sectors (K, K∗(low))
and (K, K∗(high)) to estimate the width of the states. In such scenarios, it will
not be possible to describe the transition φ → 2K, except for the results obtained
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with Set-3, and this shows a clear limitation of spectrum obtained with the SO(4)
model.

By comparing the data of Table 1 with the calculated values listed in Table 4, we
see that the agreement is quite remarkable considering the rather simple structure
of the Hamiltonian, which is the SO(4) version of the QCD-Hamiltonian in the
Coulomb Gauge. In all cases, the order of magnitude is correct and the sensitivity
of the calculations with respect to the structure of the light-meson states is very
strong since it correlates one by one with the physical states. The calculated values
are indeed quite good, particularly in view of the huge variation of the data, which
for the η-meson assigns a width of the order of 1.3MeV and in the other extreme
assigns much larger value (147.8MeV) to the ρ-meson.

The features shown by the numerical results are indeed supported by the ana-
lytical solutions of the model, e.g. the ones obtained by using an average interaction
proportional to the average energy spacing and degeneracies of the states. From the
grouping of states around a given reference state, shown in Figs. 1–4., it is possible
to extract an average interaction and take the analytic limit of the model, e.g., one
state merged in the background. The results of such a calculation yield values of
the interaction quite similar to those of Table 5.a

4. Summary

In this work, we have extended the study of our previous publications concerning
the treatment of the QCD-Hamiltonian in the Coulomb Gauge. We have taken the
dominant sector of it as to be represented by the generators of the SO(4) symmetry
and parametrized the structure of the Hamiltonian in terms of the Casimir oper-
ators of the group, in order to calculate the spectrum of light-meson states. The
Hamiltonian was diagonalized by applying the RPA method, which yields eigenval-
ues whose eigenvectors could be associated to physical states after analyzing their
composition in terms of quark and antiquark pairs.10,11 In order to test these wave
functions, we have calculated the energy-width of each state by letting them interact
with a background of less-collective or non-collective states. We have found that the
calculated values do agree with the data, for the four sets of parameters considered
in the calculations. Though the spectrum depends smoothly upon the parameters
of the Hamiltonian, the calculation of the width of the states is parameter-free once
the spectrum of physical and background states is properly defined. The transi-
tions between the reference state and the background were calculated by using an
average interaction for each type of meson-like states, in order to extract informa-
tion about the structure of the states. For this, we have analyzed the amplitudes
obtained by diagonalization in the sub-spaces, and found that the identification of
the states which we have performed, by looking at their particle–hole content, is

aIn the limit of an equidistant array of energies, the relationship between the width Γ, the energy
spacing D and the average matrix element V is given by Γ = 2πV 2/D.12
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physically sound. The relatively good agreement obtained by applying this method
in the limited scenario of the SO(4) model, seems to indicate that it may also pro-
vide a suitable framework to calculate the decay width of meson-like states in more
realistic situations, that is by dealing with more realistic model spaces and Hamil-
tonians. Work is in progress concerning the use of the present method in the case
of the Hamiltonian of Ref. 13, where the RPA treatment of the QCD-Hamiltonian
in the Coulomb Gauge was not restricted to the SO(4) limit.
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