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Roughening of k-mer–growing interfaces in stationary regimes
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We discuss the steady-state dynamics of interfaces with periodic boundary conditions arising from body-
centered solid-on-solid growth models in 1 + 1 dimensions involving random aggregation of extended particles
(dimers, trimers, . . . ,k-mers). Roughening exponents as well as width and maximal height distributions can be
evaluated directly in stationary regimes by mapping the dynamics onto an asymmetric simple exclusion process
with k-type of vacancies. Although for k � 2 the dynamics is partitioned into an exponentially large number of
sectors of motion, the results obtained in some generic cases strongly suggest a universal scaling behavior closely
following that of monomer interfaces.
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Because of its ubiquity in nature and importance in technol-
ogy, the dynamics of growing interfaces has been investigated
extensively for more than three decades in a vast body of
experimental, theoretical, and numerical works [1,2]. Despite
the diversity of morphologies in which growing interfaces can
evolve, most of those studies pointed out the onset of scaling
regimes emerging at both large time and length scales. This
enabled a classification of seemingly dissimilar processes in
terms of universality classes characterized by a set of scaling
exponents, which take over the late evolution stages [2,3]. It is
by now well established that many discrete nonequilibrium
growth models in one dimension evolving under a variety
of simple stochastic rules belong to the Kardar-Parisi-Zhang
(KPZ) universality class [1–4]. This latter effectively captures
the statistical fluctuations of a set of heights h1(t), . . . ,hL(t)
growing at L locations of a one-dimensional (1D) substrate
at a given time t . Starting from an initially flat substrate, the
roughness or width developed by such discrete interfaces is
often studied in terms of their mean-square height fluctuations,
which, on general grounds, can be expected to follow the
Family-Vicsek dynamic scaling ansatz [5]

〈W 2(L,t)〉 = 1

L

∑
n

〈[hn(t) − h̄(t)]2〉 � L2ζ f (t/Lz), (1)

for large substrate sizes. Here h̄(t) is the average height at
instant t of a given configuration (in turn being averaged by
the outer brackets), whereas f (x) refers to a universal scaling
function behaving as xζ/z for x � 1, while approaching a con-
stant for x � 1. Thus, at early stages the width is expected to
grow as t ζ/z until saturating as L2ζ for times larger than Lz. The
dynamic exponent z therefore gives the fundamental scaling
between length and time, whereas the Hurst or roughening
exponent ζ measures the stationary dependence of 〈W 2〉 on
the typical substrate size.

When it comes to this latter stationary aspect, note that
the height levels of the interface can also be thought of
as the visited sites of a 1D Brownian path extended on a
time interval, here playing the role of the substrate length.
Therefore, the usual root-mean-square displacement of normal

random walks should constrain
√

〈W 2〉 to saturate as L1/2,
thus leaving us with a roughening exponent ζ = 1/2. In fact
this holds for numerous models of discrete interfaces, and is
typical of both 1D KPZ and Edwards-Wilkinson (EW) [6]
universality classes. However, in cases in which the path of the
interface actually corresponds to a correlated random walk, the
stationary width may well saturate with subdiffusive exponents
ζ < 1/2. This anomalous scaling has been studied in even
visiting random walks [7], self-flattening and self-expanding
interfaces [8], as well as in the context of parity-conserving
growth processes [2,9,10]. In particular, these latter involve the
aggregation of composite objects [11], which ultimately causes
the phase space to decompose into an exponential number of
sectors of motion [10,12]. In this paper we further consider
the stationary dynamics of extended particles depositing over
more than one height location at a time, but where, despite
the correlated walks associated to the paths of the interface,
the usual diffusive width is restored. Moreover, as we will
see, our results also closely follow the entire width probability
distribution of random walk interfaces [13], as well as the
distribution of their maximal heights measured with respect to
the spatial average height already established both analytically
and numerically for a wide set of solid-on-solid interfaces
[14–16].

The process considered is a simple yet nontrivial exten-
sion of monomer adsorption in body-centered solid-on-solid
(BCSOS) growth models [1,17] whereby height differences
hn+1 − hn between adjacent locations are restricted to ±1. Our
basic kinetic steps involve the oblique incidence of extended
particles, such as dimers, trimers, . . . ,k-mers, on the local min-
ima of a BCSOS interface with periodic boundary conditions
(PBCs). An illustration of these processes is shown in Fig. 1
for the case of dimers. At each successful step k-contiguous
locations increase their heights in two unit lengths, the rates of
deposition being uniform and set equal to one per unit time.
Thus, we see that the distance between a minimum and its
nearest right maximum is preserved modulo k, in turn bringing
about correlated movements and many-sector decomposition
of the interface walks.
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FIG. 1. (a) Schematic view of a dimer-growing BCSOS interface (formed by slopes sn ≡ hn+1 − hn = ±1) and its equivalent driven lattice
gas of reconstituting particles. At each step of the former, a dimer aggregation on local minima corresponds in the latter to an exchange of A2

particles with either of the A0 or A1 vacancies referred to in the text. Note that under A1A2 → A2A1 exchanges the identity of A2 dimers is not
preserved. (b) Sublattice currents contributing to the growth velocity of hn as discussed through Eqs. (5)–(8).

The partitioning of the phase space of these paths can be
understood with the aid of a mapping into a modification
of the asymmetric simple exclusion process (ASEP) [18],
hereafter referred to as k-ASEP [19]. It consists of driven
hard-core extended particles occupying k consecutive sites
while moving leftward by one site (e.g., ◦ • • → • • ◦ say
for dimers). Now, following Ref. [17], if we think of these
0,1 occupancies as stemming from Ising variables associated
with the slopes sn = hn+1 − hn of the interface (cf. Fig. 1),
it is then clear that up to an immaterial constant its heights
are obtained as hn = ∑n

j=1 sj . On the other hand since the
interface is grown only out of k-mers, note that in the k-ASEP
representation neither monomers nor groups or fragments of
j -adjacent particles can move explicitly if j < k, although they
are allowed to in a series of steps. For instance, in the sequence

0 1..1
j

0 1 . . . 1
k

→ 0 1 . . . 1
j

1..1
k

0 → 1 . . . 1
k

0 1..1
j

0, (2)

the initial leftmost group of j particles can hop k-sites to the
right provided that k-mers can dissociate and reconstitute, so
they do not maintain their identity throughout (except in the
absence fragments; see below). In turn following Ref. [20],
these processes can also be interpreted as k-mer particles Ak

moving through a set of k composite characters or vacancies
constructed as

A0 ≡ 0,

A1 ≡
...

10,

Aj ≡ 1 . . . 1
j

0 , 1 < j < k. (3)

The movements and recompositions of k-mers can then be
thought of as character exchanges of the form AjAk → AkAj ,
the k-mer identity being preserved only by A0, whereas
exchanges not involving Ak remain disabled, (i.e., AiAj do not
swap their positions if i,j 
= k). In this notation, for example,
the steps referred to in Eq. (2) now become A0AjAk →
A0AkAj → AkA0Aj . However, the key issue to point out
here is that the A0,A1, . . . ,Ak−1 characters define a sequence
or irreducible string (IS) whose ordering (set by the initial

conditions) is conserved throughout all subsequent times.
Thus, the invariant IS of a given sector of motion just refers
to the succession of vacancy types obtained after deleting all
k-mers or reducible characters appearing in any configuration
of that sector. In other words, all states linked by the k-ASEP
dynamics have the same IS.

Effective ASEP. Before evaluating the number of conser-
vation laws yielded by this nonlocal construction, let us first
remark that any state of these driven and reconstituting gases
can be mapped to an equivalent ASEP configuration defined on
a smaller effective lattice [20]. More specifically, denoting by
Nj the number of Aj characters (preserved throughout), and
therefore given an IS sector of lengthL = ∑

j 
=k(j + 1)Nj , it is
then clear that the k-ASEP dynamics amounts to an ASEP one
with Nk = (L − L)/k hard-core particles [21] driven through
N = ∑

j Nj sites; the effective density of such particles then
being

ρ−1
ASEP = 1 + k

L − L
∑
j 
=k

Nj . (4)

Thus, tagging the vacancies of a generic ASEP configuration in
the same order as that appearing for the irreducible characters
of a particular sector of motion, one can readily find the
corresponding k-ASEP state just replacing the nth ASEP
vacancy by the nth IS character, while substituting every
ASEP particle in between by k-consecutive occupied sites. For
instance, in an IS sector beginning as A1,A0,A0,A1, . . ., say for
dimers, the ASEP configuration 1010010 . . . will be mapped
to (11)(10)(11)(0)(0)(11)(10) . . . k-ASEP occupancies. Now,
recalling that under PBC the ASEP has a uniform steady-state
measure [18] (i.e., all configurations are equally weighted),
evidently it follows that this mapping will enable us to sample
the steady state of generic IS sectors without explicitly evolving
the k-ASEP in time.

Growth rates. Under PBC the effective ASEP also allows for
the evaluation of growth velocities. Since the original chain can
be partitioned into k sublattices �1, . . . ,�k [21], each k-mer
covers one of their L/k locations and so the k-ASEP dynamics
preserves the monomer density per sublattice (also determined
by the initial conditions). In turn, this defines k-stationary
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sublattice currents (eventually equivalent depending on the IS
considered), given by

Jα = 〈(1 − ni−k) ni−k+1, . . . ,ni〉, ∀i ∈ �α , α = 1, . . . ,k,

(5)

where the n’s denote sets of k-ASEP occupation numbers, cf.
Fig. 1(b). However, in view of the above mapping, each of
these former corresponds to a set of {ν1, . . . ,νN } occupations
in the effective ASEP, so in particular it must hold that

k∑
α=1

∑
i∈�α

(1 − ni−k) ni−k+1 · · · ni =
N∑

j=1

(1 − νj )νj+1. (6)

Here, the left-hand side just counts the number of feasible
movements in a given k-ASEP configuration, which in turn
must coincide with those counted by the right-hand terms in
the equivalent ASEP state. At this point it is worth mentioning
that despite that for PBC all k-ASEP configurations are equally
likely, the correlators involved in the sublattice currents (5) are
not factorizable [19,20]. However, since for large N the ASEP
correlators do decouple under PBC [18], it is then clear that as
a result of Eq. (6) the net sum of these currents amounts to

k∑
α=1

Jα � kN

L
ρASEP(1 − ρASEP). (7)

So, when it comes to the growth rates of the interface repre-
sentation, from Fig. 1(b) we can readily identify them with the
contribution of all currents crossing a given height location,
i.e., vk = ∑

α Jα , each contribution here being associated
with probabilities of mutually exclusive events wherein the
height can grow. As for the density of ASEP particles in
(7), further to Eq. (4) note that PBC also impose

∑
n sn ≡ 0

(i.e., hL − h1 = ±1), for which the vacancy numbers there
involved are constrained to add up to L/2 [21]. Therefore,
we are left with a chain of N = L/2 + (L − L)/k ASEP sites
and ρ−1

ASEP = 1 + k/[2(1 − L/L)], so the growth velocity (7)
simply reduces to

vk(L) =
(

2

k
+ 1

1 − L/L

)−1

. (8)

As expected, so long as the k-ASEP dynamics is not fully
jammed, i.e., L < L, the interface can grow with finite rates,
in turn being independent of the vacancy ordering in the string
or sector considered.

Exponential growth of invariant sectors. From the above
discussion it follows that the periodicity of these interfaces con-
strains each string to include L/2 0’s, i.e., L/2 characters Ai 
=
Ak , and L − L/2 1’s. Moreover, the IS lengths L are restricted
to belong to the set S (k)

L = {L,L − k,L − 2k, . . . ,L/2}, since
an integer number of k-mers should be required to complete
the total length L. More specifically, in terms of the vacancy
numbers this reads

k−1∑
i=0

Ni = L/2,

k−1∑
i=1

(i + 1)Ni ∈ S (k)
L , (9)

TABLE I. Growth rates for the total number of sectors of motion
[Eq. (10)] under PBC.

k 2 3 4 5 6 7

I1/L

k (L) ∝ 1.41421 1.73205 1.8999 1.958 1.981 1.991

and thereby the total number of irreducible sequences can be
expressed as

Ik(L) =
′∑

{Ni }
M({Ni}). (10)

Here, the primed sum is a mnemonic device reminding us
that the sum only goes over the sets {Ni} complying with (9),
and M({Ni}) denotes their multiplicities, i.e., the number of
different orderings of the irreducible characters of the string.
For PBC these orderings are counted up to cyclic permutations
of those characters, so that they are given by the circular
multinomial coefficient [22]

M({Ni}) = 1

N0 + N1 + . . . + Nk−1

×
∑

d| gcd({Ni })
ϕ(d)

( N0+···+Nk−1

d

N0
d

. . .
Nk−1

d

)

= 2

L

∑
d| gcd({Ni })

ϕ(d)

( L
2d

N0
d

. . .
Nk−1

d

)
, (11)

whereϕ(n) is the Euler’s totient function [23], and in the second
line we used the first constraint of Eq. (9).

For k = 2, we can perform the sum in (10) to see that

I2(L) = 1

L

∑
d

∣∣L
2

ϕ

(
L

d

)
2d , (12)

so that in the L → ∞ limit the sum over the divisors of L/2
is always dominated by the term d = L/2 and the number of
invariant sectors grows as 2L/2L−1. For k � 3 it is harder to
do an exact calculation, but we can find numerically the rates
at which these sectors grow. These are listed in Table I where
it is clear that Ik(L) � 2L as k → ∞, as was to be expected.

We can also obtain a lower bound I∗
k (L) for Ik(L) by noting

that

M({Ni}) � M∗({Ni}) ≡ 1

N0 + N1 + . . . + Nk−1

×
(

N0 + N1 + . . . + Nk−1

N0 N1 . . . Nk−1

)
, (13)

so that using (9) we have

Ik(L) � I∗
k (L) ≡ 2

L

∑
{Ni }

′
(

L/2

N0 . . . Nk−1

)
. (14)

For k = 2 this bound gives

I∗
2 (L) = 2

L

L/4∑
i=0

(
L/2

2i

)
= 2L/2

L
, (15)
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TABLE II. Sublattice densities, growth velocities, and amplitudes of average widths and maximal heights for dimers and trimers in the
irreducible strings studied in the main panels of Figs. 2 and 3. Sectors of motion are formed by concatenating the string characters of Eq. (3),
e.g., [A1A

2
0]L/6 just repeats [(10)(0)(0)] L/6 times (so, L/L = 2/3), etc.

k IS sector Density Growth rate 〈W 2〉/L 〈hm〉/L1/2

[A0]L/2 1/2 1/3 0.125(1) 0.766(2)

dimers
[
A1A

2
0

]L/6
{
ρ1 = 2/3
ρ2 = 1/3

1/4 0.074(1) 0.583(2)

[A1A0]L/4 1/2 1/5 0.052(1) 0.494(2)

[A0]L/2 1/2 3/8 0.166(1) 0.881(1)

trimers
[
A2A

3
0

]L/8
{
ρ1 = ρ2 = 5/8
ρ3 = 1/4

3/14 0.073(1) 0.584(1)

[
A2A1A

3
0

]L/10
1/2 3/17 0.056(2) 0.515(2)

so it correctly captures the rate we had already found. For k = 3
one may show that I∗

3 (L) satisfies the recursion

L

2
I∗

3 (L) =
(

5

2
L − 4

)
I∗

3 (L − 2) − 3

(
1

2
L − 2

)
× [I∗

3 (L − 4) + 3I∗
3 (L − 6)], (16)

so that for large L the total number of invariant sectors is at
least

I∗
3 (L) � 3

L
2 −1

2

(
1 + 3

√
3

2πL

)
. (17)

Once more, the bound given by I∗
3 (L) seems to be tight in the

L → ∞ limit, and we can check numerically that this is also
the case for k > 3.

Roughening exponents. Armed with the effective ASEP cor-
respondence referred to earlier on, we extensively sampled the
stationary configurations of both dimer and trimer interfaces
in some periodic IS sectors. These are specified in Table II

along with their growth velocities [Eq. (8)], and sublattice
densities (arising from simple stoichiometric considerations).
Each state was prepared by random deposition of Nk = (L −
L)/k monomers on a ring of L/2 + Nk effective sites [cf.
Eq. (9)], which, depending on their locations and occupancies,
were then transformed to k-ASEP configurations according to
the mapping discussed before. This enabled us to implement
a sampling algorithm with a number of operations bounded as
O[Ns(L/2 + Nk)], while using a number of samples Ns such
that Ns ∼ 1011/L and substrates sizes of up to 106 locations,
thus significantly reducing the scatter of averaged data.

In Fig. 2(a) we exhibit the growth of the stationary widths
(1) spread over several decades of substrate lengths. As an-
ticipated in the introductory paragraphs, despite the correlated
movements and partitioning of the interface paths, all cases
evidence the appearance of diffusive roughening exponents
typical of monomer growing interfaces either in the KPZ or EW
classes [1,4,6]. For display purposes, here the width of each
dynamic sector was rescaled by the corresponding amplitudes
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FIG. 2. (a) Finite-size growth of average widths, (b) height difference correlation functions (L = 4.2 × 105), and (c) growth of average
maximum heights (measured with respect to spatially averaged ones), for various string sectors. In main panels, circles, squares, and rhomboids
stand, respectively, for the first three sectors of Table II (k = 2), whereas its following ones correspond to triangles, downwards triangles, and
plus signs (k = 3). Insets denote in turn cases of null string sectors with k � 4. All data in main panels (insets) were normalized byA amplitudes
given in the rightmost columns of Table II (Table III), and are consistent with a common roughening exponent ζ = 1/2.
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of Table II, in turn decreasing with their growth velocities (as
they should).

Alongside Eq. (1) we also examined the stationary height
difference correlation functions for which a similar scaling
behavior involving the same roughening exponent is also
expected to hold at distances |r| � L, that is [1,5]

〈
D2

L(r)
〉 = 1

L

∑
n

〈[hn+r − hn]2〉 ∝ |r|2ζ . (18)

In fact, this is corroborated in Fig. 2(b) where these correlations
turn out to scale linearly with the height separation for all IS
sectors considered. As before, the results were made to collapse
by the normalization amplitudes used for the average widths
of Fig. 2(a), as would be expected on the basis of the identity
limr→∞ limL→∞〈D2

L(r)〉 = limL→∞ 2〈W 2
L〉.

Another stationary quantity of interest whereby the rough-
ening exponent can also be tested concerns the average
maximal height 〈hm〉L measured with respect to the spatially
averaged height of each interface realization, namely

〈hm〉L = 〈max{h1 − h̄, . . . ,hL − h̄}〉 ∝ Lζ , (19)

thus capturing possible extreme fluctuations that neither the
average width nor the height difference correlations are able to
measure. The scaling of this quantity along with its stationary
probability distribution (see below), have been investigated
numerically [14] in discrete 1D growth models belonging to the
EW class, as well as analytically [15] applying path integral
methods to both 1D EW and KPZ equations. In agreement
with those studies, here also the correlated and partitioned
paths described by our k-mer interfaces recover the diffusive
scaling of 〈hm〉L with the substrate size in all IS sectors of
Table II. This is shown in Fig. 2(c) for a wide range of L sizes
after normalizing the data by the amplitudes of each sector.
As might be presumed, these latter still decrease with their
growth velocities and in all cases are quite larger than the
corresponding width amplitudes (cf. Table II).

To complement the diffusive picture discussed so far, we
also estimated the roughening exponents of Eqs. (1), (18), and
(19) in nonreconstituting [A0]L/2 sectors of interfaces virtually
grown out of several other k-mer values. This is displayed in
the insets of Figs. 2(a)–2(c) where, just as in main panels, a
1/2 scaling exponent can also be read off from their slopes.
The normalizing amplitudes that produce the data collapse are
quoted in Table III, and in parallel with the growth velocities
k/[2(k + 1)] these come out increasing monotonically with k,
as was to be expected.

Scaling distributions. Turning to a more detailed level of
description, next we focus our attention on the probabilities

TABLE III. Amplitudes of average widths and maximal heights
for the null string sectors considered in the insets of Fig. 2.

k 〈W 2〉/L 〈hm〉/L1/2

4 0.208(1) 0.987(1)
5 0.250(1) 1.083(2)
6 0.292(1) 1.162(5)
7 0.334(1) 1.245(9)
8 0.375(1) 1.322(4)

P (hm),P (w2) of stationary realizations of both widths and
maximal heights. Since their averages diverge in the ther-
modynamic limit, it has been argued on general grounds
[13–16,24,25] that for large substrate sizes these probability
distributions should scale as

PL(w2) � 1〈
W 2

L

〉	
(

w2〈
W 2

L

〉
)

, PL(hm) � 1

〈hm〉L F

(
hm

〈hm〉L

)
,

(20)

where 	(x) and F (x) are characteristic scaling functions of
a variety of solid-on-solid growth models [13,16], although
their dependence on boundary conditions is also a relevant
issue [15,16,26].

In particular under PBC, where the k-ASEP mapping has so
far been applied, these scaling functions were evaluated exactly
in 1D Brownian interfaces, thus enabling us to go a step further
in the characterization of our k-mer models. This we do in
Figs. 3(a) and 3(b) where the scaled probability distributions
of w2 and hm in all IS sectors of Table II are compared with
the analytical expressions of 	 and F obtained, respectively,
in Refs. [13] and [15], namely

	(x) = π2

3

∑
n�1

(−1)n−1n2 exp

(
−π2

6
n2x

)
, (21a)

F (x) = 2
√

6

x10/3

∑
n�1

b2/3
n exp

(
−bn

x2

)
U

(
−5

6
,
4

3
,
bn

x2

)
. (21b)

Here U (x1,x2,x3) denotes the confluent hypergeometric func-
tion [23], whereas bn ≡ 2(|an|/3)3 involves the magnitudes
of the Airy function zeros (an) on the negative real axis
[15,23]. Using substrates in the range of 104–105 heights, the
probability densities were reconstructed by means of the con-
volution of 107 data points (in turn derived from independent
k-ASEP samples), with a Gaussian kernel whose bandwidth
was determined by Silverman’s method [27]. In all sectors
considered the data collapse is in excellent agreement with
the scaling distributions (21a) and (21b). Here, note that there
are no parameters to fit these stationary functions and that no
scaling properties, neither for 〈W 2

L〉 nor 〈hm〉L, have been used,
the only approximation being the finite size of the substrates.
The data collapse towards the tails of these distributions is
also corroborated in the insets of Figs. 3(a) and 3(b) where
other k-mer values are examined in nonreconstructing [A0]L/2

sectors. For large realizations of w2 and hm the resulting slopes
of the semilogarithmic plots displayed there in fact coincide
with those derived from the asymptotic behavior of 	 and
F , decaying, respectively, as exp(−π2

6 x) and exp(−6x2) (cf.
Refs. [13,15]).

Further to periodic strings, we also considered disordered
IS sectors obtained from the former by random permutations of
their characters. It is worth mentioning that preliminary results
also indicate that the above scaling distributions continue to
stand as generic features of that disordered situation.

Faceting. Finally, however, and in marked contrast with
that robustness, let us comment on string sectors that include
long concatenations of identical vacancy types, such as those
considered in Fig. 4. When the length of these domains
becomes of the order of the substrate size, it turns out that the
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FIG. 3. Scaling of (a) width distributions, and (b) maximal height distributions for the k-mer sectors of Table II using the symbols of Fig. 2.
Here, these stand for sizes L = 3 × 104 (circles), 6 × 104 (rhomboids), 105 (squares), 2.4 × 104 (triangles), 4.8 × 104 (plus signs), and 9 × 104

(downwards triangles). For comparison, in (a) and (b) solid lines correspond respectively to the exact scaling functions referred to in Eq. (21a)
(Ref. [13]), and Eq. (21b) (Ref. [15]). The insets exhibit the tails of those scaling distributions, which also follow our data in the null string
sectors of k = 4,5,6,7,8 with L = (3.6,4.2,3.3,2.8,4) × 104 respectively.

implicit assumption of a well-defined average orientation of
the interface (parallel to the substrate) is no longer consistent.
Instead, a faceted structure with large-scale slopes emerges.
This is illustrated by the snapshots shown in the insets of
Figs. 4(a) and 4(b), each of their facets stemming from different
character domains along their strings. Moreover, as suggested
by the width distributions displayed in main panels, statistical

fluctuations in these structures are progressively suppressed as
L increases.

In that latter respect we can assume a uniform density
of effective ASEP particles for most interface realizations
so as to readily estimate the slope of each facet. Thus, if
there are n characters in a given domain, clearly the average
number of k-mers amid them should be n( L−L
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FIG. 4. Width distributions of faceting sectors (a) [A1]L/4[A0]L/4 (L/L = 3/4), and (b) [A2]L/10[A1]L/10[A0]3L/10 (L/L = 4/5) for
L = 104,3 × 103, and 103 (topmost solid lines in downward direction). In contrast to roughening sectors (lowermost universal distribution),
fluctuations around average widths become negligible as L increases. Snapshots of the resulting interfaces (L = 104) are displayed by the insets.
The slopes of their facets (indicated by dashed lines) are evaluated in the text. For comparison, snapshots of the roughening sectors [A1A0]L/4,
and [A2A1A

3
0]L/10 are also exhibited in (a) and (b) respectively.
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2n
k

(1 − L/L) [see PBC constraints of Eq. (9)]. Since each
Aj involves j monomers and a vacancy, then the average
length of such set (Aj characters and k-mers combined) must
comprehend n(j + 1) + 2n(1 − L/L) sites of the substrate
(n � Nj ). Analogously, the average height difference along
that set becomesn(j − 1) + 2n(1 − L/L). Thereby, we are left

with slopes 1 − ( j+3
2 − L

L
)
−1

that closely follow those arising
from the Aj domains considered in the strings of Fig. 4. Note
that these average slopes can vanish only in nonreconstituting
[A0]L/2 sectors but, as seen above, in such cases the usual
roughening behavior is restored.

To summarize, we have studied stationary aspects of 1D
interfaces formed by deposition of extended particles within
the context of a mapping to a process of driven and reconstitut-
ing k-mers [19,20]. This enabled us to sample the steady state
without having to explicitly evolve the system in time, and, as
a result, a rich statistical analysis of both stationary width and
maximal height distributions was attained at large substrate
scales. For clarity of presentation the models were defined
as totally asymmetric, although extensions using partially
asymmetric or even symmetric versions subject to PBC would
make no difference to the stationary distributions.

The notion of irreducible string played a key role in
the understanding of the behavior of these interfaces as it
encodes nonlocal conserved quantities that partition the growth
dynamics into an exponential number of disjoint sectors of
motion with specific growth velocities. Owing to the spatial
extension of the deposited k-mers, the path phase space of
these sectors actually corresponds to sets of correlated random
walks. However, in view of the diffusive roughening exponents
obtained for several IS sectors, these walks turn out to follow
the typical root-mean-square displacement associated with the
stationary roughness of the 1D KPZ and EW classes. Finally,
at the more demanding level of width and maximal height
probability distributions, all roughening sectors considered
also reproduced the exact scaling functions [13,15] of those
universality classes. Whether these numerical findings could
be explained theoretically remains an open issue, which,
in turn, should also account for the existence of faceting
sectors.
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