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We argue that the dimensionality of the space of quantum systems' states should be considered

as a legitimate resource for quantum information tasks. The assertion is supported by the fact

that quantum states with discord-like capacities can be obtained from classically-correlated
states in spaces of dimension large enough. We illustrate things with some simple examples that

justify our claim.
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The Hilbert space dimension has been related to physical resources for di®erent

physical systems, playing a fundamental role in quantum computation. Basically, the

idea is that \if you want to avoid supplying an amount of some physical resource that

grows exponentially with problem's size, the computer must be made up of parts

whose number grows nearly linearly with the number of qubits required in an

equivalent quantum computer. This thus becomes a fundamental requirement for a

system to be a scalable quantum computer".1 Moreover, some recent results show

that quantum dimensionality could be regarded as a physical entity. For example,

Brunner et al. de¯ned what they call \dimension witnesses": observable quantities to

estimate the minimum dimension of a given system state-space consistent with a

number of measured correlations.2–4 In the same spirit, Wehner et al. found a lower

bound that gives a fundamental limit on the dimension of the state to implement

International Journal of Quantum Information
Vol. 13, No. 6 (2015) 1550039 (9 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0219749915500392

1550039-1

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 S

O
U

T
H

 W
A

L
E

S 
on

 0
9/

19
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0219749915500392


certain measurement strategies.5 Here we propose to consider the dimension of the

Hilbert space as a legitimate resource for quantum information processing. Our main

argument lies in the observation, due to Li and Luo,6 that quantum separable states

can be obtained from reductions of classically-correlated ones. Although some

authors have suggested the possibility of understanding the size of the Hilbert space

as a resource by itself,7 the assertion that it is a quantum-better-than-classical re-

source was never technically analyzed, as far as we know.

Under the discord paradigm, a classically-correlated state (or simply, a classical

state) is one that is information-wise accessible to local observers. Given a discord-

like measure � and a classical state �AB of a composite system AþB, one knows that

�ð�ABÞ ¼ 0. The following theorem, due to Li and Luo, demonstrates a notable

relation between separable states and classical states.6

Theorem. A state �ab, of a composite system aþ b, is separable over Hab ¼
Ha �Hb if and only if there is a classical state �AB over HAB ¼ HA �HB, with

HA ¼ Ha �H �a and HB ¼ Hb �H�b , such that

�ab ¼ tr�a�b ½�AB�: ð1Þ
Here, the state �AB of the composite AþB should be regarded as a classical extension

of the separable �ab.

The proof is given by Li and Luo in Ref. 6. The next result follows directly from

the above theorem:

Proposition. Any quantum task carried out using un-entangled states can also be

undertaken using classically-correlated states.

Indeed, if a quantum task needs appealing to a given un-entangled state �ab, then

there exists a classical extension �AB from whose reduction �ab can be obtained

(Fig. 1). The scheme is straightforwardly generalized to tasks requiring several input

quantum states.

Un-entangled quantum correlations, discord-ones in particular, have proved their

usefulness both in the interpretation of foundational quantum issues and in appli-

cations to quantum information/computation problems (see, for example, the ex-

cellent review in Refs. 8 and 9).

σAB (classical)

ā
a

b

b̄

ρab (separable)

Fig. 1. Every quantum state that is separable (within a given bipartition of the full system) is, in a formal

sense, the reduction of a classical state of a system de¯ned over a larger state-space (and preserves the

original bipartition).
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We will explicitly illustrate here just how classically-correlated states can replace

discord-possessing separable states in two speci¯c jobs: Remote state preparation

(RSP) and entanglement distribution (ED).

Remark. Not all classically-correlated states are equally useful for performing

a given task in a better-than-classical manner. The key lies in the structure of

its reductions: a classically-correlated state would be a good resource if the

selected reduction is quantum-correlated. In other words, we are dealing with

states that have some \hidden" quantum correlation. Let us see, for example, the

following simple illustration. We start with the bipartite state �AB ¼ �A
� � �B

� ,

where �A
� (�B

� ) are eigenprojectors of two Bell (maximally entangled) states.

Then, if we look at the AjB-correlations, the state is a product state and, in

particular, a non-discordant one. A and B are both composite, say A ¼ aþ �a and

B ¼ bþ �b. Tracing out �a and �b yields �ab / , which is virtually useless for

performing any informational task. Instead, we could trace out the whole B-part to

end up with a maximally discordant state, but in such a case we would be violating

the original AjB-partition in the sense of Luo's Theorem, where it is of the essence

to obtain discord from the non-discordant part with respect to a given ¯xed

bipartition.

Remote state preparation

As a ¯rst illustration, consider the RSP-protocol, a variant of the well-known tele-

portation-one, in which the emitter knows the state being sent to the recipient (for

details see, for instance, Ref. 10). Dakić et al. showed that, for certain two-qubits

states' family (those with maximally-mixed marginals), the protocol's ¯delity coin-

cides with the geometric discord of such states. Girolami and Adesso singled out

certain separable states that maximize the geometric discord,11,12 although such

states do not possess maximally-mixed marginals. In fact, it is easy to see that the

RSP-¯delity for these states vanishes. Instead, the state de¯ned by the density ma-

trix (standard basis)

�RSP ¼ 1

4

1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 1

0
BBBB@

1
CCCCA
; ð2Þ

does maximize both the geometric discord and the RSP-¯delity. This state, de¯ned in

Ha �Hb, can be obtained (save for discord-preserving local unitary transforma-

tions), as the reduction of the classical state (in C6 � C6)13:

�RSP ¼ 1

3

X3
i¼1

jwk; kihwk; kj � jwk; kihwk; kj; ð3Þ
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with jwk;ki :¼ jwki� jki, respectively for k¼ 1;2;3. jwki :¼ j�;�i, j�;�¼ cosð�2Þ�
j0iþ expði�Þ sinð�2Þ, where the pairs ð�;�Þ take the values ð0;0Þ, ð2�3 ;0Þ, and ð2�3 ;�Þ.
The states jwki correspond to the parties a and b, while fjkig1�k�3 are three

orthogonal states in C3, corresponding to the extended parties �a and �b. Thus, the

same task can be performed with identical e±ciency by use of the classical extension.

Note that �RSP maximizes the geometric discord but not the conventional one.

This last discord, in C2 � C2, is maximized in the subset of separable states by a

di®erent states-family.11,13,14

Finally, in the spirit of the discussion of the previous section (see the Remark

there), in this case it is straightforward to show that the better-than-classical per-

formance depends on the geometric discord of the selected reduction.

Entanglement distribution

Another example of the classical states' ability to perform quantum tasks is that of

ED.15 We use the following scheme. One starts with a system in which two classically-

correlated, composite parties can be identi¯ed, A and B, represented by �AB. For A

we have the subparts a-�a, and for B, b-�b. The reduction is �Ab :¼ tr�b ½�AB�. It permits

to tackle the job. In order to do so, consider two partitions of the same state: abj�a is

the initial partition and aj�ab the ¯nal one. Entanglement distribution consists of the

entanglement-increase in passing from the initial to the ¯nal con¯gurations. In such

process, the subsystem b is taken from being a partner of a to being a partner of �a. So

as to succeed, the protocol does not need entangling A with b. Discord is necessary in

our partition, but not su±cient.15,16

As an example, we start from a four-qubits classical state:

	AB ¼
X4
k¼1

pk�
A
k � �B

k ; ð4Þ

where f�A
k g1�k�4 and f�B

k g1�k�4 are basis of orthogonal, rank 1 projectors in C4, and

fpkg1�k�4 is a probability distribution. So as to ¯nd ED-optimal classical states, we

generate random C4-basis for the A-B parties. Speci¯cally, we restrict our search to

states such that pk ¼ 1
4 and �A

k ¼ �B
k 8k. If EXjY is the entanglement measure given

by the negativity in the partition XjY of the system, we ¯nd that 	AB's ED is

Eaj�ab � Eabj�a � 0:0915.

We now replace the initial state 	AB by another one in which both a and b

are composed by qudits, while �a and �b retain their two-qubits character. The new

state 	AB
d operates on C2d � C2d, with d ¼ 1; 2; . . .. As before, we can look for

classical states maximizing ED for each value of d. We numerically did this for

2 � d � 6, again restricting the search to states with pk ¼ 1
2d and �A

k ¼ �B
k 8k. We

encounter that the ED augments with the dimension of the initial classical

state (Table 1).
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Accordingly, classically-correlated states 	AB
d allow us to improve ED as long as

we augment the Hilbert space dimension.

Work extraction from classical extensions

The distinction between classical and quantal can be made in di®erent ways. The

discord establishes a division in the capacity to locally `interrogate' a composite state.

Another way, introduced by Oppenheim et al.,17 revolves around the work that can

be extracted from the state by quantum Maxwell demons.18 If the whole work can be

extracted by local demons, then the state is classically-correlated. The \work-de¯cit"

between global and local demons is a measure of the correlations' \quantumness".

Optimizing over all possible local measurements determines the thermal discord,

which di®ers from the conventional discord. The equivalence between information

and work19,20 is of the essence to compare both types of discord.21–24

We have thus far shown that any separable state can be extended to other,

classically-correlated states, and that such extensions allow one to perform the same

quantum tasks. From a thermodynamical viewpoint, from the classical extension of a

given separable state one can always extract more work than from the original

quantum state. Indeed, we will now demonstrate as an important new result, the

validity of the relation

WQð�ABÞ ¼ WQð�abÞ þWQð�auxÞ þ IðabjauxÞ: ð5Þ
Here, �ab ¼ P

kpk�
a
k � � b

k ia a quantum-correlated state, �AB is a classical extension

of �ab (see Eq. (1)) and �aux :¼ trab½�AB� the marginal state of the ancilla. IðxjyÞ :¼
SðxÞ þ SðyÞ � Sðx; yÞ is the mutual quantum information between the parties x and

y, with SðxÞ :¼ �tr½�xlog2 �
x�. WQð�ABÞ :¼ log2 dAB � Sð�ABÞ is the maximum

extractable work from �AB, when in contact with a reservoir of temperature T , with

kB Boltzmann's constant, in units of kBT ¼ 1. We determine in similar fashion WQ

ð�abÞ and WQð�auxÞ.
Equation (5) tells us that the extractable work from the classical extension is

bounded below by the sum of the extractable works from the original state and that

of the auxiliary part. This is simply demonstrated. It su±ces to appeal to the von

Neumann entropy's subadditivity and using it in the preceding de¯nition of

WQð�ABÞ. Equation (5) is important because it establishes a relation between local

Table 1. Maximal ED by clas-

sical states 	AB
d in C2d � C2d.

d Maximal ED

2 0.0915

3 0.1269
4 0.1681

5 0.1744

6 0.3326

Quantum state space dimension as a quantum resource
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(classical) resources and global (quantum) ones, given that the whole extractable

work from �AB can be locally acceded (the thermal discord of �AB vanishes in the

partition AjB). This can be done, for instance, by a local Maxwell demon (in A) that

makes a measurement in the eigenbasis of local projectors, f�A
k g, and communicates

then with B, extracting work WCð�ABÞ ¼ WQð�ABÞ. Thus, from the above equality

it follows that

WCð�ABÞ � WQð�abÞ þWQð�auxÞ: ð6Þ
Given that there exist a panoply of possible classical extensions for a given sep-

arable �ab, it makes sense to ask for the optimal extension: that �AB with the least

possible dimension.13 This kind of extension can not be generally encountered by

recourse to the algorithm of Li and Luo. What is peculiar in the extractable work

from such optimal extension?

Consider the state �RSP of Eq. (2). In addition to the classical extension given by

�RSP de¯ned in C6 � C6 (Eq. (3)), one can also ¯nd an extension ~�RSP in C8 � C8.

None of them is the optimal one. A Monte Carlo numerical search suggests that the

optimal extension, �opt
RSP, acts on C4 � C4.13 Computing the classical extractable

works associated to each of the extensions, one sees that the least-dimension exten-

sion is the one that also minimizes the extractable work (Table 2). Such a result

stimulates inquiry concerning whether the optimal extension de¯ned as the least

dimension one does always coincide with that of minimum extractable work.

The globally extractable work from a state �AB is a measure of the ability

of distinguishing with respect to the totally mixed state, since WQð�ABÞ ¼
Sð�ABjj AB=dABÞ, with AB the identity in HAB. In this sense, the classical extension

of �ab that minimizes the extractable work would be given by that state �AB closest

to AB=dAB. The question remains concerning whether the minimization ofWQð�ABÞ
(or Sð�ABjj AB=dABÞ) is equivalent to the minimization of dAB, i.e. if both conditions

indistinctly determine the optimal classical extension.

Monogamy of correlations

Keeping in mind the equivalence between information and work discussed above,

relation (6) can be regarded as a monogamy one for the bi-partition abjaux of a

Table 2. Extractable work from di®erent
classical extensions of the separable state

�RSP. The minimum-dimension extension

corresponds to minimum work.

Extension Dimension Extractable work

�RSP 64 4:00

~�RSP 36 3:58

�opt
RSP

16 2:00

A. Plastino, G. Bellomo & A. R. Plastino
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classical extension AB. The function ið�ABÞ :¼ log dAB � Sð�ABÞ can be seen as the

accessible information in the state �AB.22 Thus, inequality (6) is equivalent to the

inequality ið�ABÞ � ið�abÞ þ ið�auxÞ, that determines a \hybrid" monogamous be-

havior concerning the classical information of �AB and the quantum information

from �ab and �aux.

It is of great interest to ¯nd monogamy relations for di®erent measures of quan-

tum and classical correlations. Except for peculiar instances, quantum correlation

measures do not satisfy general monogamy relations. Even more, if an arbitrary

measure Q possesses a few reasonable properties, it must vanish for separable states

in order to ful¯ll monogamy relations of the type Qabjc � Qajc þQbjc.25 The usual

discord, for example, is not monogamous for general states.25–28

The classical extensions that we are advancing here constitute a clear example of

monogamy violation because 0 ¼ �abjauxð�ABÞ � �ajaux, and the same holds for � bjaux.
All classical extensions undergo discord-increase if some subsystem is discarded.

Thus, all classical extensions of separable states are polygamous in the usual sense.

This observation (i) constitutes the basic argument in demonstrating that quantum

correlations are not monogamous in general25 and (ii) underlies the violation of more

general monogamy relations, even for multipartite correlation measures.29,30 How-

ever, there exist monogamy relations valid even for classical extensions if we consider

some generalized multipartite quantum correlations. Consider for instance the global

quantum discord (GQD) — a symmetric discord extension for multipartite states–

de¯ned as31,32 �gða1j . . . jaNÞ :¼ min�½Iða1j . . . jaNÞ � I�ða1j . . . jaNÞ�, where a1; . . . ;

aN are the parties of an N-partite state �a1...jaN , where Iða1j . . . jaNÞ :¼
P

kSðakÞ �
Sða1 . . . jaNÞ is the generalized mutual information and I�ða1j . . . jaNÞ is the mutual

information after e®ecting a multilocal measurement � j :¼ f� j1
a1 � � � � � � jN

aNg, such
that the post-measurement state becomes �ð�a1...jaN Þ ¼ P

j�
j�a1...aN� j. For the GQD

of any N -partite state, it is true that29

�gða1j . . . jaNÞ �
XN�1

k¼1

�gða1 . . . akjakþ1Þ: ð7Þ

For example, for the classical state �AB, if we consider the partition aj�ajB, one has

�gðaj�ajBÞ � �gðaj�aÞ þ �gða�ajBÞ, but �gða�ajBÞ ¼ �gðAjBÞ ¼ 0 and then �gðaj�ajBÞ �
�gðaj�aÞ. Alternatively, we can consider the partition ajbjaux. We have then

�gðajbjauxÞ � �gðajbÞ þ �gðabjauxÞ. Equation (7) suggests that so as to obtain a

monogamy relation valid for discord-like measures we need to appeal to generalized

multipartite measures that account for the partition's internal structure.

Our examples strongly validate our initial thesis: classically-correlated states in

Hilbert spaces of large-enough dimension constitute quantum resources for under-

taking processing information tasks. We showed how RSP and ED can be carried out

using classically-correlated states. These results are relevant, for example, in the

decoherence process: for generic system-environment interactions, the system ends up

Quantum state space dimension as a quantum resource
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in a classically-correlated — i.e. non-discordant — state.33 We show here that those

states might be, nonetheless, useful for quantum information processing.

Additionally, we exhibited two important aspects of classical extensions of sepa-

rable quantum states. First, from a thermodynamic viewpoint concerned with

extracting work from the extension, we showed that the minimal extension of a given

state is related to the minimum possible work extraction from the extended state.

Second, we suggested that the possibility of classically extending any separable state

is strongly linked to the non-monogamous nature of the discord-type correlations. We

can only recover generalized monogamy relations by considering genuine multipartite

correlations.

We have discussed classically correlated states of bipartite systems that have

discordant reductions and are useful for implementing quantum information tasks.

Two basic ingredients lie behind this e®ect. They are (i) the (large enough)

dimensionality of the Hilbert spaces of the two constituent systems and (ii) the

classical correlations between these two parts. Both of them are necessary: bipartite

systems of zero (global) discord having minimal dimensionality (two qubits) or

having null classical correlations, do not admit discordant reduction. Consequently,

the quantum resources involved here are a combination of large dimensional Hilbert

spaces and classical correlations.

Our present considerations suggest that a rede¯nition of the concept of classically

correlates states may be needed. Bipartite quantum states with vanishing (global)

discord-like correlations can still exhibit these kind of correlations in their reductions.

The original classically correlated, discord-free state, can be regarded as actually

having quantum correlations, but in a highly diluted fashion. This possible inter-

pretation certainly deserves investigation. Any further developments along these

lines of inquire would be warmly welcome.
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