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Abstract. Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to
study meson states, we have developed an extension of it in order to explore the structure of baryon states.
In developing our approach we have adapted concepts taken from group theory and non-perturbative
many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As
a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in
terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about
the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized
by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the
structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for
ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that
colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground
state allows for colorless excitations resulting from the action of color objects upon it.

1 Introduction

The identification of effective degrees of freedom and their
interactions, a crucial step for the description of physical
systems, has been the guide for several decades of explo-
ration of the complexity of the quantum many-body prob-
lem. It has achieved remarkable success in a broad range
of phenomena, from solid-state to nuclear and hadron
physics. A great part of the suitable techniques has been
discussed in Walter Greiner’s text books. Here, we shall
show that some of these techniques can also be applied to
the until now unsolved regime of low-energy QCD. The re-
sults are quite encouraging and they are in many respects
analogous to the results found in the nuclear-structure
problem, where the identification of single-particle and
hole excitations and collective vibrational and rotational
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Biró, Carsten Greiner, Berndt Müller, Johann Rafelski, Horst
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degrees of freedom allows for the construction of effective
interactions which have proved to describe the main fea-
tures of the nuclear spectrum. We have taken, in order to
illustrate the method, low-energy baryon-like states and
discussed their structure in terms of the various couplings
allowed by the QCD Hamiltonian in the Coulomb Gauge.

Several features of the non-perturbative regime of
QCD have been explored within the Coulomb gauge
framework, e.g., see ref. [1]. Among them, the variational
solutions obtained for the gluon- and ghost-propagator
have played an important role in order to provide the first
insights about the confinement scenario in this formalism.
The variational procedure implemented in the Yang-Mills
sector, first with a Gaussian ansatz for the vacuum wave
functional [2,3] and then extended to cubic and quartic
terms, generates a better agreement with Lattice results
for the gluon propagator [4]. The variational approach to
Yang-Mills theory in Coulomb gauge has been extended to
full QCD by including a wave functional of the Dirac vac-
uum of the quarks in the presence of the gauge field [5–7].

In [8], the chiral symmetry breaking has been explored
in the excited baryon spectrum, within the Coulomb gauge
QCD formalism. Such analysis has been performed in
a controlled way in terms of the number of harmonic



Page 2 of 9 Eur. Phys. J. A (2018) 54: 22

oscillator shells, similar to that performed in [9], but also
in terms of angular excitations of the Nucleon and ∆ states
with spin up to J = 13/2.

Also there has been an increasing effort from Lat-
tice calculations [10,11] for a better understanding of
the low-lying baryon states, including excited states. Al-
though a faithful description of the baryon spectrum seems
to be promising, there are some aspects that still have
to be clarified, e.g. the identification of the Roper reso-
nance. The Dyson-Schwinger equations (DSEs) have also
provided with several insights about the baryon spec-
trum [12], as well as a few excited states, among them
the Roper resonance [13,14]. In ref. [15], a complete re-
view of baryon states is presented via Dyson-Schwinger
and Bethe-Salpeter equations, as well as the relation be-
tween them and the Lattice QCD results.

Our present description is based on the use of effec-
tive quark and antiquark states and quark-antiquark, di-
quarks and di-antiquarks pairs and their interactions. The
main steps of the method which we are going to present
are the following: i) starting from the QCD Hamilto-
nian written in the Coulomb Gauge [2,3] we perform a
diagonalization of the kinetic energy term to get quark
and anti-quark states, ii) with these (generally speaking)
single-quark states we re-write the color-charge density
interactions (e.g. the Fadeev term of the Hamiltonian)
and replace the interactions with gluons by a static po-
tential V (r) = (−α/r) + (βr) [9], iii) a further diago-
nalization of the pair-like terms of the Hamiltonian is
performed by applying the Random Phase Approxima-
tion [16], and finally, iv) the remaining terms of the Hamil-
tonian are treated as a generalized phonon-single-particle-
and pair-interactions, keeping in all cases the symmetries
of the QCD degrees of freedom at the level of meson and
baryon-like states. Our main conjecture consists in the
use of coloured-pair configurations of both quarks and an-
tiquarks, in addition to the colorless quark-antiquark pair
configurations, to construct baryon-like states by coupling
these configurations to quarks or antiquarks. The formal-
ism and general aspects of the model are described in
sects. 2-4 and the application of it is illustrated in sect. 5.
The conclusions are drawn in sect. 6.

2 From QCD to effective degrees of freedom

2.1 QCD Hamiltonian in the Coulomb gauge

We start from the QCD Hamiltonian in its canonical Cou-
lomb gauge representation [17,18],

HQCD =

∫
{

1

2

[

J−1Πtr · JΠtr + B · B
]

−ψ (−iγ · ∇ + m) ψ − gψγ · Aψ

}

dx

+
g2

2

∫

J−1ρc(x)〈c,x| 1

∇ · D (−∇2)
1

∇ · D |c′y〉

×J ρc′(y)dxdy, (1)

which has been widely studied in the past [2–9,19–23] for
the description of characteristic features of QCD in its
non-perturbative regime, like the confinement of color-
charged particles along with the constituent quark and
gluon masses. The structure of several bound states pre-
dicted by the theory has been described extensively [8,19–
21,24–26]. A complete description of the Hamiltonian can
be found in refs. [2,3,17]. Here, we just add a few com-
ments to the already published material. The Hamilto-
nian of eq. (1) takes into account the interactions between
quarks and gluons through the QCD Instantaneous color-
Coulomb Interaction (QCD-IcCI) between color-charge
densities of quarks and gluons. At low energy the effects of
dynamical gluons in the QCD-IcCI are accounted for by
the interaction V (|x − y|) = − α

|x−y| + β|x − y|, which is

obtained from a self-consistent treatment of the last term
of the Hamiltonian [2,3].

In [9], the Hamiltonian of eq. (1) was written by keep-
ing the quark-sector and using the effective confining in-
teraction V (|x − y|), namely

H
QCD
eff =

∫

{

ψ†(x)(−iα · ∇ + βm)ψ(x)
}

dx

−1

2

∫

ρc(x)V (|x − y|)ρc(y)dxdy

= K + HCoul, (2)

where ρc(x) = ψ†(x)T cψ(x) is the quark and antiquark
color-charge density. In eq. (2), the first term is the ki-
netic energy, while the second term is the QCD-IcCI in its
simplified form. The fermion field ψ†(x), whose quantiza-
tion is explained in [9], is expanded in terms of creation
and annihilation operators of particles (antiparticles) in a
basis of harmonic-oscillator functions.

The use of the harmonic-oscillator basis (Nl) requires
a pre-diagonalization, which is performed by means of
a unitary transformation between creation (annihilation)

operators in the harmonic-oscillator basis q
†
τ(Nl)(q

τ(Nl))

and those belonging to an effective basis Q
†
λkπq

(Qλkπq ) of

quarks (antiquarks), such that

q
†
τ(Nl)JqCq(Yq,Tq),MJq MCq MTq

=
∑

λπqk

(

α
Jq,Tq

τ(Nl),λπqk

)∗

×Q
†
λkπqJqCq(Yq,Tq),MJq MCq MTq

δ
πq,(−1)

1
2
−τ+l . (3)

The effective quark b† and antiquark d operators are ob-
tained via

Q
†
1
2
kπqJqCq(Yq,Tq),MJq MCq MTq

= b
†
kπqJqCq(Yq,Tq),MJq MCq MTq

. (4)

and

Q
†

− 1
2
kπqJqCq(Yq,Tq),MJq MCq MTq

= dkπqJqCq(Yq,Tq),MJq MCq MTq
. (5)

The sub-index πq = ± indicates the parity of the ef-
fective quark or antiquark and k = 1, 2, · · · runs over all
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Table 1. Short-hand notation for the representation of the vacuum, quark, ph-pair, di-q and di-q̄ irreps.

Representation γn = {Jn, Cn, (Yn, Tn)} Jn Cn (Yn, Tn)

vacuum (0) γ0 = {J0, C0, (Y0, T0)} 0 (00) (0, 0)

quark (q) γq = {Jq, Cq, (Yq, Tq)}
1
2

(10)
`

1
3
, 1

2

´

,
`

− 2
3
, 0

´

ph-pair (p) γp = {Jp, Cp, (Yp, Tp)} 0, 1 (00), (11) (0, 0), (0, 1),
`

±1, 1
2

´

di-q (a) γa = {Ja, Ca, (Ya, Ta)} 0, 1 (20), (01)
`

2
3
, 1

´

,
`

2
3
, 0

´

,
`

− 1
3
, 1

2

´

,
`

− 4
3
, 0

´

di-q̄ (r) γr = {Jr, Cr, (Yr, Tr)} 0, 1 (02), (10)
`

− 2
3
, 1

´

,
`

− 2
3
, 0

´

,
`

1
3
, 1

2

´

,
`

4
3
, 0

´

orbital states. As in [9] we shall label the states by the
hypercharge, isospin and third component of isospin. The
index Jq = 1

2 , 3
2 , · · · indicates the total (Jq = l± 1

2 ) single-
particle spin. The flavor hypercharge and isospin quantum
numbers for quarks are given by (Yq, Tq) = (1

3 , 1
2 ), (− 2

3 , 0).
The quarks and antiquarks belong to a triplet Cq = (10)
and antitriplet C̄q = Cq̄ = (01) color irreducible represen-
tations (irreps), respectively, which are conjugate repre-
sentations. In order to reduce the number of indices, we
will use the short-hand notation γq = {Jq, Cq, (Yq, Tq)}
for the quarks and γ̄q = {Jq, C̄q, (Ȳq, Tq)} for antiquarks
irreps with Ȳq = −Yq, while µq = {MJq

,MCq
,MTq

} and

µ̄q = {M̄Jq
, M̄Cq

, M̄Tq
} will be used for the magnetic num-

bers with M̄Jq
= −MJq

and M̄Tq
= −MTq

.
The kinetic (K) term rewritten in terms of effective

quarks and antiquarks operators has the following struc-
ture [9,21]:

K =
∑

kπqγq

εkπqγq

∑

µq

(

b
†
kπq,γqµq

bkπq,γqµq

−dkπq,γ̄qµ̄qd
†
kπq,γ̄qµ̄q

)

, (6)

where the rules to raise and lower indices are taken from [9,
27] and they are listed in the appendix A.

The QCD-IcCI term, in its simplified form (HCoul),
rewritten in terms of effective quark and antiquark oper-
ators is given by [9]

HCoul = −1

2

∑

L

∑

λiqi

V L
{λiqi}

×
(

[

Fλ1q1,λ2q2;γf0
Fλ3q3,λ4q4;γ̄f0

]γ0

µ0

+
[

Fλ1q1,λ2q2;γf0
Gλ3q3,λ4q4;γ̄f0

]γ0

µ0

+
[

Gλ1q1,λ2q2;γf0
Fλ3q3,λ4q4;γ̄f0

]γ0

µ0

+
[

Gλ1q1,λ2q2;γf0
Gλ3q3,λ4q4;γ̄f0

]γ0

µ0

)

, (7)

where we have compacted the single-particle orbital num-
ber, parity and irreps, into the short-hand notation qi =
kiπqi

γqi
, and use for the (flavorless) quantum numbers

of the intermediate coupling in the interaction the label
γf0

= {L, (11), (0, 0)} and for their magnetic projections
µf0

= {ML,MC , 0}, respectively. The conjugate repre-
sentations satisfy γ̄f0

= γf0
and µ̄f0

= {−ML, M̄C , 0}.

Then for the total couplings (upper index) and magnetic
numbers (lower index) of the interaction, we have used
γ0 = {0, (00), (0, 0)} and µ0 = {0, 0, 0} respectively. The
operators F and G are written

Fλ1q1,λ2q2;γf0
,µf0

=
1√
2

{

δλ1, 1
2
δλ2, 1

2

[

b†
q1

⊗ bq̄2

]γf0

µf0

−δλ1,− 1
2
δλ2,− 1

2

[

dq̄1
⊗ d

†
q̄2

]γf0

µf0

}

Gλ1q1,λ2q2;γf0
,µf0

=
1√
2

{

δλ1,− 1
2
δλ2, 1

2
[dq1

⊗ bq̄2
]
γf0

µf0

−δλ1, 1
2
δλ2,− 1

2

[

b†
q1

⊗ d
†
q̄2

]γf0

µf0

}

. (8)

The Hamiltonian expressed in the effective quark and
antiquark operators, eqs. (6) and (7), describes bound
states (mesons and baryons) of these effective particles.
In [9] the low-energy mesons states with Jπ = 0±, 1− were
represented by particle(quarks)-hole(antiquarks) (or ph)
phonons by means of the Tamm-Dancoff-Approximation
and the Random-Phase-Approximation methods. Those
methods provide some insights about the low-energy me-
son spectrum and the influence of ph-correlations in the
vacuum. As we have mentioned before the ph-correlations
are colorless in order to describe meson-states as one-
phonon excitations of the vacuum. In the present work
we go further and have considered color-correlations in a
more general description of the vacuum. These color cor-
relations, viewed as excitations of the vacuum, can not
describe physical states but they may be coupled to color-
vector configurations to describe bound states e.g., baryon
states, which are constructed such that the overall color
is zero.

3 Representations and operators

In the previous section we have introduced the short-hand
notation for quark- and antiquark-irreps γq and γ̄q, as well
as their magnetic numbers µq and µ̄q, noticing that γq̄ =
γ̄q and µq̄ = µ̄q. We have also introduced the compact no-
tation qi = kiπqi

γqi
. The representations corresponding to

the vacuum, meson-like (or ph-pair), di-quarks (di-q) and
di-antiquarks (di-q̄) states are introduced in table 1, where
a similar short-hand notation γn = {Jn, Cn, (Yn, Tn)} is
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used. The sub-index n = 0, q, p, a, r reads for the vac-
uum, quarks, mesons, di-quarks and di-antiquarks states,
respectively. In this work we only consider quarks and an-
tiquarks with total spin Jq = 1

2 .

For the baryon state representations and magnetic
components we will use γBi

= {JBi
, CBi

, (YBi
TBi

)} and
µBi

= {MJBi
,MCBi

,M(YBi
,TBi

)}, respectively, and focus

on specific physical representations (see sect. 3.4).

3.1 Vacuum state and operators

In [9] the correlated vacuum which includes ph correla-
tions was constructed explicitly using the RPA formalism.
The RPA solutions aimed to describe meson-like states, so
that the ph-pairs responsible for ground-state correlations
were (00)-colorless configurations. In general, the ground
state can include also color correlations by means of col-
ored (11)-ph-pairs and (20), (01)-di-q and (02), (10)-di-q̄
operators. Up to second order in the quark-antiquarks op-
erators, we can relate the new ground state to the vacuum
state |0̃〉 via

|RPA〉 = |0̃〉
+

∑

pπp;γp

∑

q
′

iqi

Z
pπp,γp

(1)q
′

1
q̄
′

2
,q1q̄2

×
[

[

b
†
q
′

1

⊗ d
†
q̄
′

2

]γp

⊗
[

b†
q1

⊗ d
†
q̄2

]γ̄p

]γ0

µ0

|0̃〉

+
∑

aπa;γa

∑

q
′

iqi

Zaπa,γa

(2)q
′

1
q
′

2
,q̄1q̄2

×
[

[

b
†
q
′

1

⊗ b
†
q
′

2

]γa

⊗
[

d
†
q̄
′

1

⊗ d
†
q̄
′

2

]γ̄a

]γ0

µ0

|0̃〉. (9)

The Z
pπp,γp

(1)q
′

1
q̄
′

2
,q1q̄2

and the Zaπa,γa

(2)q
′

1
q
′

2
,q̄1q̄2

vacuum contri-

butions can be related by re-couplings in spin, color and
flavor quantum numbers. However we prefer to show ex-
plicitly the ph-pair and di-q–di-q̄ correlations and take into
account the corresponding re-couplings in the effective
Hamiltonian once the RPA dynamical equation of motion,
eq. (22), is implemented for the different sub-spaces of di-
agonalization. This is explained in sect. 4. The vacuum
coefficients Znπn,γn

(i)q
′

1
q
′

2
,q1q2

satisfy a similar relation in terms

of the forward Xq1q2;nπnγn
and backward Yq

′

1
q
′

2
;nπnγn

am-
plitudes namely

Znπn,γn

q
′

1
q
′

2
,q1q2

=
√

dim(γn)Yq
′

1
q
′

2
;nπnγn

(Xq1q2;nπnγn
)
−1

,

(10)
see sect. 3.3. In a schematic representation the vacuum
can be depicted as

|RPA〉 = |0̃〉 + Z(1)| [↑↓]† [↑↓]†〉 + Z(2)| [↑↑]† [↓↓]†〉 (11)

with [↑↓] representing ph-pairs and [↑↑]([↓↓]) representing
colored di-q(di-q̄) ones.

3.2 ph, di-quark and di-antiquark operators

The ph-pair operators (or quark-antiquark operators) can
be expressed in their decoupled form as

[

b†
q1

⊗ d
†
q̄2

]γp

µp

=

∑

MJqi
MCqi

MTqi

〈Jq1
MJq1

, Jq2
M̄Jq2

|JpMJp
〉

〈(10)MCq1
, (01)M̄Cq2

|CpMCp
〉〈Tq1

MTq1
, Tq2

M̄Tq2
|TpMTp

〉

b
†
k1,πq1

,Jq1
(10)(Yq1

,Tq1
);MJq1

MCq1
MTq1

d
†

k2,πq2
,Jq2

(01)(Ȳq2
,Tq2

);M̄Jq2
M̄Cq2

M̄Tq2

δπp,πq1
πq2

. (12)

The ph-pair color representations Cp = (00) may be di-
rectly related to physical states while the colored Cp =
(11) ones need another operator in order to couple to a
colorless representation.

The di-q operators are given by

[

b†
q1

⊗ b†
q2

]γa

µa
=

∑

MJqi
MCqi

MTqi

〈Jq1
MJq1

, Jq2
MJq2

|JaMJa
〉

〈(10)MCq1
, (10)MCq2

|CaMCa
〉〈Tq1

MTq1
, Tq2

MTq2
|TaMTa

〉

b
†
k1,πq1

,Jq1
(10)(Yq1

,Tq1
);MJq1

MCq1
MTq1

b
†
k2,πq2

,Jq2
(10)(Yq2

,Tq2
);MJq2

MCq2
MTq2

δπa,πq1
πq2

. (13)

The di-antiquarks operator are given by

[

d
†
q̄1

⊗ d
†
q̄2

]γr

µr

=

∑

MJqi
MCqi

MTqi

〈Jq1
M̄Jq1

, Jq2
M̄Jq2

|JrMJr
〉

〈(01)M̄Cq1
, (01)M̄Cq2

|CrMCr
〉〈Tq1

M̄Tq1
, Tq2

M̄Tq2
|TrMTr

〉
d
†

k1,πq1
,Jq1

(01)(Ȳq1
,Tq1

);M̄Jq1
M̄Cq1

M̄Tq1

d
†

k2,πq2
,Jq2

(01)(Ȳq2
,Tq2

);M̄Jq2
M̄Cq2

M̄Tq2

δπr,πq1
πq2

. (14)

Clearly the di-q(di-q̄) are colored operators and they
need for another colored operator, e.g. a quark(antiquark)
operator, to couple to a colorless object to describe phys-
ical states.

3.3 ph-, di-quark- and di-antiquark phonon operators

The effective QCD Hamiltonian, eq. (2), can be expressed
in terms of the ph-pair, di-q and di-q̄ operators intro-
duced above. The one-phonon creation-operators of the
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ph-, di-quark– and di-antiquark–type are defined

Γ †
pπpγpµp

=
∑

qα,qβ

{

Xqαqβ ;pπpγp

[

b†
qα

⊗ d
†
q̄β

]γp

µp

−Yqαqβ ;pπpγp
(−1)φγpµp

[

dq̄β ⊗ bqα
]γ̄p

µ̄p

}

(15)

Γ †
aπa,γaµa

=
∑

qα,qβ

{

X ′
qαqβ ;aπaγa

[

b†
qα

⊗ b†
qβ

]γa

µa

−Y ′
qαqβ ;aπaγa

(−1)φγaµa

[

dq̄β ⊗ dq̄α
]γ̄a

µ̄a

}

(16)

and

Γ †
rπr,γrµr

=
∑

qα,qβ

{

X ′′
qαqβ ;rπrγr

[

d
†
q̄α

⊗ d
†
q̄β

]γr

µr

−Y ′′
qαqβ ;rπrγr

(−1)φγrµr [bqβ ⊗ bqα ]
γ̄r

µ̄r

}

, (17)

respectively, where the amplitudes X and Y are the
forward- and backward-going amplitudes. The phase
(−1)φγnµn = (−1)Jn−MJn (−1)χCn (−1)Tn−MTn in each
phonon operator n = p, a, r accounts for the scalar cou-
plings in the vacuum, eq. (9).

The one-phonon annihilation operators Γ nπnγnµn =
(Γ †

nπn,γnµn
)† satisfy Γnπnγnµn |RPA〉 = 0, for n = p, a, r.

Due to the fact that the di-q and di-q̄ are conjugate rep-
resentations, the determination of the vacuum amplitudes
Znπn,γn

(2)q
′

1
q
′

2
,q̄1q̄2

for the cases n = a, r, yields

Y ′
q
′

1
q
′

2
;aπaγa

(

X ′
q1q2;aπaγa

)−1
=Y ′′

q
′

1
q
′

2
;rπrγr

(

X ′′
q1q2;rπrγr

)−1
,

(18)
which is needed for the inversion of the transformation of
eqs. (16) and (17), as well as for the mapping of HQCD

eff

onto the RPA basis (sect. 4).

3.4 Baryon-like operators and representations

To complete this section we shall now introduce the
baryon representation obtained from the effective quarks
and the phonon operators described above. The present
work focuses on the description of the low-energy baryon
p, n and ∆ states. Therefore, we will focus on the quantum

numbers TB(JπB

B ) = 1
2 ( 1

2

+
), 3

2 ( 3
2

+
) and CB = (00), in or-

der to describe such baryon-like states. For both baryon
flavor-isospin values TB = 1

2 and 3
2 , the flavor-hypercharge

is equal to YB = 1.
The simplest baryon-like operators in this scheme are

given by

B
†
B1πB1

,γB1
µB1

=
[

b†
q1

⊗ b†
q2

⊗ b†
q3

]γB1

µB1

, (19)

where πB1
=

∏

i πqi
and γB1

= {JB1
, (YB1

TB1
), CB1

}.
These baryon-like operators do not account for any
ground-state correlations.

The first baryon-like operators that account for
ground-state correlations are

B
†
B2πB2

,γB2
µB2

=
[

B
†
B1πB1

,γB1

⊗ Γ †
pπp,γp

]γB2

µB2

. (20)

The number of baryon-like representations for the B
†
B2

operator is vast and they are obtained by the coupling
of the irreps of the colorless ph-phonon states (3.2) and
those of the baryon-like configurations of three quarks, as
in eq. (19).

As we have mentioned, for the purpose of the present
work we focus on the baryon-like irreps related to the nu-

cleon and ∆ states, i.e., J
πB2

B2
= 1

2

+
and 3

2

+
, (YB2

TB2
) =

(1, 1
2 ) and (1, 3

2 ) and CB2
= (00).

In order to get a positive parity for such baryon-
like states we take the lowest-energy meson-like solution
of the RPA spectrum. It turns out that such phonon
has the quantum numbers of the pion state, see sect. 4,

which requires for the baryon like operators B
†
B1πB1

,γB1

,

in eq. (20), to have negative parity J
πB1

B1
= 1

2

−
, 3

2

−
.

The other baryon-like operator that accounts for
ground-state correlations is

B
†
B3πB3

,γB3
µB3

=

[

[

b†
q1
⊗

[

b†
q2
⊗d

†
q̄3

]γ0
]

q1

⊗Γ †
a,πaγa

]γB3

µB3

,

(21)
where this operator can be seen as a quark in the presence
of a simple scalar ph-pair and a di-quark phonon. In order
to describe a positive-parity baryon-like state, the quark
denoted by q1 has the same parity as the di-q phonon op-
erator πq1

= πa. For the present work, we only consider the
di-q phonon state Ta(Jπ

a ) = 0(0+), which corresponds to
the lowest RPA solutions within the SU(3) color subspace
(01), needed in order to satisfy the colorless condition of
a physical state.

Under this approximation, the baryon-like opera-
tor (21) contributes to proton (neutron)-like states and
not to ∆-like states. This provides a description for the
∆-like state minimally as a combination of a pure three-
quarks state and a baryon-meson bound state. The so-
lutions for the lowest ph-pair and di-q phonon-states are
shown in sect. 5.

4 Bosonizations and the Hamiltonian

The RPA method is used to map the effective QCD Hamil-
tonian (2) onto a Hamiltonian describing the propaga-
tion of quarks, antiquarks and ph-, di-q-, di-q̄-phonons as
well as their interactions. The equation of motion in the

RPA formalism (HQCD
eff |nπnγnµn〉 = ωnπnγn

|nπnγnµn〉)
is equivalent to the double commutator

〈RPA|
[

Γ̂n′πnγnµn ,
[

H
QCD
eff , Γ †

nπnγnµn

]]

|RPA〉
= ωnπnγn

δn,n′ , (22)

with eigenvalues ωnπnγn
for n = p, a, r. The latter implies

four color subspaces of diagonalization i.e., Cp = (00), (11)
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and Ca = (20), (01), since the corresponding diagonal-
izations in the subspaces Cr = (02) and Cr = (10) are
symmetric with respect to Ca = (20) and Ca = (01),
respectively. In a first stage the RPA method leaves out
the Hamiltonian terms H31 and H13, i.e. the second and
third terms in eq. (7), corresponding to three creation and
one annihilation operators and their Hermitian conjugate
terms. These terms are taken into account by the trans-
formed Hamiltonian of eq. (23).

4.1 Mapped Hamiltonian

As we have already mentioned, the RPA method excludes
in a first stage the H31 and H13 terms of the effective QCD
Hamiltonian, eqs. (2)–(8). However, once the RPA method
is implemented and their solutions known, the effective
QCD Hamiltonian can be mapped onto a Hamiltonian
that describes the propagation of the original fermionic
particles (quarks and antiquarks) as well as the boson-like
particles (ph, di-q and di-q̄ phonons) and the interaction
between them. The interaction terms between these parti-
cles correspond to the following step in this approximation
on the description of the dynamics of effective particles at
low-energy QCD. To write the explicit form of the vertex
functions associated to these terms requires a larger space.
For the sake of simplicity, in the present work we shall give
a qualitative estimation of them. The procedure to get the
vertex functions is rather straightforward: one needs to
return to the effective Hamiltonian, eqs. (2)–(8), and re-
place the simple ph-pair, di-q and di-q̄ operators by linear
combinations of phonon operators. The latter is done by
inverting eqs. (15), (16) and (17), where the pseudo-norm
X2−Y 2 = 1 is satisfied by the forward and backward am-
plitudes of each phonon operator, as well as the relation
between the forward and backward amplitudes, eq. (18).

The general form of the mapped effective Hamiltonian
is given by

HQCD
eff, map =

∑

qµq

εq

(

b†
qµq

bqµq + d
†
q̄µq

dq̄µq

)

+
∑

n

∑

πnγnµn

ωnπnγn
Γ †

nπn,γnµn
Γ nπn,γnµn

+
∑

nπγ

∑

qq′

Λ
(1)
nπγ;qq′

∑

µ

(−1)γ−µ

√

dim(γ)

×
{

Γ †
n=pπ,γµ

(

[

b†
q
⊗ bq̄′

]γ̄

µ̄

+(−1)γ̄
q′+γq−γ̄

[

d
†
q̄′ ⊗ dq

]γ̄

µ̄

)

+ h.c.

}

+
∑

nπγ

∑

qq′

Λ
(2)
nπγ;qq′

∑

µ

(−1)γ−µ

√

dim(γ)

×
{

(

Γ †
n=aπ,γµ − (−1)γ−µ Γ n=rπ,γ̄µ̄

)

[

d
†
q̄
⊗ bq̄′

]γ̄

µ̄

+h.c.

}

πq = − πq = +

λ = −

1
2

λ =
1
2

E

0

εq

−εq

πq = + πq = −

Fig. 1. Single-particle space of configurations. Each level (up-
per level for quarks (λ = 1

2
), lower level for antiquarks (λ =

− 1
2
)) includes positive- and negative-parity states (πq = ±).

+
∑

nπγ

∑

qq′

Λ
(3)
nπγ;qq′

∑

µ

(−1)γ−µ

√

dim(γ)

×
{

(

Γ †
n=aπ,γµ− (−1)γ−µΓ n=rπ,γ̄µ̄

) [

b†
q
⊗ dq′

]γ̄

µ̄
+h.c.

}

.

(23)

For the interaction terms we have distinguished the type
of phonon operator by the first index n = p, a, r, using
the fact that γr = γ̄a and understanding that the irreps γ,
magnetic numbers µ and parity π of each phonon operator
and the vertex coefficients must correspond to the phonon-
type. In every interaction term the parity π associated
with the corresponding phonon operator has to be equal
to π = πq×πq′ , since the Hamiltonian is a scalar operator.

The quantities Λ
(i)
nπγ;qq′ are the vertex functions. Their

expressions will be published elsewhere. In this contribu-
tion we will restrict severely the Hilbert space, in order to
illustrate our procedure.

5 Effective interactions and numerical results

The calculation of the baryon-spectrum is a part of an
extensive ongoing project [9,21,28–30]. Here we present a
simple calculation to support the claim that a description
of baryon states using many-body techniques and an ef-
fective Hamiltonian is feasible. As we mentioned before,
the use of the interactions (23) needs to be further ex-
plained. The analysis involves e.g., the renormalization of

the vertex functions Λ
(i)
nπγ;qq′ in terms of the dimension

of the space of configurations, similar to that presented
in [9] for the renormalization of quark masses and interac-
tion parameters. Therefore, to illustrate the method, we

shall use effective vertex-coefficients Λ
(i)
nπγ;qq′ → Λ(i) and

work in the minimal space of quark (antiquark) configu-
rations depicted in fig. 1. The space of fig. 1 includes the
lowest-energy state for quarks and antiquarks εq and −εq,
see table 2, which are obtained from the diagonalization of
the kinetic term of eq. (6). The lowest RPA solutions for
the ph-pair and di-q phonon states with energies ωnπnγn

are shown in table 2.
It is worth adding a few words about the effective

quark, ph- and di-q-phonon energies. The effective quark
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Table 2. Quantum numbers (Tn(Jπn
n )) and energies of the

lowest effective quarks (n = q) and RPA phonon solutions for
ph-pairs (n = p) and di-q (n = a), in units of [GeV]. The
energy solutions for antiquark and phonon di-q̄ are the same
as those for the quark and phonon di-q respectively.

Effective particle Tn(Jπn
n ) Energy

quark 1
2

“

1
2

±
”

εq = 0.360

ph-phonon 1(0−) ωp = 0.705

di-q-phonon 0(0+) ωa = 1.131

energy was set so that the mass of three effective quarks
would be of the order of 1GeV, which yields a harmonic
oscillator length of 0.68 fm, while the energies of the ph-
and di-q-phonon states were a consequence of using simi-
lar parameters to those used in [9]. However, since we are
working in the minimal model space of fig. 1, some contri-
butions are not considered for this calculation and their
effects could modify the results shown in table 3. Some of
these effects are already evident in the energies reported
in table 2, like the effects of single-particle states with
higher quantum numbers, e.g., N > 1 and Jq = 3

2 . The
inclusion of these states should affect both baryon states
with JB = 1

2 , 3
2 . In the case of higher oscillation quanta

N > 1, the ph- and di-q-phonon states can acquire more
and more collectivity due to the larger number of such
pairs which can contribute to the vacuum of the model
and generate lower energy phonon states. All of these ef-
fects and many others (like l > 1) will be considered in a
further publication where an extended description of the
baryon spectrum using many-body methods will be pre-
sented.

In here, within the subspace of fig. 1 and the phonon
states of table 2, the baryon-like state for JB = 1

2 and 3
2

can be written as

|TB (JπB

B 〉 = b1|B1〉 + b2|B2〉 + b3|B3〉 (24)

and
|TB (JπB

B )〉 = b′1|B1〉 + b′2|B2〉, (25)

respectively. Thus, it is straightforward to show that in
order to describe the transitions between the baryon-like

states |Bi〉 of eqs. (19)–(21), the vertex-functions Λ
(1)
pπγ;qq′

and Λ
(2)
aπγ;qq′ contribute to the TB(JπB

B ) = 1
2 ( 1

2

+
) sub-

space and only Λ
(1)
pπγ;qq′ to the TB(JπB

B ) = 3
2 ( 3

2

+
) sub-

space. Therefore, we will use three parameters in order to
adjust the nucleon and ∆ baryon energies up to 2GeV.
For the purpose of this numerical calculation we will only
account for the colored components of the vacuum (01)
and (10), by the di-quark and di-antiquark phonon opera-
tors, while for the ph-pair phonon operator we restrict to
the colorless subspace (00).

In this example we restrict the dimensions to the min-
imal number of states described by the operators Bi of

eqs. (19)–(21). For that purpose, we have removed the
single-particle contributions to the baryon-like states |Bi〉
which have the same parity and energy, but higher an-
gular momentum πq = (−1)

1
2
−τ+l. For example, for the

|B1〉 states given by three quarks with total positive par-

ity πB1
=

∏3
i=1 πqi

, there are two possibilities, one with
the three effective quarks (λ = 1

2 ) in the state with
positive parity and the other with one quark with pos-
itive parity and two with negative parity. The latter is
ignored in this calculation since the transformation of
eq. (3), conserves parity in going from the harmonic-
oscillator basis to the effective basis, but the negative-
parity states come from angular-momentum excitations
(l = 1). Applying the same criteria for the other Bi states,
we have four B1 states, six B2 states and two B3 states for

TB(JπB

B ) = 1
2 ( 1

2

+
). Similarly, we have one B1 state, three

B2 states and zero B3 states for TB(JπB

B ) = 3
2 ( 3

2

+
). For

the quantum numbers TB(JπB

B ) = 3
2 ( 3

2

+
), the B3 states

do not contribute as we have mentioned in sect. 3.4.

The parameters (e.g. values of the vertex functions Λ)
used to calculate baryon-like states, and the resulting en-
ergies, are shown in table 3. The spectrum shows higher
degeneracy around the states which are not affected by
the interactions.

The parameters Λ(i) for the case TB(JπB

B ) = 1
2 ( 1

2

+
)

were adjusted by fitting as close as possible, simultane-
ously, the energy E1 to the proton energy and the E4

state to the experimentally reported N(1880) state, while
the rest of the states are a consequence of such a fit. The
results look promising, making the outstanding feature
the contributions from the phonon states. In particular,
the fact that the di-q-phonon state has a larger energy
than the ph-phonon state and with it making possible to
reach higher regions of the baryon spectrum. The larger
energy of the di-q-phonon state was something theoreti-
cally expectable, since it represents a colored (confined)
state and only acquiring physical meaning when couples
to another colored object. As we have mentioned before,
the phonon solutions (ph and di-q) will become more and
more collective when the configuration space would be ex-
tended and with that at least one phonon state is to be
expected at lower energies than those reported in table 2.
The latter will generate improvements of the E3 and E5

solutions, needed for a better description of the N(1710)
and N(2100) states, respectively.

The N(1440) state or Roper resonance corresponds to
a radial excitation of the nucleon. In simple quark models
with a harmonic oscillator potential, where the nucleon is
associated with the lowest state N = 0 and l = 0, the
next positive-parity state, like the Roper resonance, cor-
responds to N = 2 and l = 0. However, experimentally
the first negative-parity state N(1535) which can be asso-
ciated with N = 1 and l = 1 in quark models, turns out
to be heavier than the Roper state and such parity rever-
sal is not described correctly. In [31], the Roper resonance
was described as a low-energy collective baryon excita-
tion. Recently, the Roper resonance has had a theoretical
well supported explanation [13], where its description as
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Table 3. Vertex functions Λ, in units of MeV, and baryon energies Ei, in units of GeV, of states with quantum numbers
TB(JπB

B ) = 1
2
( 1
2

+
), 3

2
( 3
2

+
). The degeneration of each state is denoted by Ωi.

TB(JπB
B ) Λ(1) Λ(2) E1(Ω1) E2(Ω2) E3(Ω3) E4(Ω4) E5(Ω5) E6(Ω6)

1
2

“

1
2

+
”

55 85 0.948(1) 1.080(3) 1.785(5) 1.862(1) 2.211(1) 2.266(1)

3
2

“

3
2

+
”

106 – 1.035(1) 1.785(2) 1.830(1) – – –

E
[G

eV
]

1.0

1.5

2.0

N(2100)

N(2300)

p , n

TB (JπB
B ) = 1

2

(

1

2

+
)

Exp. Ei

TB (JπB
B ) = 3

2

(

3

2

+
)

Ei

E3

E2

E1

∆(1232)

Exp.

N(1880)

N(1710)

∆(1920)

E1

E2

E3

E4

E5

E6

N(1440)

∆(1600)

Fig. 2. Comparison between calculated energies Ei of baryon-
like states (solid lines) with experimental values (dashed lines)
taken from [32].

a proton’s radial excitation has been corroborated and its
low mass understood as an effect of a meson cloud that
shields the quark core.

In the present work, the radial excitations N > 1 have
not been considered in the configuration space of fig. 1.
Thus, the low energy of the E2 state concerning N(1440) is
understandable, since it represents basically three quarks
without radial excitations. The radial excitations will be
considered in a further publication as well as the influ-
ence of more collective meson-like states on the baryon-
like spectrum, i.e., the B2 contributions. The latter will
provide a closer description, in this model, of the Roper
state as the one given in [13].

For the case of TB(JπB

B ) = 3
2 ( 3

2

+
), if the parame-

ter Λ(1) is set to zero the model predicts one state at
1.080GeV and another to 1.785GeV, which it is a rough

estimation for the observed experimental states 3
2 ( 3

2

+
) be-

low 2GeV, see fig. 2. In this case, it is evident that the
physical ∆(1232) state is not well reproduced with three
effective quarks, all of them with Jq = 1

2 , and being the

first indicator that higher-energy contributions could be
needed, e.g. higher harmonic-oscillator quanta N > 1
and single particle states with Jq = 3

2 . Once the inter-

action is turned on, the parameter Λ(1) is chosen such
that the energy difference between the eigenvalue E1 and
the ∆(1232) state is not larger than 200MeV, letting the
highest eigenvalue be located at 1.830GeV. The energy
difference between the two higher solutions E2 and E3 is
smaller than the observed between the ∆(1600) and the
∆(1920). In this case, the E2 solution is expected to be
improved with a larger configuration space, as mentioned
before, but the E1 solution seems to need single-particle
contributions with N > 1 or Jq = 3

2 , which will rise the
E1 energy closer to the ∆(1232) state.

6 Conclusions

We have presented a description of baryon-like states
within an effective QCD Hamiltonian, including only 4
orbitals states (two particle and two antiparticle states),
which is simplistic but enabled us to understand the pos-
sible detailed structure of baryon-like states. The main
conjecture is that colored pairs may contribute to the
structure of these states by means of collective excitations
and the resulting ground-state correlations. We started
from the QCD Hamiltonian within the Coulomb Gauge
and then applied several steps, as restricting to few or-
bitals states, leading to a coupling scheme of effective
degrees of freedom. We applied the RPA method to de-
duce the spectrum of the baryon-like states. The results
are quite encouraging, since they show that the use of
non-perturbative many-body techniques, borrowed and
adapted from more conventional many-body methods, are
powerful enough to simplify the task of treating many
quark and antiquark configurations within the real QCD,
as needed for the microscopic interpretation of baryon
states at low energy.
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Eur. Phys. J. A (2018) 54: 22 Page 9 of 9

In memoriam: Prof. Walter Greiner, to whom this article
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has been extremely broad, ranging from nuclear physics,
particle physics, atomic physics and many more. He was
one of the principal founders of the GSI, a laboratory for
heavy ion physics near Darmstadt, Germany, and of the
Frankfurt Institute for Advanced Physics (FIAS) at the
University in Frankfurt am Main, Germany. Practically all
heavy ion physicists originated in Frankfurt or visited it
frequently. Prof. Greiner helped to develop this new field
which is very active today. Theories initiated in Frank-
furt are relevant in experimental facilities like Brookhaven
CERN and GSI. One of the authors of the present article
(POH) was one of Prof. Greiner’s two-hundred PhD stu-
dents and he is very thankful for the very broad education
experienced under the leadership of Prof. Greiner. There
are only few persons which imprinted their thinking and
actions into the physics community and Prof. W. Greiner
was certainly one of them.

Appendix A. Effective quarks and antiquarks

operators

The rule to raise and lower indices are the following:

b
†
kπ,JqCq(Yq,Tq),MJq MCq MTq

=

(−1)χFq +χCq (−1)Jq−MJq b† kπJqC̄q(−Yq,Tq),−MJq M̄Cq−MTq

bkπ,JqCq(Yq,Tq),MJq MCq MTq =

(−1)χFq +χCq (−1)Jq−MJq bkπJqC̄q(−Yq,Tq),−MJq M̄Cq−MTq
,

(A.1)

and similarly,

d† kπ,JqCq(Yq,Tq),MJq MCq MTq =

(−1)χFq +χCq (−1)Jq+MJq d
†

kπ,JqC̄q(−Yq,Tq),−MJq M̄Cq−MTq

dkπ,JqCq(Yq,Tq),MJq MCq MTq
=

(−1)χFq +χCq (−1)Jq+MJq dkπ,JqC̄q(−Yq,Tq),−MJq M̄Cq−MTq .

(A.2)

The phase (−1)χFq is equal to (−1)
1
3
+

Yq
2

+MTq [27]. The
equivalent notation holds for the color phase (−1)χCq .
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