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Abstract

Distributing pieces of knowledge in large, usually distributed orga-
nizations is a central problem in Knowledge and Organization manage-
ment. Policies for distributing knowledge and information are mostly
incomplete or in potential conflict with each other. As a consequence,
decision processes for information distribution may be difficult to for-
malize on the basis of a rationally justified procedure. This article
presents an argumentative approach to cope with this problem based
on integrating the JITIK multiagent system with Defeasible Logic
Programming (DeLP), a logic programming formalism for defeasible
argumentation. We show how power relations, as well as delegation
and trust, can be embedded within our framework in terms of DeLP,
in such a way that a dialectical argumentation process works as a
decision core. Conflicts among policies are solved on the basis of a
dialectical analysis whose outcome determines to which specific users
different pieces of knowledge are to be delivered.
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1 Introduction and Motivations

Information and knowledge (IK) have been identified as valuable assets [8, 26]
in modern organization nowadays, motivating the development of different
Knowledge Management (KM) techniques. In the context of KM, distribut-
ing customized pieces of IK in large and distributed organizations is a central
process. This process turns out to be a decision making problem as well, be-
cause IK to be distributed to different users is not the same, so it must be
decided upon which IK item goes to each user. Organization policies for IK
dissemination should be defined to deliver notifications to specific organiza-
tion members, according to management criteria. Indeed, a central concern
in KM is to facilitate knowledge flow within relevant actors within an or-
ganization. Organizations typically have different criteria establishing their
information distribution policies, and in many real situations these policies
conflict with each other.

The influence of power relations on policies for information distribution
inside organizations has been the subject of many studies in Knowledge Man-
agement (KM) [27, 22]. Even though modern organization theories emphasize
flexibility and learning over rigid hierarchical structures [26], formal power
relations have remained as a key component in any large organization. A
counterpart of formal relations are informal relations in organizations, no-
tably trust relations [19], which are normally not represented in the orga-
nization’s formal structure, but are nonetheless extremely important. Trust
and reputation relations have been formalized for computational purposes
[34, 30] with the goal of defining what is believed to be reliable in the con-
text of such informal relations.

A common feature characterizing these policies is the presence of de-
feasibility, i.e. policies may change in the light of new information, such as
particular interests and/or information needs of users, exceptional situations,
etc. Thus, making decisions about whether to deliver or not a specific piece
of information to certain users is indeed a challenging problem, particularly
in the context of Agent-mediated Knowledge Management. In this context,
defeasible argumentation [13, 32] has evolved in the last decade as a suc-
cessful multi-disciplinary approach to formalize commonsense reasoning and
decision making problems as the ones discussed before.

This article presents a novel approach to solve the above problem in
knowledge distribution in large organizations, based on integrating JITIK (a
multiagent Knowledge Management system) with Defeasible Logic Program-
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ming (DeLP), a logic programming formalism for defeasible argumentation.
We show how power relations, as well as delegation and trust, can be embed-
ded within our framework in terms of DeLP, in such a way that a dialectical
argumentation process works as a decision core. We show how to represent
power and trust capabilities associated with the agents involved, encompass-
ing both formal and informal relations in organizations. Conflicts emerging
from potentially contradictory policies as well as from trust and empower-
ment issues are solved on the basis of a dialectical analysis whose outcome
determines whether a particular information item should be delivered or not
to a specific user.

2 The JITIK Framework

JITIK, which stands for “Just-In-Time Information and Knowledge” [4, 5,
1], is a multiagent-based system for disseminating pieces of IK among the
members of a large or distributed organization, thus supporting a Knowledge-
management function. It is aimed to deliver the right IK to the adequate
people just-in-time. The JITIK agent model is shown in Fig. 1. Personal
Agents work on behalf of the members of the organization. They filter and
deliver useful content according to user preferences. The Site Agent provides
of IK to the Personal Agents, acting as a broker between them and Service
agents. Service agents collect and detect IK pieces that are supposed to be
relevant for someone in the organization. Examples of service agents are the
Web Service agents, which receive and process external requests, as well as
monitor agents which are continuously monitoring sources of IK (web pages,
databases, etc.). Other Service agents monitor at time intervals the state of
an IK resource, like a web page, data in an enterprise’s database, etc.

The Ontology agent contains knowledge about the interest areas for the
members of the organization and about its structure [6]. We store this in-
formation in ontologies [3]. Ontologies are structured representation of con-
cepts, classes, individuals, properties, and other categories. We used open
standards like DAML-OIL[23], which allow to publish in the internet onto-
logical knowledge in a way understandable both by humans and machines.

In JITIK ontologies we usually store relevant taxonomies, as the ones
for interest areas, as well as the structure of the organization. For example,
in an academic institution, the interest areas could be the science domains
in which the institution is specialized, and the organizational chart of the

3



Figure 1: The JITIK agent model

institution gives the structure of the organization.
Site agents are the heart of a “cluster” composed by one site agent and

several personal agents served by the former. In an organization, clusters
would be associated to departments, divisions, etc., depending on the size of
them. Networks can be made up connecting several site agents. Distributed
organizations like multinational companies would have a web of many con-
nected site agents. Among the services provided by JITIK we have the
following:

Recommendation services : A user’s profile is represented by a set of points in the
taxonomies, as each user could have many interests and could be located at different
parts of the organizational structure. As JITIK keeps track of user interests and
preferences it is able to recommend content to users on demand. Recommended
content may be used in Portals or Web applications.

Subscription services : JITIK allows users to subscribe to changes in specific areas.
Also, users may customize the media and frequency of JITIK notifications using
using simple web-based interfaces by means of rules. Rules may be defined so as
messages relative to certain topics are handled with higher priorities. A rule may
state that several alerts should be sent to their cell-phone via SMS, and also define
that interest-area messages be sent in a weekly summary via email.

Content distribution services : Enterprise applications can deliver content to the sys-
tem using its semantic-based content distribution services. When new content is
received it is classified and distributed to those users who could be interested. Users
receive the notifications of new content as specified by their own rules.
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3 Modelling Conflicting Policies in JITIK: an

argument-based approach

As explained before, JITIK aims at disseminating pieces of IK among the
members of a large or distributed organization, thus supporting a Knowledge-
management function. The Site Agent is in charge of providing IK to the Per-
sonal Agents, acting as a broker between them and Service agents. Clearly, in
large or distributed organizations there are usually complex decision-making
situations regarding IK distribution, specially in the presence of potentially
incomplete information concerning metadata and user profiles, as well as
competing policies, which can include several exceptions. Therefore, it is
important that Site agents are provided with appropriate knowledge repre-
sentation and inference capabilities to solve such problems.

Next we will provide a basic formalization for the main problem a JITIK
Site Agent has to solve, namely distributing items among users according to
possibly conflicting policies. Consider a set I = {i1, i2, . . . , ik} of information
items, which has to be distributed among a set U = {u1, . . . , us} of users.
Every item i ∈ I should be delivered to only a distinguished subset of U . To
accomplish this task, the Site Agent will apply a distribution policy p, which
can be formally defined as a mapping p : I → ℘(U). Distributing an item i
to a user u is compliant with a policy p whenever (i, {. . . , u, . . .}) ∈ p.

In any real-world organization, it is clear that policies are not formulated
in this way, but instead they are specified by a number of constraints enforced
by the organization (e.g. access rights, power relationships, etc.). If P is a set
of possible policies in the organization, given two policies p1, p2 ∈ P , we say
they are in conflict whenever (i, {. . . , u, . . .}) ∈ p1 but (i, {. . . , u, . . .}) 6∈ p2,
or viceversa. A conflict means that an information item i cannot be compliant
with two policies p1 and p2 at the same time. We can define a dominance
partial order ≺ among possible policies in P , writing p1 ≺ p2 to indicate that
a policy p2 is preferred over policy p1 in case they are in conflict. In this
setting, the “information distribution problem” to be solved by a JITIK Site
Agent could then be recast as follows:

Send every information item i ∈ I to a user u ∈ U following a distri-
bution policy p iff (a) i is compliant with p; and (b) p is preferred wrt
to every non-dominated policy p′ ∈ P .1

1Note that characterizing p depends on the specific sets U , I and P under consideration.
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Note that dominance characterizes a transitive ordering among policies, with
the following particular feature: a policy pi can be dominated by another
policy pj, making pi not valid. However, pj can on its turn be dominated
by another policy pk. If that is the case, the policy pi may be perhaps valid
again (as the policy pj was “defeated” by policy pk).

Conflicting situations like the ones described before can be nicely recast
in argument-based reasoning systems [13]. In fact, during the last decade
defeasible argumentation has emerged as a new reasoning paradigm, which
provides a useful setting to formalize commonsense qualitative reasoning in
a computationally attractive way. Recent research has shown that argumen-
tation can be integrated in a growing number of real-world applications such
as multiagent systems [31], knowledge engineering [7], and clustering [21],
among many others.

Several defeasible argumentation frameworks have been developed on the
basis of extensions to logic programming (see [13, 32]). Defeasible logic pro-
gramming(DeLP) [18] is one of such formalisms, combining results from de-
feasible argumentation theory [35] and logic programming. DeLP is a multi-
purpose programming language, which combines powerful representation fea-
tures inherited from logic programming as well as argumentative reasoning
capabilities in a unified framework. DeLP has proven to be particularly
attractive in the context of many real-world applications, such as cluster-
ing [21], natural language processing and recommender systems [14], among
others. DeLP provides the possibility of representing information in the form
of defeasible and strict rules in a declarative manner. An important char-
acteristic of the DeLP approach is that by performing defeasible reasoning
dialectically it can deal successfully with potentially contradictory informa-
tion. The process of deciding if a conclusion C is supported, or warranted,
begins by analyzing if there exists an undefeated argument (a warrant) sup-
porting C, i.e, an argument for which every possible attacking argument has
been defeated. An attack becomes a defeat when the attacking argument is
better, in some specific sense, than the supporting argument. In order to
make this article self-contained, in the next Section we will present a brief
overview of the DeLP framework.

Here we do not discuss the problem of finding out whether such a mapping actually exists,
but rather focus on enforcing dominance on conflicting policies.
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4 Defeasible Logic Programming: overview

Defeasible logic programming (DeLP) [18] is a defeasible argumentation for-
malism based on logic programming. A defeasible logic program2 is a set
K = (Π, ∆) of Horn-like clauses, where Π and ∆ stand for sets of strict and
defeasible knowledge, respectively. The set Π of strict knowledge involves
strict rules of the form p ← q1 , . . . , qk and facts (strict rules with empty
body), and it is assumed to be non-contradictory. The set ∆ of defeasible
knowledge involves defeasible rules of the form p −−≺ q1 , . . . , qk , which stands
for “q1, . . . qk provide a tentative reason to believe p.” The underlying logi-
cal language is that of extended logic programming, enriched with a special
symbol “ −−≺ ” to denote defeasible rules. Both default and classical negation
are allowed (denoted not and ∼, resp.). Syntactically, the symbol “ −−≺ ”
is all that distinguishes a defeasible rule p −−≺ q1 , . . . qk from a strict (non-
defeasible) rule p ← q1 , . . . , qk . DeLP rules are thus Horn-like clauses to be
thought of as inference rules rather than implications in the object language.
Deriving literals in DeLP results in the construction of arguments.

Definition 1 (Argument) Given a DeLP program P, an argument A for a
query q, denoted 〈A, q〉, is a subset of ground instances of defeasible rules in P
and a (possibly empty) set of default ground literals “not L”, such that: 1) there
exists a defeasible derivation for q from Π∪A; 2) Π∪A is non-contradictory (i.e,
Π ∪ A does not entail two complementary literals p and ∼ p (or p and not p)),
and 3) A is minimal with respect to set inclusion.

An argument 〈A1, Q1〉 is a sub-argument of another argument 〈A2, Q2〉 if A1 ⊆
A2. Given a DeLP program P, Args(P) denotes the set of all possible arguments
that can be derived from P.

The notion of defeasible derivation corresponds to the usual query-driven
SLD derivation used in logic programming, performed by backward chaining
on both strict and defeasible rules; in this context a negated literal ∼ p is
treated just as a new predicate name no p. Minimality imposes a kind of
‘Occam’s razor principle’ on arguments. The non-contradiction requirement
forbids the use of (ground instances of) defeasible rules in an argument A
whenever Π ∪ A entails two complementary literals.

2When it is clear from the context we will simply refer to a defeasible logic program as
a “DeLP program” or just “program”
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Definition 2 (Counterargument – Defeat) An argument 〈A1, q1〉 is a coun-
terargument for an argument 〈A2, q2〉 iff (1) There is an subargument 〈A, q〉 of
〈A2, q2〉 such that the set Π∪{q1, q} is contradictory; (2) A literal not q1 is present
in some rule in A1.A partial order ¹ ⊆ Args(P) × Args(P) will be used as a pref-
erence criterion3 among conflicting arguments. An argument 〈A1, q1〉 is a defeater
for an argument 〈A2, q2〉 if 〈A1, q1〉 counterargues 〈A2, q2〉, and 〈A1, q1〉 is pre-
ferred over 〈A2, q2〉 wrt ¹. For cases (1) and (2) above, we distinguish between
proper and blocking defeaters as follows:

• In case (1) the argument 〈A1, q1〉 will be called a proper defeater for 〈A2, q2〉
iff 〈A1, q1〉 is strictly preferred over 〈A, q〉 wrt ¹.

• In case (1), if 〈A1, q1〉 and 〈A, q〉 are unrelated to each other, or in case (2),
〈A1, q1〉 will be called a blocking defeater for 〈A2, q2〉.

Specificity [35] is used in DeLP as a syntactic preference criterion among
conflicting arguments, favoring those arguments that are more informed or
more direct [35, 36]. However, other alternative preference criteria could
also be used [18]. Given an argument 〈A, Q〉, the definitions of coun-
terargument and defeat allows to detect whether other possible arguments
〈B1, Q1〉,. . . ,〈Bk, Qk〉 are defeaters for 〈A, Q〉. Should the argument 〈A, Q〉
be defeated, then it would be no longer supporting its conclusion Q. How-
ever, since defeaters are arguments, they may on their turn be defeated. That
prompts for a complete recursive dialectical analysis to determine which argu-
ments are ultimately defeated. To characterize this process we will introduce
some auxiliary notions.

An argumentation line starting in 〈A0, Q0〉 (denoted λ〈A0,Q0〉 ) is a se-
quence [〈A0, Q0〉, 〈A1, Q1〉, 〈A2, Q2〉, . . . , 〈An, Qn〉, . . . ] that can be thought
of as an exchange of arguments between two parties, a proponent (evenly-
indexed arguments) and an opponent (oddly-indexed arguments). Each ar-
gument 〈Ai, Qi〉 is a defeater for the previous argument 〈Ai−1, Qi−1〉 in the
sequence, i > 0. In order to avoid fallacious reasoning, dialectical constraints
are imposed on such an argument exchange to be considered rationally ac-
ceptable in light of a given program P (viz. disallowing circular argumen-
tation, enforcing the use of proper defeaters to defeat blocking defeaters,
etc.4)

3Specificity [35] is used in DeLP as a syntax-based criterion among conflicting ar-
guments, preferring those arguments which are more informed or more direct [35, 36].
However, other alternative partial orders could also be used.

4For an in-depth treatment of DeLP the reader is referred to [18].
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Given a program P and an initial argument 〈A0, Q0〉, the set of all accept-
able argumentation lines starting in 〈A0, Q0〉 accounts for a whole dialectical
analysis for 〈A0, Q0〉 (i.e., all possible dialogues rooted in 〈A0, Q0〉), formal-
ized as a dialectical tree T〈A0,Q0〉. Nodes in a dialectical tree T〈A0,Q0〉 can be
marked as undefeated and defeated nodes (U-nodes and D-nodes, resp.): all
leaves in T〈A0,Q0〉 will be marked as U-nodes (as they have no defeaters), and
every inner node is to be marked as D-node iff it has at least one U-node
as a child, and as U-node otherwise. An argument 〈A0, Q0〉 is ultimately
accepted as valid (or warranted) with respect to a DeLP program P iff the
root of its associated dialectical tree T〈A0,Q0〉 is labeled as U-node.

Solving a query Q with respect to a given program P accounts for deter-
mining whether Q is supported by a warranted argument. Different doxastic
attitudes are distinguished when answering query q according to the asso-
ciated status of warrant: Y es (accounts for believing Q iff there is at least
one warranted argument supporting Q on the basis of P); No (accounts for
believing ∼Q iff there is at least one warranted argument supporting ∼Q on
the basis of P); Undecided (neither Q nor ∼Q are warranted wrt P); and
Unknown (Q does not belong to the signature of P).

5 Agent-mediated IK Distribution through

the integration of JITIK and DeLP

The JITIK framework presented in Section 2 provides a suitable agent-based
platform for knowledge dissemination, taking into consideration hierarchies
for users and content classification for determining how distribution rules are
to be applied. However, in the case of policies with exceptions or competing
policies, specialized criteria have to be explicitly encoded in both Site and
Personal Agents in the JITIK platform. In many respects such an approach
is undesirable. On the one hand, such changes involve modifying the under-
lying decision algorithm. The correctness of such changes may be difficult
to test, as unexpected side-effects might arise for new future cases. On the
other hand, the knowledge engineer should be able to encode knowledge as
declaratively as possible, including the possibility of representing competing
policies. Such knowledge should be independent of the rational procedure
for determining which is the winning policy when conflicting situations arise.

In summary, a number of common features can be identified in large
organizations which complicate knowledge dissemination, namely:
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• Many different hierarchies of organization-related concepts: fields, roles, member
interests, etc. These hierarchies can have exceptions, as sometimes they may come
in conflict with organization policies.

• Members of the organization assigned to different areas or divisions and one or more
roles within the organization structure (e.g. CEO, manager, supervisor), usually
within a personnel hierarchy. Such hierarchies do not have exceptions, but they
assign different decision power or “permissions” to their members, affecting the
ultimate outcome of many decision making processes. Each member will also have
his/her own personal preferences about IK delivery.

• There are different organization policies which prescribe how to proceed when IK
items are to be distributed among different members or users. Many of such policies
are defeasible, specially in the presence of potentially incomplete information con-
cerning metadata and user profiles. As a result competing policies usually emerge,
including exceptions at different levels within the organization structure.

To model the above situations in a computationally attractive way our
proposal consists of integrating the JITIK framework with DeLP, incorpo-
rating distribution policies for Site Agents explicitly in terms of defeasible
logic programs. As explained in Section 2, a Site Agent AgS is responsible
for distributing IK among different Personal Agents Ag1, . . .Agn. We will
use DeLP programs P1, . . . , Pn to represent user preferences associated with
these agents, possibly based on trust relationships wrt other agents or parts
of the organization. Knowledge in the Site Agent AgS will be represented by
another program PS. In contrast with the knowledge available to Personal
Agents, PS will contain organizational corporate rules defining power and
trust relationships (hierarchies, declarative power, etc.) as well as (possibly
conflicting) policies for IK distribution among personal agents.

Given a list I = [Item1, . . . , Itemi] of IK items to be distributed by the
Site Agent AgS among different Personal Agents Ag1, . . . , Agn, a distin-
guished predicate deliver(I, U) will be used to determine which items in I
are intended to be delivered to a specific user u ∈ U . This will be solved
on the basis of a program P taking into account the Site Agent’s knowledge,
the metadata corresponding to the incoming items to be distributed and the
personal preferences of the Personal Agents involved. This is made explicit
in the algorithm shown in Fig. 2. Note that every time a new item i is deliv-
ered to a Personal Agent Agi, the source s ∈ S where this item i comes from
(probably another Personal Agent) is identified. Every Personal Agent has a
built-in reputation function to assess the reliability of every possible source s.
The reputation of s wrt Agi will be increased (resp. decreased) if the items
delivered by s to Agi are satisfactory (resp. non-satisfactory) according to
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some acceptance criterion. Should the reputation of s be lower than a given
threshold for Agi, then s is no longer considered to be a reliable source. 5

Solving queries based on the deliver predicate wrt the DeLP inference en-
gine will automate the decision making process for Site Agents, providing
a rationally justified decision even for very complex cases, as we will see in
Section 6. The complexity of the algorithm in Fig. 2 is clearly polynomial,
but of course there is a hidden cost in solving the query deliver(item,Agi),
which could depend on the number of items and agents involved.

Modelling Power and Trust for Knowledge Distribution

Our previous work on integrating defeasible argumentation with IK distribu-
tion was restricted to aspects like corporate hierarchies, domain classifications
and individual preferences [11], leaving out a very relevant aspect in mod-
elling large organizations, namely the presence of different levels of trust and
empowerment. In our current proposal we will model these aspects by consid-
ering some distinguished sets: a) a set U of users (user identifiers); b) a set I
(implemented actually as a list) of specific information items to be delivered;
c) a set S of information sources (usually other agents in the organization);
d) a set P of permission levels (like “everybody”, “ceo”, etc.); and e) a set
F of fields or areas. Every information item i ∈ I will have attributes, like a
f ∈ F (which is related to i by the isAbout(i, f) relation) and the source of
that information item (related to i by the source(i, s) relation, with s ∈ S).
A subset M ⊆ I corresponds to mandatory items; non-mandatory items are
said to be optional. We assume that fields in the organization are organized
in hierarchies by means of the subF ield(f1, f2) relation, with f1, f2 ∈ F . In
particular, the isAbout relation is based on computing the transitive closure
of subF ield.

Users have attributes too, like permissions(u, p) with u ∈ U, p ∈ P . The
organizational hierarchy is established through the subordinate(l1, l2) rela-
tion, for permission levels li, and its transitive closure depends(l1, l2). In
order to be able to delegate power from an user u1 to another user u2 it
is required that the user u2 depends on user u1 according to his/her po-
sition in the organization hierarchy. This is captured by the can delegate
relation. Trust is modelled using the relies(u, s, f) relation, with u ∈ U ,

5We provide the reputation function reputationAgi(S) just as a conceptual element in
our framework. An in-depth treatment of this topic is outside the scope of this paper; the
interested reader is referred to the literature in the area (e.g. [34, 33]).
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ALGORITHM DistributeItems
{Executed by Site Agent AgS to decide distribution of items in I
according to power & trust information available}
INPUT: List I = [item1, . . . , itemk] of incoming items,

DeLP programs PS ,P1, . . . ,Pn

OUTPUT: Item distribution to Personal Agents
BEGIN
P ′S := PS ∪ {info(item1), . . . , info(itemk)}
{Encode incoming items as new facts for Site Agent}
FOR every item item ∈ I

FOR every Personal Agent Agi supervised by AgS

Let P = P ′S ∪ Pi

Let s = source of item
IF reputationAgi(S) > Threshold THEN

Using program P, solve query deliver(item,Agi)
IF deliver(Item,Agi) is warranted

THEN
Send message item to agent Agi

reputationAgi(S) ← reputationAgi(S) + EvalMsg(item, Agi)
END

Figure 2: Algorithm for Knowledge Distribution using DeLP in a Site Agent

s ∈ S and f ∈ F , meaning that user u is confident about information items
coming from source s when those items are about field f . We consider a
low-level reputation management mechanism (see algorithm in Fig. 2) for
numerically adjusting a reputation level; this is reflected in the knowledge
represented at the logical level through the conf predicate (see rules d5 and
d6 in Fig. 2). The function EvalMsg(item,Agi) returns a numerical value
which allows to increase/decrease the existing reputation agent Agi has with
respect to the source of item according to some satisfiability measure agent
Agi has. Thus it could be the case that EvalMsg(item, Agi) = k > 0
whenever item satisfies Agi expectations, and EvalMsg(item,Agi) = k < 0
otherwise. Should it be the case that item is not actually delivered to Agi,
then EvalMsg(item,Agi) = 0 (see discussion in examples in Section 6).

Finally, at the top level of our model we define the deliver(i, u) relation,
which indicates that an item i is to be distributed to user u according to
the knowledge available for the SA and the particular user profile associated
with the user u. Other details can be found in the DeLP code given in Fig.4.
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6 A Worked Example

Next we present an illustrative example of the our approach. We assume
a typical corporate environment where members (users) could have differ-
ent rights within the organization (e.g. CEO, managers, supervisors, etc.),
belonging to different organization areas (e.g. production, marketing, etc.).

Let us suppose that there are memos (items) which have to be deliv-
ered by a Site Agent to different users in the organization. The Site Agent
is required to take hierarchies into account, performing inheritance reason-
ing to make inferences: the manager can give orders to programmers, but
programmers cannot give orders to the manager. Note that there could be
exceptions to such hierarchies, e.g. if the CEO empowers a programmer to
decide about software purchase. In our example, IK items made available
from the organization to the Site Agent will correspond to different memos,
which will be encoded with a predicate info(Id, A, L,M, S), meaning that the
memo with identifier Id is about area A and it can be accessed by users of
at least level L. Other attributes associated with the memo are whether it is
mandatory (M = 1) or optional (M = 0), and the source of origin S. Thus,
the fact info(id3, computers, manager, 0, peter) ← indicates that the memo id3 is
about computers, it is intended at least for managers, it is not mandatory,
and it has been produced by peter.

Fig. 4 shows a sample DeLP code associated with a Site and a particular
Personal agent. 6 Strict rules s1 to s10 characterize permissions and extract
information from memos. Rule s1 defines that a user P is allowed access to
item I if he/she has the required permissions, which are given as facts (f7, f8

and f9). Permissions are also propagated using the strict rules s4, s5 and s6,
where the binary predicate depends establishes the organization hierarchy,
stating that the first argument person is (transitively) subordinated to the
second one. This predicate is calculated as the transitive closure of a basic
predicate subordinate (defined by facts f10 and f11), which establishes subor-
dinate relationships pairwise. Thus, having e.g. granted permissions as CEO
allows the CEO to have access to every memo corresponding to lower level
permissions. Rule s7 indicates when an organization member can delegate
power on some other member. Delegation of power is also based on subor-
dination relationships. Rule s2 and s3 define the predicate isAbout(I, A) as

6Note that we distinguish strict rules, defeasible rules, and facts by using si, di and fi

as clause identifiers, respectively.
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an information hierarchy among subfields. The basic case corresponds to a
subfield for which specific information is available (rule s2), otherwise rela-
tionships in this hierarchy (facts f12-f17) are used. Finally, rules s8, s9 and
s10 define auxiliary predicates source, mandatory and field (yes/no) which
allow to extract these particular attributes from info facts, simplifying the
subsequent analysis.

Let us now consider the defeasible rules for our Site Agent. Rules d1-d3

define when an item I should be delivered to a specific user U : either be-
cause it is interesting for U , or because it is mandatory for U , or because
it comes from an authorized source. Rule d4 defines when something is in-
teresting for a given user. Rule d5-d7 define when a user relies on a source
(another user) wrt some field F . Rules d5 and d6 establish a “näıve” transi-
tive perspective on trust: a user U relies on a source (user) S on a field F
if U has confidence on S on F according to the available knowledge, or if U
has confidence on some other source S ′, such that S ′ relies on S. Note that
rule d7 establishes that unreliability is defined as “not ultimately provable
as reliable” via default negation. Rules d8-d11 define criteria for authorizing
a source for delivering information on a field F : either because the source
works on F (d9), or because the source got explicit power delegation from
a superior (d11). Rule d10 establishes an exception to d9 (users who falsified
reports are not authorized). Facts f1-f3 characterize trust relationships (e.g.
joe trusts mike about computers, but not about politics) stored by the Site
Agent.7 Similarly, facts f4-f6 characterize explicit authorizations and delega-
tions. Finally, let us consider the DeLP program associated with a particular
Personal Agent (e.g. Joe). A number of facts represent Joe’s preferences (in-
terest fields), and a defeasible rule d′1 associated with his preferences indicates
that he is not interested in memos from unreliable sources.

We will also assume that Joe has some established reputation values
for other people acting as sources of information. We will consider three
people (mike, peter, and mary), and we will assume that Joe has the
same reputation level for everyone of them (i.e. reputationjoe(mike) =
reputationjoe(peter) = reputationjoe(mary) = 0.8). Let us also assume that
Threshold = 0.5

7Such trust relationships among Personal Agents could be semi-automatically estab-
lished on the basis of the reputation function mentioned in Section 5, computed by the
Site Agent.
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Solving Power and Trust Conflicts using Argumentation

For the sake of example, let us assume that there is a list of three information
items [Memo1,Memo2,Memo3] (see Fig. 5) corresponding to memos to be
distributed by our Site Agent, which encodes organization policies as a DeLP
program PS (shown in Fig. 4). By applying the algorithm given in Fig. 2,
these items will be encoded temporarily as a set Pitems = {info(Memo1),
info(Memo2), info(Memo3)} (facts fa-fc in Fig. 4). For the sake of simplic-
ity, we will assume that there is only one single Personal Agent involved, asso-
ciated with a specific user joe, whose role is manager. Joe’s Personal Agent
mirrors his preferences in terms of a DeLP program Pjoe = {d′1, f ′1, f ′2, f ′3},
which together with PS and Pitems will provide the knowledge necessary to
decide which IK items should be delivered to this specific user. Follow-
ing the algorithm in Fig. 2, the Site Agent will have to solve the queries
deliver(id3, joe), deliver(id2, joe) and deliver(id1, joe) wrt the DeLP pro-
gram PS ∪ Pitems ∪ Pjoe. We will show next how each of these queries is
solved in different examples that show how DeLP deals with conflicts among
organization policies and user preferences.

Example 1 Consider the query deliver(id3, joe). According to the information
provided (Fig. 5), the source of this particular item is mary, and reputationjoe(mary)
= 0.8. As mary’s reputation is greater than the threshold value the Site Agent has
(0.5), the algorithm in Fig. 2 establishes that this item could be of interest for joe
(as far as the reputation is concerned). Consequently, the query deliver(id3, joe)
is solved wrt the program PS ∪ Pitems ∪ Pjoe.

In this case joe is allowed to receive this item (rule s1), but it is neither
of interest for him (rule d1) nor coming from an authorized person (rule d3).
However, id3 is mandatory (fact fc), and hence the Site Agent can compute an
argument 〈A1, deliver(id3, joe)〉, with

A1 = { deliver(id3, joe) −−≺allowed(id3, joe), mandatory(id3) }
This argument has no defeaters, and hence it is warranted. Thus id3 will be deliv-
ered to joe. The corresponding dialectical tree has one node (Fig 3(i)).

Suppose now that joe considers item id3 is satisfactory according to his in-
formation needs. Thus EvalMsg(id3, joe) will be positive, and mary’s reputation
will be increased.

Example 2 Consider the query deliver(id1, joe). According to the information
provided (Fig. 5), the source of this particular item is mike, and reputationjoe(mike)
= 0.8. As mike’s reputation is greater than the threshold value the Site Agent has
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(0.5), the algorithm in Fig. 2 establishes that this item could be of interest for joe
(as far as the reputation is concerned). In this case the DeLP inference engine
will find the argument 〈B1, deliver(id1, joe)〉 with

B1 = {deliver(id1, joe)−−≺allowed(id1, joe), interest(id1, joe);
interest(id1, joe)−−≺ isAbout(id1, politics), interestF ield(politics, joe)}

However, 〈B1, deliver(id1, joe)〉 is defeated by 〈B2,∼ interest(id1, joe)〉, with

B2 = {∼ interest(id1, joe)−−≺ isAbout(id1, politics), interestF ield(politics, joe),
source(id1,mike), ∼ relies(joe,mike, politics);

∼ relies(joe, mike, politics)−−≺not relies(joe, mike, politics)8}

(i.e., according to joe’s confidence criteria, joe has no confidence on mike when
he talks about politics, so the source is unreliable.) In this case, the dialectical tree
T〈B1, distribute(id1, joe)〉 has two nodes in a single branch (see Fig. 3(ii)). There are
no other arguments to consider. Therefore the answer to the query is No, and
hence the Site Agent will not deliver id1 to joe.

As id1 was not delivered to joe, he cannot assess to what extent this item was
satisfactory according to his information needs. Thus EvalMsg(id3, joe) is zero,
and mike’s reputation remains unchanged.

Example 3 Consider the query deliver(id2, joe). According to the information
provided (Fig. 5), the source of this particular item is peter, and reputationjoe(peter)
= 0.8. Again, as peter’s reputation is greater than the threshold value the Site
Agent has, the algorithm in Fig. 2 establishes that this item could be of interest
for joe. Although joe is allowed to receive this item (s1), note that it is nei-
ther of interest for joe (d1) nor mandatory (d2). However, there is an argument
〈C1, deliver(id2, joe)〉 which provides a tentative reason to deliver id2 to joe, with

C1 = { deliver(id2, joe) −−≺allowed(id2, joe),
authorized deliver(id2, joe);

authorized deliver(id2, joe) −−≺ source(id2, peter),
field(id2, hardware),
isauthorized(peter, hardware) ;

isauthorized(peter, hardware) −−≺worksOn(peter, hardware) }.

However the argument 〈C1, deliver(id2, joe)〉 has as a defeater another argument,
namely 〈C2,∼ isauthorized(peter, hardware)〉, with

C2 = {∼ isauthorized(peter, hardware) −−≺worksOn(peter, hardware),
falsified reports(peter) }.

(peter falsified reports, hence he should not be authorized). However this sec-
ond argument is superseded by dana’s delegation, as there is a third argument
〈C3, isauthorized(peter, hardware)〉, where
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〈A1, deliver(id3, joe)〉U 〈B1, deliver(id1, joe)〉D
|

〈B2,∼ interest(id1, joe)〉U

(i) (ii)

〈C1, deliver(id2, joe)〉U
|

〈C2,∼ isauthorized(peter, hardware)〉D
|

〈C3, isauthorized(peter, hardware)〉U

(iii)

Figure 3: Dialectical trees for queries deliver(id1, joe), deliver(id2, joe) and
deliver(id3, joe) (examples 1,2 and 3)

C3 = {isauthorized(peter, hardware) −−≺authorized(dana, hardware),
delegates(dana, peter),
permissions(dana, ceo),
permissions(peter, everybody),
can delegate(ceo, everybody) }.

In this case, the dialectical tree T〈C1, distribute(id2, joe)〉 has three nodes (as shown
in Fig. 3(iii)). Therefore the answer to the query is Yes, and the Site Agent will
deliver id2 to joe. Suppose now that joe considers item id2 is not satisfactory
according to his information needs. Thus EvalMsg(id2, joe) will be negative, and
peter’s reputation will be decreased. If peter keeps sending items which do not
satisfy joe’s information need, he might be eventually disregarded as a reliable
source (when reputationjoe(peter) ≤ Threshold).

7 Implementation issues & Ongoing research

Performing defeasible argumentation is a computationally complex task. An
abstract machine called JAM (Justification Abstract Machine) has been spe-
cially developed for an efficient implementation of DeLP [18]. A full-fledged
implementation of DeLP is freely available online9, including facilities for vi-
sualizing arguments and dialectical trees. Several features leading to efficient

9See http://lidia.cs.uns.edu.ar/DeLP
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Site Agent Knowledge

s1) allowed(I, U) ← info(I, A, L, M, S), permissions(U,L).
s2) isAbout(I,A) ← info(I, A, L, M, T, S)
s3) isAbout(I,A) ← subF ield(SuperA,A), isAbout(I, SuperA).
s4) permissions(U,X) ← depends(X,Y ), permissions(U, Y ).
s5) depends(X, Y ) ← subordinate(X, Y ).
s6) depends(X, Z) ← subordinate(Y,Z), depends(X, Y ).
s7) can delegate(U1, U2) ← depends(U2, U1).
s8) source(I, S) ← info(I, , , , S).
s9) mandatory(I) ← info(I, , , 1, ).
s10) field(I, F ) ← info(I, F, , , ).
d1) deliver(I, U) −−≺ allowed(I, U), interest(I, U).
d2) deliver(I, U) −−≺ allowed(I, U), mandatory(I).
d3) deliver(I, U) −−≺ allowed(I, U), authorized deliver(I, U).
d4) interest(I, U) −−≺ isAbout(I,A), interestF ield(A,U).
d5) relies(U, S, F ) −−≺ conf(U, S, F ).
d6) relies(U, S, F ) −−≺ conf(U, S1, F ), relies(S1, S, F ).
d7) ∼ relies(U, S, F ) −−≺ not relies(U, S, F ).
d8) authorized deliver(I) −−≺ source(I, S), field(I, F ), isauthorized(S, F ).
d9) isauthorized(S, F ) −−≺ worksOn(S, F ).
d10) ∼ isauthorized(S, F ) −−≺ worksOn(S, F ), falsified reports(S).
d11) isauthorized(S, F ) −−≺ authorized(S1, F ), delegates(S1, S),

permissions(S, P ), permissions(S1, P1),
can delegate(P1, P ).

Facts about Confidence, Authorizations, and Power delegation
f1) conf(joe,mike, computers).
f2) ∼ conf(joe,mike, politics)
f3) conf(mike, bill, computers).

f4) ∼ authorized(peter, software).
f5) authorized(dana, hardware).
f6) delegates(dana, peter).
fx) falsified reports(peter).

Facts about Permissions, Roles and Hierarchies
f7) permissions(joe,manager) ←
f8) permissions(peter, everybody) ←
f9) permissions(dana, ceo) ←
f10) subordinate(everybody, manager) ←
f11) subordinate(manager, ceo) ←
f12) subF ield(hardware, computers) ←
f13) subF ield(processors, hardware) ←
f14) subF ield(software, computers) ←
f15) subF ield(programing, software) ←
f16) subF ield(computers, infotopics) ←
f17) subF ield(politics, infotopics) ←
f18) worksOn(peter, software) ←

Figure 4: DeLP code for a Site Agent in JITIK
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Information Items as facts

fa) info(id1, politics, everybody, 0, mike) ←
fb) info(id2, hardware,manager, 0, peter) ←
fc) info(id3, processors, manager, 1,mary) ←

Personal Agent Knowledge – user preferences

d′1) ∼ interest(I, joe) −−≺ isAbout(I, A), interestF ield(A, joe), source(I, S),
∼ relies(joe, S,A).

f ′1) interestF ield(computers, joe) ←
f ′2) ∼ interestF ield(hardware, joe) ←
f ′3) interestF ield(politics, joe) ←

Figure 5: DeLP code for incoming Information Facts and Preferences in a
Personal Agent in JITIK

implementations of DeLP have also been recently studied, in particular those
related to computing dialectical trees efficiently [16] and extending DeLP to
incorporate possibilistic reasoning [15].

One aspect which deserves particular attention is the comparison between
DeLP knowledge encoding capabilities and other rule-based systems, which
have the well-known disadvantage of being brittle [20], as adding or deleting
one rule may substantially change the behavior of the system. In this respect,
DeLP inherits all declarative features from logic programming, and as such
is highly elaboration tolerant: Answers are always supported by arguments
built on the basis of a given DeLP program. Clearly, it is possible that a
change in the program (such as the addition or deletion of some program
rules) might change the answer obtained as an output for a given query, but
any of such changes can be perfectly traced back and justified by showing
the underlying dialectical analysis that led to this change.

An implementation of the IK distribution system that contains the Site
Agent, the Personal Agents, an Ontology Agent and various Service Agents
(web monitoring and others) has been reported elsewhere [4], using the Jade
agent platform [2]. Our experiments regarding this integration of IK distri-
bution with defeasible argumentation for modelling power and trust relation-
ships only account as a “proof of concept” prototype, as we have not been
able yet to carry out thorough evaluations in the context of a real-world
application. In particular, the sample problem presented in Section 6 was
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encoded and solved successfully using a Java-based DeLP environment.10

Part of our current work is focused on adapting the approach proposed in
this paper into a truly distributed algorithm, which could improve both the
multiagent nature of the procedure as well as its performance and scalability.

8 Related work

In this paper we have extended the previous proposal in [11] for knowl-
edge distribution in large organizations by incorporating the representation
of power and trust capabilities explicitly by means of defeasible logic pro-
gramming. As we have shown, the main advantage obtained is an increased
flexibility in modelling different normative situations in organizations and
trust relationships. Potentially contradictory knowledge involved in such as-
pects is suitably handled by the DeLP inference engine.

To the best of our knowledge there are no similar approaches which com-
bine argumentation and agent-mediated knowledge management as the one
presented in this paper. A somehow related research is reported in [28]
about methods for helping in decision-making processes using argumenta-
tion. Besides the differences in the intended application of this system there
is also a significative difference in the approach as they use static predefined
argumentation schemas, whereas here we propose a general method for con-
structing arguments that is not restricted to a finite number of argument
structures. An interesting direction relating organizational decision mak-
ing and argumentation is explored in an integrated framework in [25, 24].
This framework, in contrast with our approach, allows for distributed and
asynchronous collaboration and aims at giving an active role to the decision
makers involved in the solution of the underlying problems. Argumentation
is used as a tool within a collaborative decision making process. A discussion
moderator (acting as a trusted-third-party) intervenes and, according to a
rule-based meta-model of organizational problems, selects the appropriate
models whenever a new problem is brought for discussion. Other works re-
lated to ours involve decision making and negotiation using argumentation
among agents [31]. In contrast, in our system the argumentation process itself
is not distributed, taking always place in a central DeLP inference engine.

As we pointed out in Section 5, our approach to modelling a reputation
function and providing numerical values representing trust is rather con-

10See http://cs.uns.edu.ar/∼ags/DLP/ for details.
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ceptual, as the focus of our analysis is the use of argumentative reasoning
for establishing whether a deliver literal is warranted or not (based on the
procedure described in Fig. 2). Formalizing reputation and trust in multia-
gent systems has been analyzed in a more broad perspective in the literature.
In [9], for example, a functional ontology of reputation for agents is proposed.
Such ontology allows to put together the broad knowledge about reputation
produced in some areas of interest (mainly in multi-agent systems) and to
represent that knowledge in a structured form. In a different perspective,
Castelfranchi et. al [17, 10] have analyzed different aspects of trust, notably
trust dynamics. In the latter the authors have considered how direct expe-
riences involving trust, with their successes or failures, influence the future
trust of an agent about similar facts. In fact, they challenge the “obvious”
approach offered in our formalization (that success always increases trust
while failure decreases it), claiming instead that a cognitive attribution pro-
cess is needed in order to update trust on the basis of an interpretation of
the outcome of A’s reliance on B and of B’s performance (failure or success).
They also analyze what happens with the trustworthiness of an agent B in
a situation X based on the fact that there is a trust relationship between
another agent A with B such that A relies on B in that situation X. A
formal model for such trust dynamics is provided, which goes much farther
than our conceptual proposal. However, in their approach the authors do
not delve into the analysis of knowledge distribution as done here, nor in the
use of arguments for supporting rationally justified beliefs.

9 Conclusions

We have presented a novel argument-based approach for supporting IK-dis-
tribution processes in large organizations. Our proposal is based on integrat-
ing the JITIK framework for Agent-mediated Knowledge Management and
Defeasible Logic Programming, a multi-purpose programming language with
powerful representation features which provides argumentative reasoning ca-
pabilities. We have shown how power relations as well as delegation and
trust, can be embedded within our framework, in such a way that a dialecti-
cal argumentation process works as a decision core. Conflicts among policies
are solved on the basis of a dialectical analysis whose outcome determines to
which specific users different pieces of knowledge are to be delivered.

The main advantage obtained by the use of an argumentation engine is an
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increased flexibility, as it is not necessary to explicitly encode actions for every
possible situation. This is particularly important in corporate environments
with potentially conflicting information distribution criteria. Our approach
is applicable in general to the distribution of IK that can be characterized
by symbolic metadata expressed as ground terms in predicate logic.

In the near future we also intend to extend our prototype to handle differ-
ent real-world institutions with complex normative structures, including also
reasoning capabilities for combining argumentative inference with possibilis-
tic reasoning and vague knowledge, as described in [15]. Such formalization
allows to have weights associated with defeasible rules, so that defeasible
rules with greater weights values would offer a stronger support than those
which have smaller values. In such setting an interesting possibility to ex-
plore is to introduce reinforcement learning techniques [29] which allow to
adapt the weights associated with defeasible rules according to the frequency
with which they have led to warranted conclusions, or the reputation or trust
associated with some literal in the rule (e.g. in those rules related to sources
of incoming items).11 Research in this direction is currently being pursued.
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[21] S. Gómez and C. Chesñevar. A Hybrid Approach to Pattern Classification Using
Neural Networks and Defeasible Argumentation. In Proc. of 17th Intl. FLAIRS Conf.
Miami, Florida, USA, pages 393–398. AAAI Press, May 2004.

[22] F. Horibe. Managing Knowledge Workers. John Wiley and Sons, 1999.

[23] I. Horrocks. DAML+OIL: a description logic for the semantic web. Bull. of the IEEE
Computer Society Technical Committee on Data Engineering, 25(1):4–9, March 2002.

[24] N. Karacapilidis and E. Adamides. Integrating simulation and argumentation in
organizational decision making. In Proc. of the 7th KES Intl. Conf. (in LNAI 2774,
Springer), year = 2003, pages = 107-114.

[25] N. Karacapilidis, E. Adamides, and C. Evangelou. Leveraging organizational knowl-
edge to formulate manufacturing strategy. In Proc. of the 11th ECIS Conf., 2003.

[26] J. Liebowitz and T. Beckman. Knowledge Organizations. St. Lucie Press, 1998.

[27] J. Liebowitz and L. Wilcox. Knowledge Management. CRC Press, 1997.

[28] J. Lowrance, Harrison W. Ian, and W. Rodriguez. Structured argumentation for
analysis. In Procs. of the 12th Intl. Conf. on Systems Research, Informatics, and
Cybernetics, pages 47–57, Baden-Baden, Germany, Aug 2000.

[29] Tom Mitchell. Machine Learning. Mc Graw Hill, 1997.

[30] L. Mui. Computational Models of Trust and Reputation: Agents, Evolutionary
Games, and Social Networks. PhD thesis, MIT, 2003.

[31] S. Parsons, C. Sierrra, and N. Jennings. Agents that Reason and Negotiate by Argu-
ing. Journal of Logic and Computation, 8:261–292, 1998.

[32] H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation. In
D. Gabbay and F.Guenther, editors, Handbook of Phil. Logic, pages 219–318. Kluwer,
2002.

[33] S. Ramchurn, N. Jennings, C. Sierra, and L. Godo. Devising a trust model for multi-
agent interactions using confidence and reputation. Applied Artificial Intelligence,
18(9-10):833–852, 2004.

[34] J. Sabater and C. Sierra. REGRET: reputation in gregarious societies. In Jörg P.
Müller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors, Proceedings of
the Fifth International Conference on Autonomous Agents, pages 194–195, Montreal,
Canada, 2001. ACM Press.

[35] G. Simari and R. Loui. A Mathematical Treatment of Defeasible Reasoning and its
Implementation. Art. Intelligence, 53:125–157, 1992.
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