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Abstract. The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff 

represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a 

MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model 

considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking 

into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based 

methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational 

efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization 

software, developing a user friendly solution tool for the operating room management under uncertainty. 
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Introduction 

Nowadays, hospitals managers are focusing on providing higher utilization of their resources with the reduction 

in operative costs. In this context, operating theatres represent a critical area due to any improvement impact directly 

in the budget of the hospital (Souki, 2011). Operating theatres usually content a set of surgical and recovery 

rooms with limited number of beds and personnel, such as nurses, surgeons, anesthetists, etc. According to this, 

the best way to improve the performance of operating theatres is trying to synchronize the surgery activities in a 

better way. Then, planning and scheduling of surgery activities seems to be the most useful and efficient strategy 

for this purpose. Many contributions about planning and scheduling of operating theatres have been developed in 

literature. Few contributions decompose the problem in planning and scheduling decisions in two levels. In the 

first one, surgical cases are priori assigned to a particular block time in a week (date) whereas in the second level 

daily surgical cases are scheduled (see Augusto et al., 2010; Cardeon et al., 2010; Fei et al., 2010). 
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Similarly, we could compare the block-scheduling strategy in where surgeries, pre-assigned to surgeons according 

to the surgical service, have to be scheduled in blocks prior to the working day, to the open-scheduling strategy 

where surgeries submit a request for OR time and a detailed schedule is generated during the day of surgery. The 

latter strategy is common, for example, in Neurosurgery operations where a patients list is only known 24h before 

a surgical day. This flexible scheme avoids unfilled blocks in a working day. In addition, urgent/emergent surgeries 

should not be delayed until an available surgeon is free and also this strategy eliminates the ORs idle times when 

surgeons have already finished (Denton et al., 2007). 

A real application problem appears in Batun et al. (2011) where they study the impact of different operative 

costs in the ORs. They suggested accounting a negative operating cost of an operation room when is not in use by 

the staff and the overtime as a penalty cost. An also considers the operative cost of the surgeons when they are 

idle or waiting for another surgery. This problem has attracted the attention of numerous researchers and practitioners 

in recent years. In 2013 the optimization modeling competition MOPTA selected this problem as a relevant one 

for the study in the operational research community (MOPTA, 2013). According to the participants and organizers, 

this kind of problem commonly appeared in many hospitals in different countries where the scheduling process is 

done without any support system. 

In this paper we consider the scheduling problem of daily surgical cases in the operating theatre presented in 

MOPTA 2013. Thus, we will study the situation where a hospital is already working and the number of ORs and 

surgeons are given. Due to the hospital administration has decided to use more efficiently their ORs, the manager 

requires to allocate and sequence a set of already planned surgeries in a given number of available ORs and surgeons 

in each particular surgical day. For that, we have to find the best sequence of surgeries that minimize the total 

surgical cost composed by ORs idle time and ORs overtime and surgeons waiting times. In order to do this, let us 

assume that the set of surgeries to be scheduled is known 24h in advance at the surgical day and the number of 

available ORs and surgeons are fixed. Then, all planned surgeries have been done during the surgical day. Also, 

we must consider that all the surgeries can be performed at any of the ORs and surgeries could be performed by 

any of the surgeons. In our case also surgical operation durations (pre-incision, incision and post-incision times) 

are imprecise and have to be modeled as a random distribution. Finally, surgeons move between ORs performing 

surgeries until all are finished. Then, based on the principal ideas of global precedence (Méndez and Cerdá, 

2003), we formulated a MILP model for the scheduling of multiple surgeries in homogeneous ORs with several 

available surgeons. This problem can be tackled as a generalized scheduling problem with multiple resources, as 

was presented in Capón et al. (2007). Other formulations have been developed previously for a similar problem 

by Batun et al. (2011) but they do not exploit the real strengths of precedence concepts (Méndez et al., 2006) and 

also take priori decisions as pre-assign surgeries to surgeons. 

Thus, the main contribution of this work is the development of a tightened model in terms of integer and continuous 

variables that allow us to take into account all the features of this problem without considering predefined decisions. 

This model is formulated taking into account a single surgeon or multiple surgeons working in several ORs and 

also is able to consider different types of surgeries during a normal working day. In addition, based on this model, 

a stochastic strategy and a decomposition approach were proposed to solve the problem considering the uncertainty in 

surgical operation durations.  Finally, all these approaches were implemented in the advanced modeling and 

optimization software AIMMS® widely used for industrial and educational applications. For this, we created a 

user-friendly interface for hospital managers, where they can easily configure the basic parameters and obtain a 

reliable solution in short computational time.  

The work is organized as follows. Section 2 presents a daily surgical scheduling problem in operating theaters. 

In section 3, a general MILP formulation is presented considering all the features of this problem. The solutions 

using a deterministic approach and heuristic-based methods are compared in section 4. Then, section 5 presents 

the results provided by a stochastic optimization and a MILP-based decomposition approach for solving large-scale 

scheduling problems. Final conclusions and references are presented at the end. 

Daily Surgical Scheduling problem in Operating Theatres 

This work studies the scheduling problem of surgical cases raised in operating theatres. This problem assumes 

that multiple homogeneous ORs and surgeons are available to perform surgical activities, like pre-incision, incision, 

post-incision operations. According to this, surgeries must be scheduled in order to minimize the total surgical 

cost formed by OR vacant cost, surgeon waiting cost and OR overtime (see Table 1). 
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Table 1. Hourly Cost 

OR Vacant Cost Surgeon Waiting Cost OR Overtime Cost 

CV CW CO 

$1,209.60 $1,048.80 $806.40 

 

The set of planned surgeries to be scheduled is known in advance at the surgical day and the number of available 

ORs and surgeons are given. Thus, different type of surgeries (A-J) must be performed during the surgical time 

horizon defined by T between 4-12 hours. Each surgery type is characterized by their preparation time (TP), surgery 

time (TS) and cleaning time (TC). The complete set of data related to the preparation, surgery and cleaning times 

of different type of surgeries can be found in MOPTA 2013. Then, according to the number of surgeries to be 

done, the type of surgeries and the time horizon, a set of problem instances are defined (see Table 2).  

Table 2. Sequencing Instances 

Instance T (in hours) 
No. 

Surgeries 

Surgeries to be Sequenced (by Type) 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 

1 4 4 A A C J 
       

2 4 5 A A G H J 
      

3 4 5 A D G G J 
      

4 8 6 A B F G G H 
     

5 8 7 C D F H J J J 
    

6 8 10 A A A C D G I J J J 
 

7 8 11 A A F F G H H I I J J 

8 12 7 A B D E G G J 
    

9 12 10 A A B D G G I I J J 
 

10 12 11 A A C E E F G H I I J 

General MILP Formulation 

In this section, we present a general MILP continuous time formulation for the daily surgical scheduling problem 

in the operating theatres with the uncertain in the surgery durations. This model takes into account the surgeries s, 

s’, of each types i, to be scheduled during a surgical day and also, considers the set of available surgeons and operation 

rooms denoted by k, k’ and r. The set of scenarios to be solved are presented by w index. The following table 

provides the full notation about sets, parameters and variables used by the model. 

Table 3. Notation of sets, parameters and variables 

Index Set 

  surgeries to be scheduled in a surgical day (      

  type of surgery (   

   subset of surgeries s of type i (    

  surgeons (      

  operation rooms (   

  scenarios (   
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Parameters 

     preparation time of type of surgery i ∈ I in scenario w ∈   

     surgery time of type of surgery i ∈ I in scenario w ∈   

     clean-up time of type of surgery i ∈ I in scenario w ∈   

   cost per minute of having an OR vacant 

   cost per minute of having the surgeon waiting 

   cost per minute of using an OR beyond the normal shift length  

T normal shift length 

  large scalar value much more longer than the normal shift length 

Variables 

    binary variable, 1 if surgery s ∈ S is done in room r ∈ R; 0 otherwise 

      binary variable, 1 if s ∈ S precedes s’ ∈ S in surgeon k ∈ K, 0 otherwise  

        binary variable, 1 if s precedes s’ ∈ S  and it is done by different surgeon k and k’ ∈ K, 0 otherwise 

    binary variable, 1 if surgery s ∈ S is done by surgeon k ∈ K, 0 otherwise 

     start time of the surgery s ∈ S in scenario w ∈ W 

      start time of the surgeon k ∈ K in scenario w ∈ W 

      makespan of room r ∈ R in scenario w ∈ W 

      makespan of surgeon k ∈ K in scenario w ∈ W 

     vacant time of room r ∈ R in scenario w ∈ W 

     overtime of room r ∈ R in scenario w ∈ W 

     waiting time of surgeon k ∈ K in scenario w ∈ W  

   total surgical cost 

 

The principal aim of this MILP model is to minimize the expected total surgical cost represented by tc for a set 

of selected scenarios w. According to this, two sets of decision variables need to be evaluated. First, the assignment 

binary variable xsr that determine the allocation of surgery s in operation unit r while qsk provides information 

about if surgery s in done by surgeon k, adopting both value 1. And then, sequencing binary variables, using the 

ideas of precedence-based, are proposed to determine if surgery s is done after or before s’ in the same surgeon k 

or in different surgeons k, k’ by  yss’k or zss’kk’ respectively. 

Note that, all continuous variables associated to the start times of surgeries tssw and surgeons tsSkw, completion 

time of rooms msRrw and surgeons msSkw and operating times, as operation room vacant time vtrw and overtime 

otrw, and surgeon waiting time wtkw, depends on w and so take a specific value for each scenario. 

The main equations of this model are explained as follow. Equation (1) represents the mean total surgical cost 

(tc), formed by the overtime cost, vacant time cost and waiting time cost, to be minimized by the model for the 

considering scenarios W. Equation (2) shows that each surgery s must be performed in only one OR r by xsr=1. 

Equation (3) ensures that each surgery is supported by a single surgeon k by adopting qsk=1. Sequencing and timing 

constraints in the same OR and also in the same surgeon are presented by equations (4-5) and equations (8-9) by 

using binary variables yss’k. In addition binary variable zss’kk’ is introduced in order to consider the sequencing and 

timing decisions of surgeries performed by different surgeons but in the same OR, as is shown in equations (6-7). 

Equation (10) defines the completion time of the operation rooms msRrw while equation (11) estimates the completion 

time in the surgeons msSkw. After that, equation (12-13) is proposed to determine the initial time of each surgery 

tssw and surgeon tsSkw in the system, respectively. In addition, the overtime otrw, vacant time vtrw, and waiting time 

wtkw variables are calculated in equations (14-16) by using the information of the initial and the completion time 

of surgeries and surgeons in the system. 

       
  

     
      

  

     
        

  

     
               (1) 

                                                  (2) 
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Deterministic Problem 

In this section different approaches are tested using deterministic data for surgical activities. First, we present some 

heuristic approaches to obtain an initial solution of this problem by considering two operating rooms ORs (|r|=2) 

and a single surgeon (|k|=1) with the information of the average scenario (|w|=w). Then, we are going to compare 

the solutions of these heuristic approaches with the ones provided by the full-space MILP model presented above. 

Dispatching rules-based heuristic algorithms 

In this section, five dispatching rules are evaluated in order to provide, to the hospital manager, a fast and a reliable 

solution to be implemented. These heuristics are inspired in Iser et al. (2008) and Souki (2011). The principal aim 

of these quick heuristics is to evaluate the solution of the system without using an optimization tool. The first four 

heuristics, in Algorithms 1-4, are based in a simple sorting criterion ordering the surgeries according to their 

preparation times (TP) and/or surgery times (TS). The heuristics have been named as “parameter to sort” / type of 

sorting (A for ascending or D for descending). Finally, we developed a more accurate heuristic specially proposed for 

this problem structure. This heuristic named as “Ad-Hoc Heuristic” is described as follow in Algorithm 5. 

 
Algorithm 1: Heuristic TS/A  
Step 1: Surgeries I of the instance are ordered in ascending order of incision time     .  

Step 2: The surgeon in which every surgery is realized is decided taking into account the 

sequence previously obtained in the Step 1.  

Algorithm 2: Heuristic TS/D  
Step 1: Surgeries I of the instance are ordered in descending order of incision time     .  

Step 2: The surgeon in which every surgery is realized is decided taking into account the 

sequence previously obtained in the Step 1.  

Algorithm 3: Heuristic (TS+TP)/A  
Step 1: Surgeries i of the instance are ordered in ascending order of the addition of the 

incision time      and the preparation time     .  

Step 2: The surgeon in which every surgery is realized is decided taking into account the 

sequence previously obtained in the Step 1.  

Algorithm 4: Heuristic (TS-TP)/A  
Step 1: Surgeries i of the instance are ordered in ascending order of the subtraction of the 

incision time      minus the preparation time     .  
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Step 2: The surgeon in which every surgery is realized is decided taking into account the 

sequence previously obtained in the Step 1.  

Algorithm 5: Ad Hoc Heuristic 
Create two ascending ordered list using the      and      

repeat  

 in the first OR, the surgery with the longest      is selected 

 if the surgery has been sequenced before. then  

 it is eliminated from the      list.  

 else  

 the surgery is assigned and eliminated from the      list.   

 end if  

 in the second OR, the surgery with the longest     that has not been sequenced is assigned 

 and the surgeries are eliminated from the list 

 if the surgery has been sequenced before. then  

 it is eliminated from the      list  

 else  

 the surgery is assigned and eliminated from the      list  

 end if  

until No more than one surgery is left in the lists 

if Both list are empty then 

 finish 

else this surgery is assigned in the OR which be available first and finish 

end if  

 

Results 

The heuristics and the MILP model presented above were modeled using AIMMS 3.13 (Bisschop and Roelofs, 

2011). The solver used was Gurobi 5.0 Optimization (2012) in a PC Intel Core i3-2350M 2.30 GHz with 6 GB 

RAM under Windows 7. Termination criterion was imposed in 3600 sec. in order to provide good-quality results 

in reasonable CPU time for the hospital manager. 

Solutions obtained in Table 4, demonstrate that in all instances our model solves up to optimality in only few 

seconds or minutes. For eight of ten cases analyzed the CPU time was less than 1 minute and only for most complex 

instances (7 and 10) our model takes more time (3 min. and 6 min.). Model size is reported in this table by the 

number of variables and constraints while the complexity of the solution is demonstrated by the number of nodes 

and iterations explored. The performance of the model is measured by the relative gap between the initial and final 

solution and also by the CPU time consumed. The initial solution was reported in all cases in less than 5 seconds. 

And the relative gap between de initial and final solution was less than 7.0 percent for all cases analyzed. 

Table 4. Results of the deterministic problem using (2R, 1k) 

Instance 
Total 

Cost 

CPU 

Time 

Binary 

Variables 

Continuous 

Variables 
Equations Nodes Iterations 

Initial 

solution 

1 480 0.02 14 34 68 193 893 480 

2 449 0.03 20 41 98 524 2123 449 

3 261 0.03 20 41 98 493 2238 261 

4 630 0.06 27 49 134 2378 8845 630 

5 943 3.61 35 58 176 98451 376165 943 

6 2,165 17.65 65 91 338 547572 2162232 2,299 

7 6,186 82.3 77 104 404 2688876 10712959 6,583 

8 983 0.87 35 58 176 21767 90654 983 

9 1,915 18.34 65 91 338 466586 2098862 2,007 

10 4,363 359.17 77 104 404 11043003 44030805 4,701 
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Our formulation provides a reduced number of binary sequencing variables in comparison with other MILP 

formulations reported in literature up to now, e.g., Batun et al., (2011). Then, our model is much more tightened 

due to associates a unique general precedence variable to the surgeon when in other formulations the sequencing 

variables are proposed for each ORs using the concepts of unit-specific precedence-based representation. So, the 

number of sequencing variables grows up with the number of ORs and always the number of ORs is greater or 

equal than the number of surgeons. In addition, the unit-specific precedence formulation have to considers all the 

combinations between two different surgeries s,s’ where s≠s’ and the number alternative sequencing decisions for 

each OR should be |S|
*
|S|-1. In our model, the number of sequencing decisions for each surgeon is reduced at half. 

Figure 1 shows the model behavior for the most complex instance 10 (2R, 1k) of the deterministic problem, 

drawing the lower bound and the upper bound solutions over time. As we can see in Figure 1, the lower bound 

was initialized in zero. This is a critical point in the solution performance due to our model could find good-quality 

initial feasible results in only few seconds but requires plenty of time to assure the optimality of the solution 

found. Then based on the behavior of our model we could offer optimal solutions within few minutes, or if the 

instance is small or there is not enough time, you can select an upper time limit. A detailed schedule and costs of 

this particular instance 10 using (2R, 1K) are reported by Figure 2. 

 

 

Fig. 1. Solution behavior of the MILP for instance 10 using (2R, 1k) 

 

Fig. 2. Solution Schedule of instance 10 using (2R, 1k). 

Table 5 shows the results of the heuristics by using the mean scenario. Both, “Heuristic TS/A” and “Heuristic 

(TS+TP)/A”, presents better solutions than the other (“Heuristic TS/D” and “Heuristic (TS-TP)/A”) while our 

“Ad-Hoc Heuristic” provides the best result for each instance. Despite of this the solutions reported by heuristics are 

still far from the optimal ones obtained for each particular problem instance (see Table 5). In conclusion, heuristic 

methods based on a simple sorting criterion have poor performance but are fast and can be implemented even by 

hand. Our MILP model could be used to address multiple surgeons and ORs in simultaneous but in this work we 

only present the case of a single surgeon and multiple ORs problem. 
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Table 5. Result comparison for problem (2R, 1k) 

Instance TS/A TS/D (TS+TP)/A (TS-TP)/A Ad Hoc MILP 

1 2,222 3,710 2,222 3,028 1,569 480 

2 3,236 3,538 3,236 4,095 1,098 449 

3 4,116 3,836 4,116 4,348 1,059 261 

4 5,408 7,531 5,440 5,432 2,359 630 

5 6,456 6,853 6,456 5,772 1,470 943 

6 9,759 14,440 9,759 15,391 9,362 2,165 

7 16,832 18,303 16,760 19,654 9,018 6,186 

8 8,615 10,168 8,615 9,302 3,362 983 

9 10,918 11,870 10,918 13,866 2,495 1,915 

10 18,730 20,809 17,877 20,484 7,930 4,363 

Stochastic Problem 

In this section we will study the problem in which the duration of surgical activities, closely linked with the surgery’s 

type, is uncertain. All the input data provided by MOPTA 2013 Competition represents historical information 

which is assumed to be independent and can be modeled by a standard probabilistic distribution with their own 

parameters. So, no correlations exist among the duration of the pre-incision, the incision, and the post-incision 

times for each surgery type. According to this, a good solution for a stochastic model will be the one that minimize 

the expected total cost for all scenarios together. Other approaches that consider only a certain type of cost or use 

the most likely scenario for the evaluation can be easily implemented. 

An extra index for the scenarios w is considered by MILP model in this problem. In here, binary variables do 

not depend on w assuring the same sequencing and assignment decisions for all the scenarios evaluated. Only 

timing decisions of surgical activities differ in each scenario. The model is solved considering two operating 

rooms ORs (|r|=2) and a single surgeon (|k|=1) minimizing the expected value of the total cost assuming that all 

proposed scenarios (|w|=100) have the same probability of occurrence. 

Scenario reduction 

In stochastic programming the number of scenarios plays a key role to obtain a reliable solution. For this problem 

we emulate 100 scenarios using Monte Carlo simulation. We assume that use of the entire set of 100 scenarios 

gives us the “Optimal value”. Then, a suitable reduction of scenarios decrease the solution time but increase the 

result error. This error will be calculated with the following expression according to the best solution found. 

 

             
                          

            
     

 

On the other hand, explore all the scenarios increase the solution time in some cases beyond the threshold. Only 

the first five instances will be evaluated with the MILP model since it can be solve up to optimality (see Table 6). 

Figure 3 shows the % error between the values obtained using a specific number of scenarios from 0-100. 

When the number of scenarios is below to 20 the error in some cases is above 30%. Then, the error decreases 

gradually with the number of scenarios. Analyzing that, we conclude that over 50 scenarios the error remains under 

10% resulting unnecessary to consider much more number of scenarios for the resolution of the stochastic problem. 
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Fig. 3. Analysis of Error vs. Number of scenarios. 

Decomposition approach: Constructive-Improvement methods 

The MILP-based decomposition approach was developed “ad-hoc” for the specific structure and features of this 

problem. The constructive-improvement methods were proposed using MILP models, as the one presented above, 

taking the advantages of General-Precedence (GP) concepts and also the strengths of exchanging information between 

them. This iterative solution allows decomposing the problem in small sub-problems that can be solved separately, 

in a sequential way, consuming moderate computational effort. Each algorithm consists in five sequential steps: 

initialization, selection procedure, setting binary variables, model resolution and updating parameters.  

In the constructive algorithm, a reduced MILP model is solved in each iteration obtaining an aggregated 

schedule with minimum Mean Total Cost (z). When all surgeries are inserted in the system, this phase finishes 

reporting an Initial Solution (see Algorithm 6). 

Then, starting from this solution, the improvement algorithm determinates the surgeries to be released per iteration 

by chosen the first N consecutive surgeries in the Surgery List. Released surgeries are re-scheduled in the system 

by optimizing                       while binary variables of non-released surgeries remain fixed. After solving, the 

result of the MILP model is compared with the Best solution obtained until this iteration. The Best solution is re-

ported and its schedule is updated. This improvement phase finish when no released surgery can enhance the Best 

solution found (see Algorithm 7). 

 
Algorithm 6: Constructive Method 
Step 1: Initialize parameters iter, N and variables                            
Step 2: Select N consecutive surgeries to be scheduled in each iteration iter by following 

their lexicographic order from the Surgery List              
Step 3: Set fixed all binary variables                        of inserted surgeries. 
Step 4: Solve the MILP model for selected surgeries and optimize tss,w variables of all inserted 

surgeries. 

Step 5: Update parameters and report aggregate schedule. (Back to Step 2) 

Algorithm 7: Improvement Method 
Step 1: Initialize parameters iter, N and start from the initial solution found (Schedule 

list). 

Step 2: Select N consecutive surgeries to be re-scheduled in each iteration iter by following 

their lexicographic order from the Surgery List              
Step 3: Set fixed all binary variables                        of non-released surgeries. 
Step 4: Solve the MILP model for released surgeries and optimize tss,w variables of all inserted 

surgeries. 

Step 5: Update parameters and report improvement schedule. (Back to Step 2) 
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The solution obtained by the “ad-hoc” decomposition approach can be also enhanced by exploiting the strength 

of the proposed General Precedence MILP formulation, releasing and optimizing much more number of binary 

variables of non-released surgeries per iteration. According to this, we can play with the assignment variables 

        improving the model behavior without increasing the number of released variables significantly. 

Finally, in both constructive and improvement methods we have decided to use a lexicographic order for the 

selection procedure since incorporate randomness make impossible the reproducibility of the results. The analysis 

of different selection rules to improve the solution performance of the algorithm needs to be study in details in future 

works. The algorithm ends when no another released surgery could improve the Best solution found or after 3600 

sec. of CPU time. We adopt this termination criterion in order to make a fair comparison with full-space MILP 

model presented above. 

Results 

Increasing the number of scenarios will improve the quality of the solution at the expense of more duration of the 

experiment. The solution for the 100 scenarios is presented in Table 6 considering all scenarios together and the 

solution for the mean case using the average scenario. Here, it can be seen that the relative difference between the 

full case and the mean case is very high. According to this, the use of the full case is much better than using the 

mean case. 

Table 7 shows the principal results and analysis among stochastic, constructive and improvement methods. For 

the first 4 instances analyzed, both stochastic and decomposition methods provide optimal solutions in short CPU 

time (< 5min). But, for biggest instances 5 to 10, stochastic model could not ensure optimal results in 1 hour of 

CPU time. According to this, decomposition approach (constructive method + improvement method) emerges as 

an efficient solution tool for solving large scale problems with reasonable computational effort. 

Table 6. Result of the stochastic problem using 100 scenarios. 

Instance Total Cost 
CPU 

Time 
Bin Var. 

Cont 

Var. 
Eqs. Nodes Iterations 

Mean 

Cost 
Diff 

CPU 

Time 

1 675.84 27 18 1319 6109 171 40730 739 9.3 1.5 

2 1172.74 36 25 1426 9011 3002 461512 1220 4.1 4.2 

3 1612.88 37 25 1426 9011 1912 322763 1612 0 2.9 

4 1670.33 354 33 1534 12513 5201 881252 2046 22.5 6.7 

5 2045.37 3600 42 1643 16615 160652 29823967 2299 12.5 12.7 

6 4531.56 3600 75 1976 32521 53526 17994882 5364 22.5 47.6 

7 10465.19 3600 88 2089 39023 46982 14530619 10084 7.8 132.3 

8 2511.68 3600 42 1643 16615 33409 4708673 2921 16.3 9.3 

9 5510.55 3600 75 1976 32521 83891 20361739 5238 2.5 43.3 

10 10405.46 3600 88 2089 39023 37142 15621953 9549 10.1 410.5 

 

Thus, our constructive algorithm could provide initial good-quality solutions for all these cases in less than 5 

min. For the biggest instances in some cases the constructive algorithm obtains better solution in 5 minutes than 

the stochastic result in one hour. The improvement method increases the quality of the solution in less than half 

an hour. In almost all cases the decomposition approach obtains the same or a best solution in the half of the time 

of the stochastic method and average of 3.22% of improvement. 

The parameter N plays a key role in those algorithms. In the constructive algorithm, it is the number of surgeries 

inserted at each iteration while in the improvement algorithm it represents the number of release surgeries to be 

re-scheduled. A small number of N narrows the search space with the possibility of eliminate the global optimal 

but decreasing the CPU time. 
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Table 7. Comparative using Constructive Method N=1, Improvement Method N=1 

 Stochastic Model Constructive Method Improvement Method Total 

Instance Total Cost 
CPU 

Time 
Total Cost 

CPU 

Time 

% 

Imp 
Total Cost 

CPU 

Time 

% 

Imp 

% 

Imp 

1 675.84 27 675.84 5 0 675.84 24 0 0 

2 1172.74 36 1172.74 17 0 1172.74 52 0 0 

3 1612.88 37 1612.88 15 0 1612.88 77 0 0 

4 1670.33 354 1670.88 29 0 1670.32 85 0 0 

5 2045.37 3600 2134.57 51 -4.36 2134.57 126 0 -4.36 

6 4531.56 3600 4978.67 192 -9.87 4418.14 1856 12.32 2.50 

7 10465.19 3600 9658.81 277 7.71 9089.16 2049 5.44 13.15 

8 2511.68 3600 2511.68 48 0 2511.68 121 0 0 

9 5510.55 3600 4938.77 156 3.36 4938.77 1324 0 3.36 

10 10405.46 3600 8704.83 281 16.34 8579.72 1500 1.20 17.55 

Mean    107.1 1.32  721.4 1.90 3.22 

 

Table 8 shows the results of giving more degree of freedom to the algorithm by inserting and releasing two 

surgeries instead of one in the both constructive and improvement steps. The constructive method improves the 

results for only two of ten instances analyzed, since it has more flexibility to construct a better solution. Regrettably, 

it takes much more time to solve the problem. For the improvement part, when N=2, the algorithm takes much 

more time and no significant improvement can be seen after 3600 sec. 

Table 8. Comparative using Constructive Method N=2, Improvement Method N=2 

 Stochastic Model Constructive Method Improvement Method Total 

Instance Total Cost CPU Time Total Cost CPU Time % Imp Total Cost CPU Time % Imp % Imp 

1 675.84 27 675.84 9 0 675.84 24 0 0 

2 1172.74 36 1172.74 34 0 1172.74 112 0 0 

3 1612.88 37 1612.88 31 0 1612.88 130 0 0 

4 1670.33 354 1670.88 63 0 1670.32 153 0 0 

5 2045.37 3600 2134.57 121 -4.36 2134.57 375 0 -4.36 

6 4531.56 3600 4480.447 658 1.13 4380.92 3600 2.22 3.32 

7 10465.19 3600 9573.68 1174 8.52 9573.68 3600 0 8.52 

8 2511.68 3600 2511.68 116 0 2511.68 383 0 0 

9 5110.55 3600 4938.77 598 3.36 4938.77 2780 0 3.36 

10 10405.46 3600 8704.83 1223 16.34 8579.72 3600 1.44 17.55 

Mean 4020.16 2205.4 3747.6 402.7 2.50 3725.11 1475.7 0.36 2.83 

 

Table 9 presents the experimentation of the constructive phase, N=2, and the improvement phase, N=1. The 

construction phase obtained better results, but took a longer time since more possibilities are being evaluated at each 

iteration. The improvement phase makes some improvements of the results of the other options using some extra time. 

More experimentation was done using N > 2, but the performance was poor. The time stop criterion was applied for 

the majority of the instances with almost no improvement. As N became the Total number of surgeries, the problem 

transformed into the stochastic model, which had to be solved several times, offering poor performance. As was 

discussed, small values of N should be used. 
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Table 9. Comparative using Constructive Method N=2, Improvement Method N=1 

 Stochastic Model Constructive Method Improvement Method Total 

Instance Total Cost CPU Time Total Cost CPU Time 
% 

Imp 
Mean Total Cost CPU Time 

% 

Imp 

% 

Imp 

1 675.84 27 675.84 9 0 675.84 36 0 0 

2 1172.74 36 1172.74 34 0 1172.7 61 0 0 

3 1612.88 37 1612.88 31 0 1612.88 162 0 0 

4 1670.33 354 1670.88 63 0 1670.33 88 0 0 

5 2045.37 3600 2134.57 121 -4.36 2134.6 1200 0 -4.36 

6 4531.56 3600 4480.447 658 1.13 4380.9 2891 2.2 3.32 

7 10465.19 3600 9573.68 1174 8.52 9089.16 3600 5.06 13.15 

8 2511.68 3600 2511.68 116 0 2511.68 176 0 0 

9 5110.55 3600 4938.77 598 3.36 4938.77 743 0 3.36 

10 10405.46 3600 8704.83 1223 16.34 8579.7 1476 1.4 17.55 

Mean 4020.16 2205.4 3747.6 402.7 2.50 3711.48 1043.3 0.88 3.30 

 

As a conclusion, our decomposition method, by using only the constructive phase, could provide even better 

results than the stochastic model for large problem instances with a significant reduction in CPU time. Also, our 

algorithm could solve these problems using much more scenarios without significant decrement in the efficiency 

of the solution found. Finally, possible enhancements can be tested in the algorithm by using different NxN parameters 

and selection rules according to the case study analyzed. 

Conclusion 

This work presents the main contributions and results obtained for the daily scheduling problem of surgical cases 

in operating theatres under uncertainty. An efficient and also tightened MILP model was developed taking into 

account all the features of this challenge problem. In addition, stochastic strategies were implemented in order to 

deal with the uncertain in surgery durations. Results show that our MILP-based model represents an efficient solution 

approach for solving deterministic cases, in which timing information is known, providing optimal results in short 

computational time (< 5min). Also, in stochastic cases, when the prior information is unknown, our stochastic model 

provides good-quality results but does not assure optimality in a time limit imposed of 1 hour for the largest cases.  

In order to improve the solution found and also reduce the CPU time consumed by the stochastic model, a 

decomposition approach based on constructive and improvement methods was developed. This approach allows 

decomposing the problem finding an initial good-quality result in less than 5 minutes even for the more complex 

case in comparison with the full-space stochastic model. Then, an improvement method was applied to enhance 

the solution in 3.22% (in avg.) in less than 3600 seconds. For example, for the most complex case, our approach 

was able to improve the solution reported by the full-space model in more than 17% using only 1500 sec. which 

is quite acceptable for this offline solution purpose. All these solution strategies were implemented in AIMMS® 

using the principal strength of this modeling and optimization based software. Thus, an end user application was 

developed with a friendly interface for the hospital manager to introduce and remove data and solve deterministic 

and stochastic cases without needing any previous information about the result of the problem.  

The feedback received from surgeons about the tool was useful to simplify our tool, since the majority of them 

do not understand operation research terminology, and they want a user-friendly tool with their own terminology 

that offer reliable and quick results. Unfortunately, many of the surgical scheduling operations in public hospitals 

are done by hand which represents a lack between data and IT systems. This becomes a challenging opportunity 

for our application to be implemented at any hospital reducing total surgical costs and at the same time improving 

resource utilization. As a conclusion, we can realize now how much money is the hospital loosing for do not use 

the proper scheduling system. If we compare with traditional heuristic rules, the ones probably used in real life, 

our MILP model could provide a total saving between 25-75%. 
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In the stochastic problem, the difference from use a decomposition method against the traditional full-space 

method gives savings of 5% average for largest instances analyzed reducing the CPU time in more than 50%. Use 

this kind of tools represents a high reduction in total surgical cost and its utilization is really important to everyday 

scheduling. The specific requirements of the hospital manager will be added in a future step representing the real 

life conditions more accurately. 
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