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We study the behavior of neutral meson properties in the presence of a static uniform external magnetic
field in the context of nonlocal chiral quark models. The formalism is worked out introducing Ritus
transforms of Dirac fields, which allow to obtain closed analytical expressions for π0 and σ meson masses
and for the π0 decay constant. Numerical results for these observables are quoted for various para-
metrizations. In particular, the behavior of the π0 meson mass with the magnetic field is found to be in good
agreement with lattice QCD results. It is also seen that the Goldberger-Treiman and Gell-Mann-Oakes-
Renner chiral relations remain valid within these models in the presence of the external magnetic field.
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I. INTRODUCTION

The study of the behavior of strongly interacting matter
under intense external magnetic fields has gained increas-
ing interest in the last few years, especially due to its
applications to the analysis of relativistic heavy ion
collisions [1] and the description of compact objects like
magnetars [2]. From the theoretical point of view, address-
ing this subject requires to deal with quantum chromody-
namics (QCD) in nonperturbative regimes, therefore
present analyses are based either in the predictions of
effective models or in the results obtained through lattice
QCD (LQCD) calculations. In this work we focus on the
effect of an intense external magnetic field on π0 and σ
meson properties. This issue has been studied in the last
years following various theoretical approaches for low-
energy QCD, such as Nambu-Jona-Lasinio (NJL)-like
models [3–8], chiral perturbation theory (ChPT) [9,10]
and path integral Hamiltonians (PIH) [11,12]. In addition,
results for the light meson spectrum under background
magnetic fields have been recently obtained from LQCD
calculations [13,14].
We will study in particular the behavior of the mass and

decay constant of the π0 meson in the presence of a uniform

static magnetic field, within a relativistic chiral quark
model in which quarks interact through a nonlocal four-
fermion coupling [15]. This so-called “nonlocal NJL
(nlNJL) model” can be viewed as a sort of extension of
the NJL model that intends to provide a more realistic
effective approach to QCD. Actually, nonlocality arises
naturally in the context of successful descriptions of low-
energy quark dynamics [16,17], and it has been shown [18]
that nonlocal models can lead to a momentum dependence
in quark propagators that is consistent with LQCD results.
Moreover, in this framework it is possible to obtain an
adequate description of the properties of light mesons at
both zero and finite temperature [18–28].
The basic theoretical formalism required for the study of

nlNJL models in the presence of a uniform static magnetic
field B has been introduced in Refs. [29,30], where both
zero and finite temperature cases have been considered.
Noticeably, in these articles it is shown that nlNJL models
naturally allow to reproduce the effect of inverse magnetic
catalysis (IMC) observed from LQCD results—that is, the
fact that the chiral restoration critical temperature turns out
to be a decreasing function of B. In fact, the observation of
IMC in LQCD calculations [31,32] represents a challenge
from the point of view of theoretical models, since most
naive effective approaches to low energy QCD (NJL model,
chiral perturbation theory, MIT bag model, quark-meson
models) predict that the chiral transition temperature should
grow when the magnetic field is increased [33–35]. As
shown in Refs. [36,37], this problem can be overcome
(e.g. in the case of the local NJL model) by allowing for a B
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dependence in the coupling constants. In the present paper
we show that nlNJL models not only provide a natural
description of the IMC effect but also lead to a B
dependence of the π0 mass that is found to be in good
agreement with LQCD results.
This article is organized as follows. In Sec. II we show

how to obtain the analytical equations required to deter-
mine the values of the π0 mass and decay constant in the
presence of the magnetic field. Our calculations are based
on the formalism developed in Refs. [29,30], which makes
use of Ritus eigenfunctions [38]. From this analysis it is
also immediate to obtain an equation for the σ scalar meson
mass. In the last subsection of Sec. II we prove within our
model the validity of the Goldberger-Treiman and Gell-
Mann-Oakes-Renner relations in the presence of the
magnetic field. Previous checks of these relations have
been carried out in Refs. [10,11] in the framework of ChPT
and PIH, respectively. In Sec. III we quote and discuss our
numerical results, comparing our findings with those
obtained in LQCD. Our conclusions are presented in
Sec. IV. Finally, in Appendices A and B we outline the
derivation of some expressions quoted in the main text.

II. THEORETICAL FORMALISM

Let us start by stating the Euclidean action for our
nonlocal NJL-like two-flavor quark model,

SE ¼
Z

d4x

�
ψ̄ðxÞð−i∂þmcÞψðxÞ−

G
2
jaðxÞjaðxÞ

�
: ð1Þ

Here mc is the current quark mass, which is assumed to be
equal for u and d quarks. The currents jaðxÞ are given by

jaðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
Γaψ

�
x −

z
2

�
; ð2Þ

where Γa ¼ ð1; iγ5τ⃗Þ, and the function GðzÞ is a nonlocal
form factor that characterizes the effective interaction. We
introduce now in the effective action Eq. (1) a coupling to
an external electromagnetic gauge field Aμ. For a local
theory this can be done by performing the replacement

∂μ → Dμ ≡ ∂μ − iQ̂AμðxÞ; ð3Þ

where Q̂ ¼ diagðqu; qdÞ, with qu ¼ 2e/3, qd ¼ −e/3, is the
electromagnetic quark charge operator. In the case of the
nonlocal model under consideration, the inclusion of gauge
interactions implies a change not only in the kinetic terms
of the Lagrangian but also in the nonlocal currents in
Eq. (2). One has

ψðx − z/2Þ → Wðx; x − z/2Þψðx − z/2Þ; ð4Þ

and a related change holds for ψ̄ðxþ z/2Þ [18,24,27]. Here
the function Wðs; tÞ is defined by

Wðr; sÞ ¼ P exp

�
−i

Z
s

r
dlμQ̂AμðlÞ

�
; ð5Þ

where r runs over an arbitrary path connecting r with s. As
it is usually done, we take it to be a straight line path.
Since we are interested in studying light meson proper-

ties, it is convenient to bosonize the fermionic theory,
introducing scalar and pseudoscalar fields σðxÞ and π⃗ðxÞ
and integrating out the fermion fields. The bosonized action
can be written as [18,27]

Sbos ¼ − log detDþ 1

2G

Z
d4x½σðxÞσðxÞ þ π⃗ðxÞ · π⃗ðxÞ�;

ð6Þ

with

Dðx; x0Þ ¼ δð4Þðx − x0Þð−iDþmcÞ
þ Gðx − x0Þγ0Wðx; x̄Þγ0½σðx̄Þ þ iγ5τ⃗ · π⃗ðx̄Þ�
×Wðx̄; x0Þ; ð7Þ

where we have defined x̄ ¼ ðxþ x0Þ/2 for the neutral
mesons. We will consider the particular case of a constant
and homogenous magnetic field orientated along the
positive direction of the 3 axis. Then, in the Landau gauge,
one has Aμ ¼ Bx1δμ2.

A. Mean field fermion propagator

We proceed by expanding the operator in Eq. (7) in
powers of the fluctuations δπi and δσ around the corre-
sponding mean field values. We assume that the field σðxÞ
has a nontrivial translational invariant mean field value σ̄,
while the vacuum expectation values of pseudoscalar fields
are zero. Thus, we write

σðxÞ ¼ σ̄ þ δσðxÞ; πiðxÞ ¼ δπiðxÞ;

and

Dðx; x0Þ ¼ DMFAðx; x0Þ þ δDðx; x0Þ: ð8Þ

It is easy to see that the mean field piece is flavor diagonal.
One has

DMFAðx; x0Þ ¼ diagðDMFA
u ðx; x0Þ;DMFA

d ðx; x0ÞÞ; ð9Þ

where

DMFA
f ðx; x0Þ ¼ δð4Þðx − x0Þð−i∂ − qfBx1γ2 þmcÞ

þ σ̄Gðx − x0Þ exp ½iΦfðx; x0Þ�: ð10Þ

Here a direct product to an identity matrix in color space is
understood. It is seen that the operatorDMFA

f ðx; x0Þ includes
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a translational invariant piece, plus a term carrying
the nonlocal form factor and the so-called Schwinger
phase Φfðx; x0Þ ¼ qfBðx2 − x02Þðx1 þ x01Þ/2. The mean
field quark propagators SMFA

f ðx; x0Þ are defined now as

SMFA
f ðx; x0Þ ¼ ½DMFA

f ðx; x0Þ�−1: ð11Þ

Their explicit form can be obtained by following the Ritus
eigenfunction method [38]. As shown in Ref. [30] (see also
the analysis carried out within the Schwinger-Dyson
formalism in Refs. [39,40]), the propagators can be written
in terms of the Schwinger phase Φfðx; x0Þ and a transla-
tional invariant function, namely

SMFA
f ðx; x0Þ ¼ exp½iΦfðx; x0Þ�

Z
d4p
ð2πÞ4 e

ip·ðx−x0ÞS̃fðp⊥; pkÞ;

ð12Þ

where p⊥ ¼ ðp1; p2Þ and pk ¼ ðp3; p4Þ. The expression of
S̃fðp⊥; pkÞ in the nlNJL model is found to be [30]

S̃fðp⊥;pkÞ
¼2expð−p2⊥/jqfBjÞ

×
X∞
k¼0

X
λ¼�

½ð−1ÞkλðÂλ;f
k;pk − B̂λ;f

k;pkpk ·γkÞLkλð2p2⊥/jqfBjÞ

þ2ð−1ÞkðĈλ;f
k;pk −D̂λ;f

k;pkpk ·γkÞp⊥ ·γ⊥L1
k−1ð2p2⊥/jqfBjÞ�Δλ;

ð13Þ

where the following definitions have been used. The
perpendicular and parallel gamma matrices are collected
in vectors γ⊥ ¼ ðγ1; γ2Þ and γk ¼ ðγ3; γ4Þ, while the matri-
ces Δλ are defined as Δþ ¼ diagð1; 0; 1; 0Þ and Δ− ¼
diagð0; 1; 0; 1Þ. The integers kλ are given by k�¼
k−1/2�sf/2, where sf¼signðqfBÞ. The functions X̂�;f

k;pk ,

with X ¼ A, B, C, D, are defined as

Â�;f
k;pk ¼ M∓;f

k;pkĈ
�;f
k;pk þ p2

kD̂
�;f
k;pk ; ð14Þ

B̂�;f
k;pk ¼ Ĉ�;f

k;pk −M∓;f
k;pkD̂

�;f
k;pk ; ð15Þ

Ĉ�;f
k;pk ¼

2kjqfBj þ p2
k þM−;f

k;pkM
þ;f
k;pk

Δf
k;pk

; ð16Þ

D̂�;f
k;pk ¼

M�;f
k;pk −M∓;f

k;pk

Δf
k;pk

; ð17Þ

where

Δf
k;pk ¼ ð2kjqfBj þ p2

k þMþ;f
k;pkM

−;f
k;pk Þ

2

þ p2
kðMþ;f

k;pk −M−;f
k;pk Þ

2; ð18Þ

whereas the functions Mλ;f
k;pk play the role of effective

(momentum-dependent) dynamical quark masses in pres-
ence of the magnetic field. They are given by

Mλ;f
k;pk ¼

4π

jqfBj
ð−1Þkλ

Z
d2p⊥
ð2πÞ2 Mðp2⊥ þ p2

kÞ

× expð−p2⊥/jqfBjÞLkλð2p2⊥/jqfBjÞ; ð19Þ

where

Mðp2Þ ¼ mc þ σ̄gðp2Þ; ð20Þ

gðp2Þ being the Fourier transform of the nonlocal form
factor GðxÞ. In Eqs. (13) and (19), LkðxÞ, L1

kðxÞ stand for
generalized Laguerre polynomials, with the convention
L−1ðxÞ ¼ L1

−1ðxÞ ¼ 0. The relation in Eq. (19) can be
understood as a Laguerre-Fourier transform of the function
Mðp2Þ. It is also convenient to introduce Laguerre-Fourier
transforms of the form factor gðp2Þ,

gλ;fk;pk ¼
4π

jqfBj
ð−1Þkλ

Z
d2p⊥
ð2πÞ2 gðp

2⊥ þ p2
kÞ

× expð−p2⊥/jqfBjÞLkλð2p2⊥/jqfBjÞ; ð21Þ

thus one has

Mλ;f
k;pk ¼ ½1 − δðkλþ1Þ0�mc þ σ̄gλ;fk;pk : ð22Þ

Let us also quote the expressions for the quark con-
densates, hūui and hd̄di, which can be obtained from

hf̄fi ¼ −
1

Vð4Þ TrS
MFA
f ¼ −NC

Z
d4p
ð2πÞ4 trDS̃fðp⊥; pkÞ:

ð23Þ

Given the result for the propagators in Eq. (13) one gets

hf̄fi ¼ −4
X∞
k¼0

Z
qk

X
λ¼�

ð−1ÞkλÂλ;f
k;pk

Z
d2p⊥
ð2πÞ2

× expð−p2⊥/jqfBjÞLkλð2p2⊥/jqfBjÞ

¼ −
NCjqfBj

π

X∞
k¼0

Z
qk

X
λ¼�

Âλ;f
k;qk : ð24Þ

As usual in this type of models, it is seen that the chiral
condensates turn out to be divergent away from the chiral
limit, and they have to be regularized. We follow a
prescription similar as that considered e.g. in Ref. [41],
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in which we subtract the corresponding free quark con-
tribution and then we add it in a regularized form. Here by
“free” we mean in the absence of the four fermion effective
coupling, but keeping the interaction with the magnetic
field. Thus, we have

hf̄fireg ¼ hf̄fi − hf̄fifree þ hf̄fifree;reg: ð25Þ

To regularize the free contribution we separate it into two
pieces, namely a divergent B ¼ 0 term and a finite term that
depends on the magnetic field. By dropping the divergent
piece one gets [30]

hf̄fifree;regðBÞ ¼ −
NCm3

c

4π2

�
lnΓðxfÞ

xf
−
ln 2π
2xf

þ 1 −
�
1 −

1

2xf

�
ln xf

�
; ð26Þ

with xf ¼ m2
c/ð2jqfBjÞ. Notice that an expression similar to

Eq. (26) is obtained for the explicit B-dependent contri-
bution to the quark condensate in the case of the local NJL
model, just replacing the current quark mass mc by a
dressed effective quark mass Mf, which in the local NJL
model turns out to be constant [42,43].

B. π0 and σ meson masses

The expression of the quark propagator in Eq. (13) can
be used to obtain the theoretical expressions for the π0 and
σ meson masses within the nlNJL model. Let us first
concentrate on the π0 mass, which follows from the terms
in the expansion of the bosonized action Sbos that are
quadratic in δπ3. Expanding the first term in Eq. (6) around
the mean field values of the meson fields one has

− log detD ¼ −Tr logD0 − Tr logð1þD−1
0 δDÞ

¼ −Tr logD0 − TrðD−1
0 δDÞ

þ 1

2
TrðD−1

0 δDÞ2 þ… ð27Þ

From Eq. (7), it is seen that the quadratic piece is given by

1

2
TrðD−1

0 δDÞ2jðδπ3Þ2 ¼ −
1

2

Z
Gðx0 − x00ÞGðx000 − xÞ

× trcfD½D−1
0 ðx; x0Þγ5 exp½Φðx0; x00Þ�

×D−1
0 ðx00; x000Þγ5 exp½Φðx000; xÞ��

× δπ3

�
x0 þ x00

2

�
δπ3

�
x000 þ x

2

�
;

ð28Þ

where the integral extends over coordinate spaces x, x0, x00
and x000, and the trace acts on color, flavor and Dirac spaces.

To determine the π0 mass it is convenient to write the
trace in Eq. (28) in momentum space. In this way the ðδπ3Þ2
piece of the bosonized action in Eq. (6) can be written as

Sbosjðδπ3Þ2 ¼
1

2
TrðD−1

0 δDÞ2
���
ðδπ3Þ2

þ 1

2G

Z
d4t
ð2πÞ4δπ3ðtÞδπ3ð−tÞ

¼1

2

Z
d4t
ð2πÞ4

�
Fðt2⊥;t2kÞþ

1

G

�
δπ3ðtÞδπ3ð−tÞ;

ð29Þ
and, choosing the frame in which the π0 meson is at rest, its
mass can be obtained as the solution of the equation

Fð0;−m2
π0
Þ þ 1

G
¼ 0: ð30Þ

Thus, our task is to obtain within our model the function
Fðt2⊥; t2kÞ in the limit t⊥ ¼ 0. After some straightforward

calculation, from Eq. (28) one gets

Fð0; t2kÞ¼ 16π2NC

X
f¼u;d

1

ðqfBÞ2

×
Z
q⊥p⊥p0⊥qk

gðq2⊥þq2kÞg½ðp0⊥þp⊥−q⊥Þ2þq2k�

×exp½i2ϕðq⊥;p⊥;p0⊥Þ/ðqfBÞ�
×trD½S̃fðp⊥;qþk Þiγ5S̃fðp0⊥;q−k Þiγ5�; ð31Þ

where we have defined q�k ¼ qk � tk/2, and the function ϕ

in the exponential is given by

ϕðq⊥; p⊥; p0⊥Þ ¼ p2p0
1 þ q1ðp0

2 − p2Þ − p1p0
2

− q2ðp0
1 − p1Þ: ð32Þ

For the integrals over two-dimensional momentum vectors
we have used the notation

Z
pq…

≡
Z

d2p
ð2πÞ2

d2q
ð2πÞ2… ð33Þ

The evaluation of the trace in Eq. (31) leads to

trD½S̃fðp⊥; qþk Þiγ5S̃fðp0⊥; q−k Þiγ5�

¼ −8e−ðp2⊥þp0⊥2Þ/Bf

X∞
k;k0¼0

ð−1Þkþk0

×

�X
λ¼�

Fλ;fðABÞ
kk0;qþk q

−
k
Lkλð2p2⊥/BfÞLk0λ

ð2p0⊥2/BfÞ

þ 8Fþ;fðCDÞ
kk0;qþk q

−
k
ðp · p0ÞL1

k−1ð2p2⊥/BfÞL1
k0−1ð2p0⊥2/BfÞ

�
;

ð34Þ
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where

Fλ;fðXYÞ
kk0;qþk q

−
k
¼ X̂λ;f

k;qþk
X̂λ;f
k0;q−k

þ ðqþk · q−k ÞŶλ;f
k;qþk

Ŷλ;f
k0;q−k

: ð35Þ

For simplicity we have introduced here the notation
Bf ¼ jqfBj.
To work out the integrals over p⊥, p0⊥ and q⊥, which

involve the Laguerre polynomials, it is convenient to
introduce the Laguerre-Fourier transforms of the nonlocal
form factors. It is seen that Eq. (21) can be inverted to get

gðp2⊥ þ p2
kÞ ¼ 2e−p

2⊥/Bf

X∞
k¼0

ð−1Þkλgλ;fk;pkLkλð2p2⊥/BfÞ; ð36Þ

for either λ ¼ þ or λ ¼ −. Using this relation to transform
the functions gðq2⊥ þ q2kÞ and g½ðp0⊥ þ p⊥ − q⊥Þ2 þ q2k�
in Eq. (31), it can be shown that the integrals over
perpendicular momenta can be performed analytically.
The corresponding calculation, sketched in Appendix A,
leads to a relatively brief expression for Fð0; t2kÞ, namely

Fð0; t2kÞ ¼ −
NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
d2qk
ð2πÞ2

�X
λ¼�

gλ;fk;qk
2Fλ;fðABÞ

kk;qþk q
−
k

þ 4kBfg
þ;f
k;qkg

−;f
k;qkF

þ;fðCDÞ
kk;qþk q

−
k

�
; ð37Þ

which is one of the main analytical results of this article. In
the limit B → 0, it can be shown that Eq. (37) reduces, as it
should, to the expression quoted e.g. in Ref. [24],

Fðt2Þ
���
B¼0

¼ −8NC

Z
d4q
ð2πÞ4 gðq

2Þ2

×
ðqþ · q−Þ þMðqþ2ÞMðq−2Þ

½qþ2 þMðqþ2Þ�½q−2 þMðq−2Þ� : ð38Þ

In the case of the σ meson, the mass can be determined
from a relation similar to Eq. (30). The corresponding
function Gð0; t2kÞ is obtained by following basically the

same steps as for the π0 case. The essential difference is that
one has to remove the factors iγ5 in the trace in Eq. (31).
When calculating this trace one arrives at a result analogous

to that in Eq. (34), where the new functions Gλ;fðXYÞ
kk0;qþk q

−
k
are

given by

Gλ;fðABÞ
kk0;qþk q

−
k
¼ −Âλ;f

k;qþk
Âλ;f
k0;q−k

þ ðqþk · q−k ÞB̂λ;f
k;qþk

B̂λ;f
k0;q−k

Gλ;fðCDÞ
kk0;qþk q

−
k
¼ Ĉλ;f

k;qþk
Ĉλ;f
k0;q−k

− ðqþk · q−k ÞD̂λ;f
k;qþk

D̂λ;f
k0;q−k

: ð39Þ

The final expression for Gð0; t2kÞ has then the same form
as the left-hand side (lhs) of Eq. (37), just replacing

F�;fðXYÞ
kk0;qþk q

−
k
→ G�;fðXYÞ

kk0;qþk q
−
k
.

C. π0 decay constant

In the absence of external fields, the π0 decay constant is
defined through the matrix element of the axial current J μ

A3
between the vacuum and the physical pion state, taken at
the pion pole. One has

h0jJ μ
A3ðxÞjπ̃3ðtÞi ¼ ie−iðt·xÞfðt2Þtμ; ð40Þ

where π̃3ðtÞ ¼ Z−1/2
π0

π3ðtÞ is the renormalized field asso-
ciated with the π0 meson state, with t2 ¼ −m2

π0
. In what

follows we will obtain an analytical expression for the form
factor fðt2Þ under a static uniform magnetic field, defining
the π0 decay constant fπ0ðBÞ as the value of this form factor
at t2 ¼ −m2

π0
ðBÞ. Notice, however, that in the presence of

the magnetic field further Lorentz structures are allowed for
the matrix element in Eq. (40), and consequently other form
factors could be nonzero [44].
The wave function renormalization factor Z1/2

π0
is given

by the residue of the pion propagator at t2 ¼ −m2
π0
.

Therefore, in the rest frame of the π0 meson, from
Eq. (29) we have

Z−1
π0

¼
dFð0; t2kÞ

dt2k

����
t2k¼−m2

π0

; ð41Þ

where Fð0; t2kÞ is the function given by Eq. (37). The matrix

element in Eq. (40) can be obtained by introducing a
coupling between the current J μ

A3 and an auxiliary axial
gauge field Wμ

3, and taking the corresponding functional
derivative of the effective action. In the same way as
discussed at the beginning of this section, gauge invariance
requires the couplings to this auxiliary gauge field to be
introduced through the covariant derivative and the parallel
transport of the fermion fields, see Eqs. (3) and (4). In the
presence of the external magnetic field one has

Dμ ¼ ∂μ − iQ̂AμðxÞ −
i
2
γ5τ3W3μðxÞ; ð42Þ

Wðr; sÞ ¼ Pexp

�
−i

Z
s

r
dlμ

�
Q̂AμðlÞ þ

1

2
γ5τ3W3μðlÞ

��
:

ð43Þ

Assuming that the mean field value of the π3 field vanishes,
the pion decay constant can be obtained by expanding the
bosonized action up to first order in W3μ and δπ3. Writing

SbosjW3δπ3
¼

Z
d4t
ð2πÞ4 FμðtÞW3μðtÞδπ3ð−tÞ; ð44Þ

one finds
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fπ0 ¼ fð−m2
π0
Þ ¼ iZ1/2

π0
tμFμðtÞ

t2

����
t2⊥¼0;t2k¼−m2

π0

: ð45Þ

To find the function FμðtÞ we consider once again the
expansion in Eq. (27). In addition, we expand δD in powers
of δπ3 and W3,

δD ¼ δDW þ δDπ þ δDWπ þ…; ð46Þ

which leads to

SbosjW3δπ3
¼ −TrðD−1

0 δDWπÞ þ TrðD−1
0 δDWD−1

0 δDπÞ:
ð47Þ

The operators in the right-hand side (rhs) of Eq. (46)
explicitly read

δDπðx; x0Þ ¼ iγ5τ3 exp½Φðx; x0Þ�Gðx − x0Þδπ3ðx̄Þ; ð48Þ

δDWðx; x0Þ ¼ δð4Þðx − x0Þ τ3
2
γ5γμW3μðx̄Þ

þ iσ̄γ5
τ3
2
exp½Φðx; x0Þ�

× Gðx − x0Þ½a3ðx; x̄Þ − a3ðx̄; xÞ�; ð49Þ

δDWπðx; x0Þ ¼ −
1

2
exp½Φðx; x0Þ�Gðx − x0Þ½a3ðx; x̄Þ

− a3ðx̄; xÞ�δπ3ðx̄Þ; ð50Þ

where we have introduced the definitions x̄¼ðxþx0Þ/2 and

a3ðx; yÞ ¼
Z

y

x
dlμW3μðlÞ: ð51Þ

A direct product to an identity matrix in color space is
understood.
The first and second terms in the rhs of Eq. (47) can be

diagrammatically represented as a tadpole and a two-
propagator contribution, respectively. Let us start by dis-
cussing the tadpole piece. After some straightforward
calculation we get

−TrðD−1
0 δDWπÞ ¼

Z
d4t
ð2πÞ4 F

ðIÞ
μ ðtÞW3μðtÞδπ3ð−tÞ; ð52Þ

where

FðIÞ
μ ðtÞ ¼ i

NC

2

X
f¼u;d

Z
d4p
ð2πÞ4

d4q
ð2πÞ4 fg½ðp − q/2Þ2�

− g½ðp − q/2þ t/2Þ2�g
× trD½S̃fðp⊥; pkÞ�hμðq; t − qÞ; ð53Þ

with

hμðq; q0Þ ¼ −i
Z

d4zeiq
0·z
Z

z

0

dlμeiðqþq0Þ·l: ð54Þ

Since we are interested in the scalar product t · FðIÞðtÞ, we
can use the relation

tμhμðq; t − qÞ ¼ ð2πÞ4½δð4Þðt − qÞ − δð4ÞðqÞ�; ð55Þ

which holds independently of the integration path chosen in
Eq. (54). Taking into account the expression for S̃fðp⊥; pkÞ
in Eq. (13) we obtain

kμF
ðIÞ
μ ðtÞjt⊥¼0

¼ i2NC

X
f¼u;d

X∞
k¼0

Z
p⊥pk

½gðpþ2Þ þ gðp−2Þ − 2gðp2Þ�

× expð−p2⊥/BfÞ
×
X
λ¼�

ð−1ÞkλÂλ;f
k;pkLkλð2p2⊥/BfÞ; ð56Þ

where p�2 ¼ p2⊥ þ ðpk � tk/2Þ2. Now, as in the case of the
meson masses, we can perform the integral over p⊥ after
taking the Laguerre-Fourier transform of the nonlocal form
factors, Eq. (36). We have

tμF
ðIÞ
μ ðtÞjt⊥¼0¼ i4NC

X
f¼u;d

X∞
k;k0¼0

ð−1Þkþk0
Z
p⊥pk

expð−2p2⊥/BfÞ

×
X
λ¼�

ðgλ;fk0;pþ
k
þgλ;fk0;p−

k
−2gλ;fk0;pk

Þ

×Âλ;f
k;pkLk0λ

ð2p2⊥/BfÞLkλð2p2⊥/BfÞ

¼ i
NC

2π

X
f¼u;d

Bf

X∞
k¼0

Z
pk

X
λ¼�

×ðgλ;fk;pþ
k
þgλ;fk;p−

k
−2gλ;fk;pkÞÂ

λ;f
k;pk ; ð57Þ

where we have made use of the orthogonality property of
Laguerre polynomials.
To analyze the two-propagator piece we write

TrðD−1
0 δDWD−1

0 δDπÞ

¼
Z

d4t
ð2πÞ4 ½F

ðIIÞ
μ ðtÞ þ FðIIIÞ

μ ðtÞ�W3μðtÞδπ3ð−tÞ; ð58Þ

where FðIIÞ
μ ðtÞ and FðIIIÞ

μ ðtÞ correspond to the contributions
arising from the first and second terms of δDW in Eq. (49),
respectively. For the first term we obtain
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FðIIÞ
μ ðtÞ

¼ i8π2NC

X
f¼u;d

1

B2
f

×
Z
qkq⊥p⊥p0⊥

gðq2Þ exp½i2φðq⊥; p⊥; p0⊥; t⊥Þ/ðqfBÞ�

× trD½S̃fðp⊥; qþk Þγ5γμS̃fðp0⊥; q−k Þγ5�; ð59Þ

where q�k ¼ qk � tk/2, and the function φ in the exponen-

tial is given by

φðq⊥; p⊥; p0⊥; t⊥Þ ¼ p2ðq1 − t1/2Þ − p0
2ðq1 þ t1/2Þ

− q1t2 − p2p0
1 − ð1 ↔ 2Þ: ð60Þ

Since we are interested in the product tμF
ðIIÞ
μ ðtÞ for t⊥ ¼ 0,

we calculate the trace

trD½S̃fðp⊥; qþk Þγ5ðtk · γkÞS̃fðp0⊥; q−k Þγ5�

¼ 8 exp½−ðp2⊥ þ p0⊥2Þ/Bf�
X∞
k;k0¼0

ð−1Þkþk0
�X

λ¼�
½ðtk · q−k ÞÂλ;f

k;qþk
B̂λ;f
k0;q−k

− ðtk · qþk ÞÂλ;f
k0;q−k

B̂λ;f
k;qþk

�Lkλð2p2⊥/BfÞLk0λ
ð2p0⊥2/BfÞ

þ 8iðp1p0
2 − p2p0

1Þ½ðtk · q−k ÞĈþ;f
k;qþk

D̂þ;f
k0;q−k

− ðtk · qþk ÞĈþ;f
k0;q−k

D̂þ;f
k;qþk

�L1
k−1ð2p2⊥/BfÞL1

k−1ð2p0⊥2/BfÞ
�
: ð61Þ

One can now introduce the transformation in Eq. (36) for gðq2Þ in order to integrate over transverse momenta and
express the result in terms of Laguerre-Fourier transforms of the form factors. This calculation, outlined in Appendix B,
leads to

tμF
ðIIÞ
μ ðtÞjt⊥¼0 ¼ −i

NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
qk
ðtk · qþk Þ

�X
λ¼�

gλ;fk;qk Â
λ;f
k;q−k

B̂λ;f
k;qþk

þ 2kBfðgþ;f
k;qk − g−;fk;qk ÞĈ

þ;f
k;q−k

D̂þ;f
k;qþk

�
: ð62Þ

Finally, for the second term in Eq. (58) we find

FðIIIÞ
μ ðtÞ ¼ i8π2NCσ̄

X
f¼u;d

1

B2
f

Z
d4r
ð2πÞ4 hμðr; t − rÞ

Z
qkq⊥p⊥p0⊥

gðq2Þ

× fg½ðp⊥ − r⊥/2 − t⊥/2Þ2 þ ðpk þ p0
k − qk − rk/2Þ2�

− g½ðp⊥ − r⊥/2Þ2 þ ðpk þ p0
k − qk − rk/2þ tk/2Þ2�g

× exp½i2φðq⊥; p⊥; p0⊥; k⊥Þ/ðqfBÞ�trD½S̃fðp⊥; qþk Þiγ5S̃fðp0⊥; q−k Þiγ5�; ð63Þ

where the function φðq⊥; p⊥; p0⊥; k⊥Þ is that given in Eq. (60). Using the relation in Eq. (55) we obtain

tμF
ðIIIÞ
μ ðtÞjt⊥¼0 ¼ i8π2NCσ̄

X
f¼u;d

1

B2
f

Z
qkq⊥p⊥p0⊥

½gðs2⊥ þ qþk
2Þ þ gðs2⊥ þ q−k

2Þ

− 2gðs2⊥ þ q2kÞ�gðq2Þ exp½−i2ϕðq⊥; p⊥; p0⊥Þ/ðqfBÞ�
× trD½S̃fðp⊥; qþk Þiγ5S̃fðp0⊥; q−k Þiγ5�; ð64Þ

where ϕðq⊥; p⊥; p0⊥Þ is given by Eq. (32), and we have defined s⊥ ¼ p0⊥ þ p⊥ − q⊥. Comparing with Eq. (31), it is seen
that the calculation to be done is basically the same as that carried out in the case of the analysis of the π0 mass, described in
Appendix A. In this way we obtain

tμF
ðIIIÞ
μ ðtÞjt⊥¼0 ¼ −i

NC

2π
σ̄
X
f¼u;d

Bf

X∞
k¼0

Z
qk

�X
λ¼�

gλ;fk;qk g̃
λ;f
k;qkF

λ;fðABÞ
kk;qþk q

−
k
þ 2kBfðgþ;f

k;qk g̃
−;f
k;qktk þ g−;fk;qk g̃

þ;f
k;qktk ÞF

þ;fðCDÞ
kk;qþk q

−
k

�
; ð65Þ
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where we have defined

g̃λ;fk;qktk ¼ gλ;fk;qþk
þ gλ;fk;q−k

− 2gλ;fk;qk : ð66Þ

Notice that one has

σ̄g̃λ;fk;qktk ¼ Mλ;f
k;qþk

þMλ;f
k;q−k

− 2Mλ;f
k;qk

: ð67Þ

When summing the contributions given by Eqs. (57),
(62) and (65) it is seen that some cancellations help to
simplify the final expression for t · FðtÞjt⊥¼0. After some
algebra one gets

tμFμðtÞjt⊥¼0 ¼ i
NC

π

X
f¼u;d

Bf

×
X∞
k¼0

Z
qk

�X
λ¼�

gλ;fk;qk

	
Fλ;fðABÞ
kk;qþk q

−
k
Mλ;f

k;qk − Âλ;f
k;qk




þ 2kBf

	
gþ;f
k;qkM

−;f
k;qk þ g−;fk;qkM

þ;f
k;qk



Fþ;fðCDÞ
kk;qþk q

−
k

�
:

ð68Þ
Moreover, the expression for fπ0 can be further
simplified by making use of the gap equation and the
relation (30) obtained for the π0 mass. According to the
result previously obtained in Ref. [30], the gap equation can
be written as

σ̄

G
¼ NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
qk

X
λ¼�

gλ;fk;qkÂ
λ;f
k;qk ; ð69Þ

while for the pion mass we have

1

G
¼ −Fð0;−m2

π0
Þ; ð70Þ

with Fð0; t2kÞ given by Eq. (37). Taking into account
these equations and the relation in Eq. (22), it is easy
to see that for t2k ¼ −m2

π0
there are some additional

cancellations in Eq. (68). Thus, we arrive to our final
expression

m2
π0
fπ0 ¼ mcZ1/2

π0
Jð−m2

π0
Þ; ð71Þ

where the function Jðt2kÞ is given by

Jðt2kÞ¼
NC

π

X
f¼u;d

Bf

×
X∞
m¼0

Z
qk

X
λ¼�

gλ;fk;qkðF
λ;fðABÞ
kk;qþk q

−
k
þ2kBfF

λ;fðCDÞ
kk;qþk q

−
k
Þ; ð72Þ

with q�k ¼ qk � tk. Taking the limit B → 0 one arrives at
the expression given e.g. in Ref. [24],

Jðt2Þ
���
B¼0

¼ 8NC

Z
d4q
ð2πÞ4 gðq

2Þ

×
ðqþ · q−Þ þMðqþ2ÞMðq−2Þ

½qþ2 þMðqþ2Þ�½q−2 þMðq−2Þ� : ð73Þ

D. Chiral relations

In this subsection we show that the Goldberger-Treiman
(GT) and Gell-Mann-Oakes-Renner (GOR) relations
remain valid in our model in the presence of the external
magnetic field. For this purpose, following the line of the
analysis in Ref. [24], it is useful to define the function

Kðt2kÞ ¼ mcJðt2kÞ − σ̄Fð0; t2kÞ; ð74Þ

where Jðt2kÞ and Fð0; t2kÞ are given by Eqs. (72) and (37),
respectively. From Eq. (68), taking into account the relation
in Eq. (22) it is easy to show that

−itμFμðtÞjt⊥¼0 ¼ Kðt2kÞ −
NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
qk

X
λ¼�

gλ;fk;qkÂ
λ;f
k;qk

:

ð75Þ

The second term in the rhs is a constant, equal to −σ̄/G
according to the gap equation. Moreover, taking into
account the relations

Fλ;fðABÞ
kk;qkqk þ 2kBfF

λ;fðCDÞ
kk;qkqk ¼ B̂λ;f

k;qk ;

ðM�;f
k;qk

−M∓;f
k;qk

ÞFλ;fðCDÞ
kk;qkqk

¼ D̂�;f
k;qk

;

B̂λ;f
k;qk

Mλ;f
k;qk

− 2kBfD̂
λ;f
k;qk

¼ Âλ;f
k;qk

; ð76Þ

it is seen that

mcJð0Þ − σ̄Fð0; 0Þ ¼ NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
qk

X
λ¼�

gλ;fk;qk Â
λ;f
k;qk

;

ð77Þ

hence we can write

−itμFμðtÞjt⊥¼0 ¼ Kðt2kÞ − Kð0Þ: ð78Þ

Thus, from Eq. (45) we obtain

fπ0 ¼ −Z1/2
π0

½Kð−m2
π0
Þ − Kð0Þ�

−m2
π0

: ð79Þ

In the chiral limit one hasmc → 0,m2
π → 0, therefore the

pion decay constant is given by
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fπ0;0 ¼ −Z1/2
π0;0

dK0ðt2kÞ
dt2k

����
tk¼0

¼ Z1/2
π0;0σ̄0

dF0ð0; t2kÞ
dt2k

����
tk¼0

¼ Z−1/2
π0;0

σ̄0; ð80Þ

where we have taken into account the relation between Zπ0

and the derivative of Fð0; t2kÞ in Eq. (41). Subindices 0

indicate that all quantities have to be evaluated in the chiral
limit. Noticing that Z1/2

π0
turns out to be the effective

coupling constant gπqq̄ between the π3 field and the
quark-antiquark pseudoscalar currents, we arrive at

fπ0;0gπqq̄;0 ¼ σ̄0; ð81Þ

which is the expression for the Goldberger-Treiman rela-
tion at the quark level.
Finally, let us consider the quark condensates, hūui and

hd̄di, which in the presence of the magnetic field are given
by Eq. (24). Taking into account the relations (76), it is easy
to see that in the chiral limit one has

hūuþ d̄di0 ¼ −σ̄0J0ð0Þ ð82Þ

[notice that away from the chiral limit the integrals in
Eq. (24) are in general divergent, and need to be regular-
ized]. In addition, we can perform a chiral expansion at
both sides of Eq. (71), keeping only the lowest nonzero
order. This leads to

m2
π0
fπ0;0 ¼ mcZ1/2

π0;0
J0ð0Þ: ð83Þ

From this relation, together with Eq. (80), we obtain the
Gell-Mann-Oakes-Renner relation for the π0 meson,

mchūuþ d̄di0 ¼ −m2
π0
f2
π0;0: ð84Þ

III. NUMERICAL RESULTS

To obtain definite numerical predictions for the behavior
of the above defined quantities as functions of the external
magnetic field, it is necessary to specify the particular shape
of the nonlocal form factor gðp2Þ. We consider here two
often-used forms [23,24,45], namely a Gaussian function

gðp2Þ ¼ expð−p2/Λ2Þ ð85Þ

and a “5-Lorentzian” function

gðp2Þ ¼ 1

1þ ðp2/Λ2Þ5 : ð86Þ

Notice that in the form factors we introduce an energy scale
Λ, which acts as an effective momentum cut-off. This has to
be taken as a free parameter of the model, together with the
current quark mass mc and the coupling constant G in the
effective Lagrangian. In the particular case of the Gaussian
form factor one has the advantage that the integral in
Eq. (19) can be performed analytically, allowing to a
dramatic reduction of the computer time needed for
numerical calculations of the relevant quantities.
As in Refs. [29,30] (see also the discussion on different

parameterizations in Ref. [24]), we determine the free
parameters by requiring the model to reproduce the
empirical values of the pion mass and decay constant, as
well as some phenomenologically adequate value of the
quark condensate hf̄fireg, at B ¼ 0 [the pion mass and
decay constant in the limit B ¼ 0 can be calculated from
Eqs. (38) and (73)]. The parameter sets obtained for
Gaussian and 5-Lorentzian form factors, considering differ-
ent values of the condensate, can be found in Ref. [30]. In
that article, the behavior of the chiral quark condensates
with the magnetic field has been analyzed, showing that at
zero temperature the condensates grow monotonically with
B (magnetic catalysis). Moreover, it is seen that these
curves turn out to be in good quantitative agreement with
the results obtained from LQCD calculations. The agree-
ment is found to be particularly accurate for the parameter
sets mc¼6.5MeV, Λ ¼ 678 MeV, GΛ2¼23.66 and mc ¼
6.5 MeV, Λ ¼ 857 MeV, GΛ2 ¼ 9.700, corresponding to
hf̄fireg ¼ ð−230 MeVÞ3 for Gaussian and 5-Lorentzian
form factors, respectively.
Our results for the behavior of the pion mass mπ0ðBÞ

and the squared pion decay constant f2
π0
ðBÞ for the

above mentioned parameter sets are shown in Figs. 1
and 2, respectively. In both cases the curves have been
normalized to B ¼ 0 values mπ0ð0Þ ¼ 139 MeV and f2

π0
¼

ð92.4 MeVÞ2. As shown in Fig. 1, the π0 mass is found to
decrease when eB gets increased, reaching a value of about
65% of mπ0ð0Þ at eB ≃ 1.5 GeV2, which corresponds to a
magnetic field of about 2.5 × 1020 G. We also include in
Fig. 1 a gray band that corresponds to recently quoted
results from lattice QCD [14]. The latter have been
obtained from a continuum extrapolation of lattice spacing,
considering a relatively large quark mass for which
mπ ¼ 415 MeV. For comparison, we also quote the results
obtained within our model by shifting mc to 56.3 MeV,
which leads to this enhanced pion mass. In general it is seen
from the figure that our predictions turn out to be in good
agreement with LQCD calculations. It is worth remarking
that our results have been obtained directly from model
parametrizations used in previous works (where external
magnetic fields have not been taken into account) [24], i.e.
no extra adjustments have been performed to fit LQCD
data. This is in contrast to the situation in the local NJL
model, in which comparable results for the pion mass
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behavior are obtained after introducing a B-dependent
coupling constant adjusted to reproduce LQCD results
for the quark condensates [7]. Concerning the pion decay
constant fπ0 , as shown in Fig. 2 we find that it behaves as an
increasing function of B. This is fully consistent with the
approximate validity of the Gell-Mann-Oakes-Renner rela-
tion for a small value of the constituent mass mc. In fact,
taking into account the behavior of the π0 mass, from
Eq. (84) it is seen that f2

π0
should grow somewhat more

rapidly than the condensates, which is in agreement with
the results in Fig. 2 (the curves showing the behavior of the

condensates can be found in Ref. [30]). For example, at
eB ¼ 1.5 GeV2 one gets mchūuþ d̄di/ðm2

π0
f2
π0
Þ ≃ −0.98,

both for Gaussian and 5-Lorentzian form factors. It is also
worth mentioning that the curves in Figs. 1 and 2 are found
to remain practically unchanged when the value of the
B ¼ 0 condensate used to fix the parametrization is varied
within the range from −ð220 MeVÞ3 to −ð250 MeVÞ3. On
the other hand, if our results are extended to larger values of
eB, it is seen that the curves for the π0 mass keep going
down and start deviating from the band obtained from
lattice QCD calculations, which is found to be basically flat
for eB≳ 2 GeV2. Anyway, the range of validity of nlNJL
models should not be extended well beyond a typical
energy scale of the order of 1 GeV, above which gluon
degrees of freedom are expected to start showing up.
Finally, in Fig. 3 we quote the values of the sigma meson

mass as a function of eB, normalized tomσð0Þ. In the case of
the sigma mass the results turn out to be more dependent on
the parameter set, therefore we consider here three different
parameterizations leading to hf̄firegj1/3ðB¼0Þ ¼ −230, −240
and −250 MeV, for the Gaussian form factor. The corre-
sponding values ofmσ forB ¼ 0 are 771, 683 and 616MeV,
respectively. For lower values of the B ¼ 0 condensates, as
well as for the case of 5-Lorentzian form factors, the
determination of the σ mass becomes problematic since it
exceeds a threshold of formation of two on-shell quarks,
which requires an additional regularization prescription. This
problem is usually found inNJL-like theorieswhen one deals
with relatively large meson masses. From Fig. 3 we observe
that for all the cases considered the σ meson mass shows
a nonmonotonic behavior as a function of B. Namely, it
gets increased for low B, reaching a maximum at about
eB ¼ 0.4 GeV2, after which it shows a steady decrease. It is
worth noticing that a qualitative similar behavior is obtained

FIG. 2. Normalized squared pion decay coupling f2
π0

as
a function of the external magnetic field, for Gaussian and
5-Lorentzian form factors.

FIG. 3. Mass of the σ meson as a function of eB, normalized
to its value for B ¼ 0, for three different parametrizations (all of
them corresponding to a Gaussian form factor).

FIG. 1. Mass of the π0 meson as a function of eB, normalized to
its value for B ¼ 0. Solid and dashed lines correspond to
Gaussian and 5-Lorentzian form factors, respectively. The dotted
line is obtained for a parametrization in which mπ ¼ 415 MeV,
while the gray band corresponds to the results of lattice QCD
calculations quoted in Ref. [14].
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in Ref. [7] within the local NJL model for a B-dependent
coupling constant GðBÞ. On the other hand, as it is also
shown in Ref. [7], for a constant G the local NJL model
predicts a monotonic increase ofmσ , which indicates that the
B dependence of the coupling plays a crucial role in this
sense. In our framework, althoughG is kept constant, such a
dependence arises through the nonlocal form factor, which
turns out to be a function of the magnetic field, as it is seen
from the convolution equation (21).

IV. SUMMARY AND CONCLUSIONS

We have studied the behavior of neutral meson proper-
ties in the presence of a uniform static external magnetic
field B in the context of a nonlocal chiral quark model. In
this approach, which can be viewed as an extension of the
local Nambu-Jona-Lasinio model, the effective couplings
between quark-antiquark currents include nonlocal form
factors that regularize ultraviolet divergences in quark loop
integrals and lead to a momentum-dependent effective mass
in quark propagators. We have worked out the formalism
introducing Ritus transforms of Dirac fields, which allow to
obtain closed analytical expressions for meson polarization
functions and for the pion decay constant. In addition, we
have shown that the Goldberger-Treiman and Gell-Mann-
Oakes-Renner chiral relations remain valid within this
model in the presence of the external magnetic field.
In our numerical calculations we have considered the case
of Gaussian and Lorentzian form factors, choosing some
sets of model parameters that allow to reproduce the
empirical values of the pion mass and decay constants
and lead to acceptable values of the quark condensate for
B ¼ 0. Our results for the neutral pion mass behavior with
the magnetic field display a very mild dependence on the
parametrization and/or form factor and turn out to be in
good quantitative agreement with the available lattice QCD
calculations. In the case of the pion decay constant, our
results are also quite independent of the chosen para-
metrization, displaying a rather strong increase of fπ0 with
eB that implies, for example, fπ0ð1 GeV2Þ ≃ 2fπ0ð0Þ. On
the other hand, our results for the sigma mass behavior with
the magnetic field show a stronger dependence on the
parametrization. Nonetheless, in all the cases considered
it is seen that mσ shows a nonmonotonic behavior as a
function of B. A qualitative similar behavior is obtained
within the local NJL model when a B-dependent coupling
constant is introduced [7].
We conclude by noting that, given the present results for

the neutral pion mass and the fact that nonlocal chiral quark
models naturally lead to the inverse magnetic catalysis effect
[29,30], an extension of the present work to finite temper-
ature appears to bevery interesting. The study of the behavior
of the charged pion properties within the present framework,
althoughmore involved due to the corresponding Schwinger
phase structure, also deserves further attention. We expect to
report on these issues in forthcoming articles.
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APPENDIX A: CALCULATION OF THE π0

POLARIZATION FUNCTION

We outline here the derivation of the relation in Eq. (37).
It is easy to see that the expression in Eq. (31) can be
rearranged in the form

Fð0;k2kÞ ¼−128π2NC

X
f¼u;d

1

B2
f

×
X∞
k;k0¼0

Z
qk

�X
λ¼�

Fλ;fðABÞ
kk0;qþk q

−
k
Iλ;fð0Þkk0;qk

þFþ;fðCDÞ
kk0;qþk q

−
k
Ifð1Þkk0;qk

�
;

ðA1Þ

where

Iλ;fð0Þkk0;qk
¼ ð−1Þkþk0

Z
q⊥p⊥p0⊥

exp½i2ϕðq⊥; p⊥; p0⊥Þ/ðqfBÞ�

× exp½−ðp2⊥ þ p0⊥2Þ/Bf�
× gðq2⊥ þ q2kÞg½ðp0⊥ þ p⊥ − q⊥Þ2

þ q2k�Lkλð2p2⊥/BfÞLk0λ
ð2p0⊥2/BfÞ; ðA2Þ

Ifð1Þkk0;qk
¼ 8ð−1Þkþk0

Z
q⊥p⊥p0⊥

exp½i2ϕðq⊥; p⊥; p0⊥Þ/ðqfBÞ�

× exp½−ðp2⊥ þ p0⊥2Þ/Bf�ðp⊥ · p0⊥Þgðq2⊥ þ q2kÞ
× g½ðp0⊥ þ p⊥ − q⊥Þ2 þ q2k�
× L1

k−1ð2p2⊥/BfÞL1
k0−1ð2p0⊥2/BfÞ: ðA3Þ

These integrals can be worked out by taking the Laguerre-
Fourier transforms of the nonlocal form factors given by
Eq. (36). We obtain in this way

Iλ;fð0Þkk0;qk
¼ 4ð−1Þkþk0

X∞
m;m0¼0

ð−1Þmþm0
gλ;fm;qkg

λ;f
m0;qk

×
Z
q⊥p⊥p0⊥

exp½i2ϕðq⊥; p⊥; p0⊥Þ/ðqfBÞ�

× exp½−ðp2⊥ þ p0⊥2 þ q2⊥þðp0⊥ þ p⊥ − q⊥Þ2Þ/Bf�
× Lkλð2p2⊥/BfÞLk0λ

ð2p0⊥2/BfÞ
× Lmλ

ð2q2⊥/BfÞLm0
λ
½2ðp0⊥ þ p⊥ − q⊥Þ2/Bf�;

ðA4Þ
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Ifð1Þkk0;qk
¼ 32ð−1Þkþk0

X∞
m;m0¼0

ð−1Þmþm0
gþ;f
m;qkg

−;f
m0;qk

Z
q⊥p⊥p0⊥

exp½i2ϕðq⊥; p⊥; p0⊥Þ/ðqfBÞ�

× exp½−ðp2⊥ þ p0⊥2 þ q2⊥ þ ðp0⊥ þ p⊥ − q⊥Þ2Þ/Bf�ðp⊥ · p0⊥Þ
× L1

k−1ð2p2⊥/BfÞL1
k0−1ð2p0⊥2/BfÞLmþð2q2⊥/BfÞLm0

−
½2ðp0⊥ þ p⊥ − q⊥Þ2/Bf�: ðA5Þ

Let us now change the integration variables, defining dimensionless two dimensional vectors u ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffið2/BfÞ

p
p⊥,

v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffið2/BfÞ
p

p0⊥, w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffið2/BfÞ
p ðp⊥ − q⊥Þ. The integrals read

Iλ;fð0Þkk0;qk
¼ B3

f

2
ð−1Þkþk0

X∞
m;m0¼0

ð−1Þmþm0
gλ;fm;qkg

λ;f
m0;qk

Kλ;fð0Þ
kk0mm0 ;

Ifð1Þkk0;qk
¼ 2B4

fð−1Þkþk0
X∞

m;m0¼0

ð−1Þmþm0−1gþ;f
m;qkg

−;f
m0;qk

Kfð1Þ
kk0mm0 ; ðA6Þ

where

Kλ;fð0Þ
kk0mm0 ¼

Z
uvw

exp½−w2� exp½−u2 − u · w − isfðu1w2 − u2w1Þ�Lkλðu2ÞLmλ
½ðuþ wÞ2�

× exp½−v2 − v · w − isfðv1w2 − v2w1Þ�Lk0λ
ðv2ÞLm0

λ
½ðvþ wÞ2�;

Kfð1Þ
kk0mm0 ¼ −

Z
uvw

exp½−w2� exp½−u2 − u · w − isfðu1w2 − u2w1Þ�L1
k−1ðu2ÞLmþ½ðuþ wÞ2�

× ðu · vÞ exp½−v2 − v · w − isfðv1w2 − v2w1Þ�Lk0−1ðv2ÞLm0
−
½ðvþ wÞ2�: ðA7Þ

Notice that Kλ;fð0Þ
kk0mm0 and Kfð1Þ

kk0mm0 do not depend on momenta, nor on the magnetic field. Their calculation can be performed
with the aid of the following useful relations,

1

2π

Z
2π

0

dθLnðx2 þ y2 þ 2xy cos θÞ exp½−xy expð�iθÞ� ¼ Lnðx2ÞLnðy2Þ; ðA8Þ

1

2π

Z
2π

0

dθ cos θLnðx2 þ y2 þ 2xy cos θÞ exp½−xy expð�iθÞ� ¼ −
xy
2

�
L1
nðx2ÞL1

nðy2Þ
nþ 1

þ L1
n−1ðx2ÞL1

n−1ðy2Þ
n

�
; ðA9Þ

1

2π

Z
2π

0

dθ sin θLnðx2 þ y2 þ 2xy cos θÞ exp½−xy expð�iθÞ� ¼∓ ixy
2

�
L1
nðx2ÞL1

nðy2Þ
nþ 1

−
L1
n−1ðx2ÞL1

n−1ðy2Þ
n

�
; ðA10Þ

together with the orthogonality properties of the generalized Laguerre polynomials. In the case ofKλ;fð0Þ
kk0mm0 , usage of Eq. (A8)

leads to

Kλ;fð0Þ
kk0mm0 ¼ 1

ð4πÞ2
Z
w
expð−w2Þ

Z
∞

0

du2 expð−u2ÞLkλðu2ÞLmλ
ðu2ÞLmλ

ðw2Þ
Z

∞

0

dv2 expð−v2ÞLk0λ
ðv2ÞLm0

λ
ðv2ÞLm0

λ
ðw2Þ

¼ 1

ð4πÞ3 δkmδk0m0δmm0 ; ðA11Þ

and consequently

Iλ;fð0Þkk0;qk
¼ B3

f

128π3
gλ;fk;qkg

λ;f
k;qkδkk0 : ðA12Þ

Finally, using Eqs. (A9) and (A10) we obtain

Kfð1Þ
kk0mm0 ¼ −

1

128π3
kδkk0 ðδmþ1k−δm0kþ þ δmk−δm0−1kþÞ; ðA13Þ
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which leads to

Ifð1Þkk0;qk
¼ kB4

f

32π3
gþ;f
k;qkg

−;f
k;qkδkk0 : ðA14Þ

Replacing the results in Eqs. (A12) and (A14) in Eq. (A1) one arrives at our final expression, quoted in Eq. (37).

APPENDIX B CALCULATION OF tμF
ðIIÞ
μ ðtÞjt⊥ = 0

Let us discuss here the derivation of the result in Eq. (62). We start from the expression in Eq. (59). Introducing the
Laguerre-Fourier transform of gðq2Þ and changing the order of integrals and sums one gets

tμF
ðIIÞ
μ ðtÞjt⊥¼0 ¼ i128π2NC

X
f¼u;d

1

B2
f

X∞
k;k0;m¼0

Z
qk

�X
λ¼�

gλ;fm;qk ½ðtk · q−k ÞÂλ;f
k;qþk

B̂λ;f
k0;q−k

− ðtk · qþk ÞÂλ;f
k0;q−k

B̂λ;f
k;qþk

�K̃λ;fð0Þ
kk0m

þ 8igþ;f
m;qk ½ðtk · q−k ÞĈþ;f

k;qþk
D̂þ;f

k0;q−k
− ðtk · qþk ÞĈþ;f

k0;q−k
D̂þ;f

k;qþk
�K̃fð1Þ

kk0m

�
; ðB1Þ

where

K̃λ;fð0Þ
kk0m ¼ ð−1Þkþk0þmλ

Z
q⊥p⊥p0⊥

exp½−i2ϕðq⊥; p⊥; p0⊥Þ/ðqfBÞ�

× exp½−ðp2⊥ þ p0⊥2 þ q2⊥Þ/Bf�Lkλð2p2⊥/BfÞLk0λ
ð2p0⊥2/BfÞLmλ

ð2q2⊥/BfÞ; ðB2Þ

K̃fð1Þ
kk0m ¼ð−1Þkþk0þmþ

Z
q⊥p⊥p0⊥

exp½−i2ϕðq⊥; p⊥; p0⊥Þ/ðqfBÞ�ðp1p0
2 − p2p0

1Þ

× exp½−ðp2⊥ þ p0⊥2 þ q2⊥Þ/Bf�L1
k−1ð2p2⊥/BfÞL1

k0−1ð2p0⊥2/BfÞLmþð2q2⊥/BfÞ: ðB3Þ

Now we change the integration variables, defining dimensionless two dimensional vectors u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffið2/BfÞ
p

q⊥,
v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffið2/BfÞ

p
p⊥, w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffið2/BfÞ

p ðp0⊥ − p⊥Þ. The integrals read

K̃λ;fð0Þ
kk0m ¼ ð−1Þkþk0þmλ

B3
f

8

Z
vw

exp½isfðv1w2 − v2w1Þ� exp½−ðv2 þ v · wþ w2/2Þ�

× Lkλðv2ÞLk0λ
½ðvþ wÞ2�

Z
u
expð−u2/2ÞLmλ

ðu2Þ exp½isfðw1u2 − w2u1Þ�; ðB4Þ

K̃fð1Þ
kk0m ¼ð−1Þkþk0þmþ

B4
f

16

Z
vw

exp½isfðv1w2 − v2w1Þ� exp½−ðv2 þ v · wþ w2/2Þ�

× ðv1w2 − v2w1ÞL1
k−1ðv2ÞL1

k0−1½ðvþ wÞ2�

×
Z
u
expð−u2/2ÞLmþðu2Þ exp½isfðw1u2 − w2u1Þ�: ðB5Þ

To evaluate the integrals over u, let us fix the external vector w along the 1 direction. We get

Z
u
expð−u2/2ÞLmλ

ðu2Þ exp½isfðw1u2 − w2u1Þ� ¼
1

ð2πÞ2
Z

∞

0

djujjuj expð−u2/2ÞLmλ
ðu2Þ

Z
2π

0
dθ expðisfjwuj sin θÞ

¼ 1

2π

Z
∞

0

djujjuj expð−u2/2ÞLmλ
ðu2ÞJ0ðjwujÞ

¼ ð−1Þmλ

2π
expð−w2/2ÞLmλ

ðw2Þ; ðB6Þ
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where we have used the relations Z
2π

0

dθ expð�iy sin θÞ ¼ 2πJ0ðyÞ ðB7Þ
and

Z
∞

0

dxxνþ1e−βx
2

Lν
nðαx2ÞJνðxyÞ ¼

ð1 − α/βÞn
ð2βÞνþ1

yνe−y
2/ð4βÞLν

n

�
αy2

4βðα − βÞ
�
; ðB8Þ

JνðxÞ being Bessel functions of the first kind. Now, taking into account Eq. (A8), together with the orthogonality property of
the Laguerre polynomials, we find

K̃λ;fð0Þ
kk0m ¼ ð−1Þkþk0

B3
f

128π4

Z
∞

0

djwjjwj expð−w2ÞLmλ
ðw2Þ

Z
∞

0

djvjjvj expð−v2Þ
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Z

2π

0

dψLk0λ
ðv2 þ w2 þ 2jvwj cosψÞ exp½−jvwj expðisfψÞ�
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B3
f

64π3

Z
∞

0

djwjjwj expð−w2ÞLmλ
ðw2ÞLk0λ

ðw2Þ
Z

∞

0

djvjjvj expð−v2ÞLkλðv2ÞLk0λ
ðv2Þ

¼ B3
f

256π3
δkk0δk0m: ðB9Þ

For the evaluation of K̃fð1Þ
kk0m we use the result in Eq. (B6) and then change to new variables v̄ ¼ −v and w̄ ¼ wþ v.

We have

K̃fð1Þ
kk0m ¼ ð−1Þkþk0

B4
f

256π4
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∞
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djw̄jw̄2 expð−w̄2ÞL1
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Z
∞

0
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× L1
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Z
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256π3
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1
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�

¼ isfk
B4
f

1024π3
δkk0 ðδmþk−1 − δmþkÞ; ðB10Þ

where we have made use of the relation in Eq. (A10). Finally, noting that

X∞
m¼0

sfðδmþk−1 − δmþkÞgþ;f
m;qk ¼ g−;fk;qk − gþ;f

k;qk ; ðB11Þ

it is easy to see that Eqs. (B1), (B9) and (B10) lead to our result in Eq. (62).
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