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1 Introduction

The subject of fermions at strong coupling is an open field of theoretical research in present

day physics. Its importance spans from the description of the strange metal phase in high

Tc superconductors, to the behavior of the quark-gluon plasma in high-energy experiments.

In this context, holography has revealed itself as a very useful tool to understand

universal properties of strongly coupled fermionic systems. Remarkably, the theoretical

results of this approach share many features with the phenomenological knowledge, even

if the planar limit required for holography to work (that entails a large number of degrees

of freedom at any spacetime point) is not realized in phenomenological setups.

In the holographic description, fermionic operators in the boundary field theory are

described by dual fermionic fields in the bulk. The ground state is represented by a grav-

itational background which, according to the limit under study, may or may not take

backreaction effects into account. Fermionic excitations correspond to Dirac spinors prop-

agating in such background, while bosonic ones are described by scalar or vector fields.

In the literature, charged fermionic excitations on non-backreactig backgrounds were

explored in [1]–[2]. The backreacting case was first investigated in [3]–[4] for neutral

fermions at zero temperature in global AdS. The backreaction is considered by means

of the energy momentum tensor of a perfect fluid, representing the fermionic background.

The resulting Tolman-Oppenheimer-Volkoff equations are solved in an asymptotically AdS

setup. The case of charged particles at zero temperature in the Poincare patch, more

relevant to condensed matter physics, was first introduced in [5] by similar methods, and

further explored in [6]–[7]. Its finite temperature extension was investigated in [8]–[9],

in an approximation in which Tolman-Oppenheimer-Volkoff equations are solved with a

zero-temperature fermionic fluid, and temperature is introduced by means of a black hole

horizon.

– 1 –



J
H
E
P
0
5
(
2
0
1
8
)
1
1
8

The issue of Tolman-Oppenheimer-Volkoff equations for neutral fermions in thermody-

namic equilibrium at finite temperature, was first investigated in [10] in asymptotically flat

backgrounds. More recently, its relevance for the physics of fermionic dark matter halos

in galaxies was reported [11]–[16]. It was shown that in a region of parameters a dense

core-diluted halo structure appears in the density profile. The solution has a high density

peak, i.e. the “core”, at its center, suddenly decreasing into a low density plateau, the

“halo”, at the periphery. While the dense core structure is maintained against self-gravity

by the degeneracy pressure, the halo holds it own weight by thermal pressure. Such struc-

tures allow for a good description of the dark matter halos when contrasted with baryonic

data of galaxies, providing at the same time an alternative to the standard picture of a

supermassive black hole sitting at the galactic nucleus [14]–[16]. Further extensions of such

a theoretical model but including fermion self-interactions was introduced in [15].

It is the aim of this paper to start the investigation of the aforementioned dense core-

diluted halo structure in fermionic density profiles in asymptotically AdS backgrounds,

and its implications in the holographic context. We focus in the simplest case of a neutral

fermionic fluid in (3 + 1)-dimensional global AdS, first investigated in [3] for the particular

case of zero temperature. We probe the resulting solutions by calculating a scalar correlator

of the dual field theory in the world-line approximation.

The paper is organized as follows. In section 2 we write the bulk equations for a self-

gravitating fluid at finite temperature. In section 3 we describe a simple way to obtain

correlators of a scalar operator in the worldline approximation. In section 4 we describe

the results of our numerical approach. Finally in section 6 we summarize our conclusions.

2 The bulk: self gravitating fermionic fluid at finite temperature

The system under study corresponds to a very large number of neutral self-gravitating

fermions in thermodynamic equilibrium, treated within a 3 + 1 asymptotically AdS space-

time. The Einstein equations for such system read

Gµν + Λgµν = 8πGTµν , (2.1)

being Λ a negative cosmological constant, that can be written in terms of the AdS length

L as Λ = −3/L2, and G the gravitational constant.1 Regarding the fermion energy-

momentum tensor, we approximate it as a perfect fluid

Tµν = Pgµν + (ρ+ P )uµuν . (2.2)

Since we are interested in the limit mL � 1 in which there is a huge amount of particles

within one AdS radius [3], the density and pressure are given by the equations

ρ =
g

8π3

∫
f(p)

√
p2 +m2 d3p , (2.3)

P =
g

24π3

∫
f(p)

p2√
p2 +m2

d3p, (2.4)

1Throughout this paper we work in natural units ~ = c = kB = 1.
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here g is the number of fermionic species (or the spin degeneracy), the integration runs

over all momentum space, and the function f(p)

f(p) =
1

e
β
(√

p2+m2−µ
)

+ 1

, (2.5)

is the Fermi-Dirac distribution function for a fermion of mass m, where 1/β = T is the local

temperature and µ is the local chemical potential. This expression sets a double parametric

dependence of the density ρ and pressure P on the temperature T and chemical potential

µ, which in turn depend on the metric as explained below.

As we will deal with equilibrium configurations of neutral fermions in global AdS, we

consider an stationary spherically symmetric metric with the form

ds2 = L2
(
−eν(r) dt2 + eλ(r) dr2 + r2 dΩ2

)
, (2.6)

with dΩ2 = dθ2 + sin2 θdφ2. In this setup, the local temperature and chemical potential

are radial functions. They are defined by the thermodynamic equilibrium conditions of

Tolman eν(r)/2T =constant, and Klein eν(r)/2µ =constant, respectively.

In what follows we find convenient to re-scale the temperature and chemical potential

as the dimensionless combinations µ̃ = µ/m and T̃ = T/m = 1/β̃. The Tolman condition

is then solved by

T̃ = T̃0e
ν0−ν(r)

2 , (2.7)

in terms of the re-scaled temperature T̃0 and metric component ν0 measured at a reference

point. The Klein condition can then be rewritten as

µ̃ = µ̃0e
ν0−ν(r)

2 , (2.8)

where µ̃0 is the value of the re-scaled chemical potential at the same reference point.

Further re-scalings of the energy density and pressure as ρ̃ = GL2ρ and P̃ = GL2P

gives the result

ρ̃ = γ2

∫ ∞
1

ε2
√
ε2 − 1

eβ̃(ε−µ̃) + 1
dε , (2.9)

P̃ =
γ2

3

∫ ∞
1

(
√
ε2 − 1)3

eβ̃(ε−µ̃) + 1
dε . (2.10)

Here we have re-written the integrals in terms of the variable ε =
√

1 + p2/m2, and we

defined the dimensionless coupling γ2 = gGL2m4/2π2.

A convenient re-parametrization of λ and ν in terms of new functions M̃ and χ is

eλ(r) =

(
1− 2M̃

r
+ r2

)−1

, (2.11)

eν(r) = eχ

(
1− 2M̃

r
+ r2

)
. (2.12)
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The resulting Einstein equations read

dM̃

dr
= 4π r2ρ̃ , (2.13)

dχ

dr
= 8πr

(
P̃ + ρ̃

)
eλ(r), (2.14)

The equations (2.13)–(2.14), together with the definitions (2.9)–(2.10) in terms of the

spatially varying temperature and chemical potentials given by (2.7)–(2.8) must be solved

numerically for the variables M̃, χ, ρ̃, P̃ . Notice that the fermion mass m plays no role other

that setting the scale. We choose boundary conditions at the center of the star r = 0 as

M̃(0) = 0 , (or in other words λ(0) = 0) ,

χ(0) = 0 ,

T̃ (0) = T̃0 ,

µ̃(0) = µ̃0 ≡ Θ0T̃0 + 1 . (2.15)

Here Θ0 can be regarded as the central degeneracy. The resulting solutions are indexed by

the parameters T̃0,Θ0 and γ.

3 The boundary: degenerate fermionic operators at finite temperature

Since our geometry asymptotes to global AdS, its conformal boundary is a cylinder R×S2.

The R direction is coordenatized by the variable t on our metric anzatz. Now, in order to

put the system in a thermal bath, we have to go to Euclidean time by the Wick rotation tE =

it. Then, we compactify the tE direction in a circle of length β = e
ν−ν0

2 β0 corresponding to

the inverse temperature. Since we want the fluid in the bulk to be in equilibrium with the

thermal bath, we need to impose β = 1/T or, by making use of Tolman relation β0 = 1/T0.

On the aforementioned cylinder, the holographic dual is defined as a conformal field theory.

Since the Euclidean time direction of the conformal theory is given by tE, its temperature

corresponds to T0.

In order for holography to work, the conformal field theory must have a large cen-

tral charge. This can be achieved in the present setup without spoiling the perfect fluid

approximation, as explained in [3], by taking a proportionally large mass m.

In order to probe the above defined background with some conformal field theory

observable, we concentrate in the simplest case of a scalar operator. According to the

general dictionary of the AdS/CFT correspondence, the Matsubara two point correlator of

a boundary scalar operator with large conformal dimension ∆ ≡ mL, is given as a function

of the angular span of the points on the boundary ∆θ,∆φ and the elapsed Euclidean time

∆tE as

〈O(∆θ,∆φ,∆tE)O(0)〉 = lim
rε→∞

r2mL
ε e−S

E
on-shell(∆θ,∆φ∆tE) , (3.1)

where rε is an UV bulk regulator, whose power is included in the prefactor in order to get a

finite result. The exponent contains the on-shell form of the Euclidean action for a particle
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with mass m moving in the Euclidean bulk

SE = mL

∫
dτE

√
eν(r) t′E

2 + eλ(r) r′2 + r2(θ′2 + sin2θ φ′2) , (3.2)

where τE is the an Euclidean affine parameter and ( ′) = ∂τE( ). The worldline approxima-

tion was used in [17] to study thermalization. For details on its implementation see [18]

and references therein.

Without loss of generality, we can concentrate in trajectories completely contained

in the equatorial plane θ = π/2. Moreover, this action is invariant under arbitrary

reparametrizations of τE, which allows us to fix τE = φ. Restricting to trajectories with

constant tE we end up with

SE = mL

∫
dφ
√
r2 + eλ(r) r′2 . (3.3)

The resulting equations for the single dynamical variable r are invariant under φ transla-

tions, implying the conservation of the quantity

r∗ =
r2√

r2 + eλ(r) r′2
. (3.4)

By evaluating the right hand side at the tip of the trajectory where r′ = 0, we see that r∗
corresponds to the radial position of the tip (r∗(r

′ = 0) = r) . Solving for r′ we get

r′ =
r

r∗
e−

λ(r)
2

√
r2 − r2

∗ . (3.5)

This allows us to relate the integration constant r∗ with the angular separation at the

boundary ∆φ of the starting and final points of the trajectory

∆φ =

∫
dr

r′
= 2r∗

∫ rε

r∗

dr
e
λ(r)
2

r
√
r2 − r2

∗
, (3.6)

where we included a cutoff rε in the second line, that must be taken to infinity at the end

of the calculations.

On the other hand, plugging eq. (3.5) into the gauge-fixed action (3.3) results in the

on-shell form

SE
on-shell(∆φ) = 2mL

∫ rε

r∗

dr
re

λ(r)
2√

r2 − r2
∗

(3.7)

where the same cutoff was included. Notice that, when re-inserted into the correlator (3.1),

the logarithmic divergence of this integral on the cutoff is canceled by the prefactor, as

anticipated.

4 Results

We solved the system (2.11)–(2.15) numerically by using Fortran and Mathematica rou-

tines, for different values of the parameters T̃0,Θ0 and γ. Plots of the resulting density

ρ̃(r) and mass M̃(r) profiles are shown in figures 1 to 4.
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As can be seen in the plots, the expected core-halo structure appears at large values of

γ and becomes more marked when the central degeneracy Θ0 and the central temperature

T̃0 are large. In those cases, the density profile ρ̃(r) presents a central plateau that extends

up to a well defined radius rc, identified with the “core” of the configuration (a precise

definition of rc can be given as the position of the first maximum on the velocity curve),

and a lower exterior plateau identified with the “halo”. Further in r, we see that the density

drops to zero at a finite radius r = rb, that defines the radius of the star.

The region r > rb is described by a vacuum Schwarzchild solution with mass M̃b =

M̃(rb), corresponding to the total mass of the star. A plot of the total mass M̃b as a function

of the central density is shown figure 5. Similarly to what happens in the asymptotically

flat case [19], there is a maximum of the mass at a finite critical value of the central

density ρ̃cr. Since solutions with higher mass do not exist, this bound is interpreted as

the Oppenheimer-Volkoff limit. In the asymptotically flat context, solutions with central

densities larger than ρ̃cr can be shown to be unstable (see [20] for a recent work). We

assume that the same is true in the present asymptotically AdS setup. Interestingly if we

define the core mass as M̃c = M̃(rc), it has also a maximum for the same value of the

central density (see figure 5). From the holographic perspective, the gravitational collapse

in the bulk can be interpreted as a confinement/deconfinement transition in the dual field

theory (analogously to the zero temperature case reported in [4]).

Regarding the two point correlators, for clarity in the figures we plotted the on-shell

action (which correspond to minus its logarithm) and we extended the natural rank (0, π)

of the polar angle ∆φ along the opposite meridian up to 2π. Interestingly, for solutions

near to the critical one, a “swallow tail” structure appears. This is evident for small central

degeneracies Θ0, and disappears for larger values. We verified that it is not a cutoff effect,

since it remains unchanged when rε is moved to infinity. Moreover, if we take the any of

the smooth curves in which we do not see a swallow tail, and zoom in close to ∆φ = π,

we verify that they still smooth, implying that such smoothness is not a finite resolution

effect. Remarkably, this effect is more evident for the more massive configurations, i.e.

configurations with smaller halos and denser cores (see e.g. figures 1 and 2 for comparison).

5 Discussion

The most interesting feature found in our solutions in the swallow tail structure present in

the correlator. Such “multivalued” form for correlators have been reported previously for

quenched states in thermalization studies, when the correlator is plotted as a function of

the gauge theory time [17]–[18]. Here, it shows up for near to critical equilibrium states, as

a function of the spatial separation. When a swallow tail appears in the plots of the free

energy as a function of temperature, it is taken as a signal of a phase transition. In our

case, such conclusion cannot be drawn without further analysis, that we perform in this

section.

From the bulk perspective, the swallow tail structure corresponds to the existence of

three different geodesics joining the same points at the boundary. One of this solutions

represents a maximum of the action, the second one represents a saddle point, while the
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Figure 1. Left: logarithmic plots of the density (up) and mass (down) profiles as functions of the

radius, as we approach the critical value of the central temperature (blue curve). Notice that the

core and the halo are not well defined for this values of the parameters. Right (up): plot of the

on-shell actions (which correspond to minus the logarithm of the two-point correlator). Notice the

swallow tail structure that appears as we approach the critical value for the central temperature (to

make the structure more evident, we extended the natural rank (0, π) of the polar angle ∆φ along

the opposite meridian up to 2π).

remaining one corresponding to the true minimum. Since the correct value of the dual

field theory correlator is given by the curve corresponding to the minimum action, only the

lower curve should be kept, and this swallow tail structure corresponds to a discontinuity

in the angular derivative of the correlator at antipodal points ∆φ = π.

Recall that the angular span ∆φ and the on-shell action SE
on-shell are obtained from

equations (3.6) and (3.7) respectively, as a function of the radial position of the apsidal

point of the geodesic r∗. Then the curve SE
on-shell vs. ∆φ is plotted using r∗ as an affine

parameter. In the cases in which the correlator shows a swallow tail, three values of the

on-shell action correspond to the same value of the angle. Since the on-shell action is a

well defined function of r∗, we conclude that there must be three different values of r∗
that return the same value of the angle. In other words, the curve ∆φ versus r∗ has an

oscillation.

In order to have an oscillation, the derivative of ∆φ with respect to r∗ must change its

sign. Rewriting equation (3.6) in terms of the variable u = r/r∗ as

∆φ = 2

∫ ∞
1
du

e
λ(r∗u)

2

u
√
u2 − 1

, (5.1)
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Figure 2. Left: logarithmic plots of the density (up) and mass (down) profiles as functions of the

radius, as we approach the critical value of the central temperature (blue curve). Notice the that

the core and the halo are well defined for this values of the parameters. Right (up): plot of the

on-shell actions (which correspond to minus the logarithm of the two-point correlator) as functions

of the angle at the boundary. Notice that there is not a swallow tail structure as we approach the

critical value for the central temperature (to compare with the previous figures, we extended the

natural rank (0, π) of the polar angle ∆φ along the opposite meridian up to 2π).

we can take the derivative with respect to r∗, obtaining

∂∆φ

∂r∗
= 2

∫ ∞
1
du

(
e
λ(r∗u)

2

)′
√
u2 − 1

= 2

∫ ∞
r∗

dr
e

3λ(r)
2√

r2 − r2
∗

(
M̃ ′

r
− M̃

r2
− r

)
, (5.2)

where in the last equality we used (2.11) and reintroduced the variable r. This can be

rearranged as

∂∆φ

∂r∗
= 2

∫ ∞
r∗

dr
e

3λ(r)
2√

r2 − r2
∗
p , with p =

(
M̃

r2

(
d log M̃

d log r
− 1

)
− r

)
, (5.3)

In order to understand whether the ∆φ oscillates as a function of r∗, we need to study

whether the above integral changes its sign. The sign of the integrand is fixed by the sign

of p. The overall sign of the integral for a given value of r∗ is then determined by the

relative weight of the regions in which p is positive or negative.

For a radius r∗ larger than the radius of the star r∗ > rb, the mass function is constant

M̃ = M̃b. Then its logarithmic derivative in p vanishes, resulting in a negative overall

value for the integral. This implies ∂∆φ/∂r∗ < 0, in agreement with the intuition that the
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Figure 3. Left: logarithmic plots of the density (up) and mass (down) profiles as functions of

the radius, as we move the value of the dimensionless AdS radius γ. Notice the that the core and

the halo are not well defined for this values of the parameters. Right (up): plot of the on-shell

actions (which correspond to minus the logarithm of the two-point correlator) as functions of the

angle at the boundary. Notice that a swallow tail structure shows up, as we decrease the value of

the dimensionless AdS radius γ (to make the structure more evident, we extended the natural rank

(0, π) of the polar angle ∆φ along the opposite meridian up to 2π).

further in the interior of the geometry our geodesic reaches, the larger the angular span of

the initial and final points in the boundary.

As we move r∗ into the halo rc < r∗ < rb, such region starts to contribute to the

integral. Since at the halo the density is approximately constant ρ̃ ' ρ̃h and very small,

the mass function takes the form M̃ = M̃c + 4πρ̃hr
3/3, that results in p ' 2M̃c/r

2 − r.
For light configurations, the first term is small and then p is negative, giving a negative

contribution to the integral (this is the case for example for the critical case in figure 2).

On the other hand, for dense cores, it results in a positive contribution (as is the case for

the critical curve in figure 1). Whether such contribution can change the overall sign of

the integral to ∂∆φ/∂r∗ > 0 depends on the density of the configuration.

When r∗ gets into the core r∗ < rc, the mass function can be written as M̃ = 4πρ̃cr
3/3,

where ρc is the approximately constant core density. We get p = (8πρ̃c − 3)r/3, which is

positive for the central densities we considered, resulting in a positive contribution to the

integral. Again, such positive contribution may or may not be enough to change the sign

of the overall integral, depending of the density of the background.

The conclusion is that a negative derivative ∂∆φ/∂r∗ < 0 is always the case for large

r∗. On the other hand, for small r∗ the derivative still negative for light configurations,
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Figure 4. Left: logarithmic plots of the density (up) and mass (down) profiles as functions of the

radius, as we move the value of the dimensionless AdS radius γ. Notice the that both core and

halo are well defined for this values of the parameters. Right (up): plot of the on-shell actions

(which correspond to minus the logarithm of the two-point correlator) as functions of the angle at

the boundary. Notice that a small swallow tail structure shows up, as we increase the value of the

dimensionless AdS radius γ (to make the structure more evident, we extended the natural rank

(0, π) of the polar angle ∆φ along the opposite meridian up to 2π).
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Figure 5. Logarithmic plots of the mass as a function of the central density, for negative (left) and

positive (right) values of the central degeneracy Θ0. There is a critical value of the central density

at which the resulting mass reaches a maximum. For larger values of the central density the star

can be regarded as unstable. Notice that, in the case of positive Θ0 in which the core-halo structure

is well differentiated, the core mass has a maximum at the same value of the central density that

gives the maximum of the total mass.
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Figure 6. Plots of the angular span ∆φ as a function of the apsidal position r∗ (left), and the

corresponding correlators (right). Top: plots corresponding to the critical temperature T = 10−2 at

positive central degeneracy Θ0 = 30. The angle ∆φ is a monotonic function of r∗, resulting in the

univalued correlator (the dotted line sits at ∆φ = 3 intersects the curves only once). Bottom: plots

corresponding to the critical temperature T̃ = 7× 10−2 at negative central degeneracy Θ0 = −10.

Here the angle oscillates as a function of r∗. Since the natural range of the polar angle is (0, π),

values larger than π must be reflected in at ∆φ = π (dashed line), resulting in the dashed colored

curve. As a result, a given value of the angle corresponds to three values of r∗, resulting in a

multivalued correlator (the dotted line sits at ∆φ = 3 intersects the curves three times).

but it may become positive if the configuration is massive enough. In order for this to

happen, we need that the positive contribution extends for a large enough interval of the

radial variable, i.e. we need an extended core. If such is the case, we have an oscilation

of ∆φ as a function of r∗, that results in a swallow tail in the correlator. See figure 6 for

further details.

As this discussion should make clear, the swallow tail is not a feature of all correlators

that grows continuously as we move the parameters, but a distinctive characteristic of dense

and extended cores, which is absent in light ones. In other words, the existence or not of a

swallow tail sets a frontier on the (Θ0, T̃ ) plane, and in such (somewhat limited) sense, it

can be regarded as a signal of a phase transition. For example, at negative Θ0 = −10, we

see in figure 1 that the transition temperature at which the swallow tail appears is around

T−3 . T̃ . 10−2. In figure 7 we plotted the corresponding ∆φ curves, showing how the

oscillation dissapears as the temperature gets smaller.
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Figure 7. Plots of the angular span ∆φ as a function of the apsidal position r∗. The plots

correspond to the temperatures depicted in figure 1, at negative central degeneracy Θ0 = −10. For

temperatures T̃ & 10−2 the angle ∆φ oscillates as a function of r∗, resulting in the multivalued

correlator. On the other hand, for T̃ . 10−3 the angle ∆φ is monotonic and the correlator is

univalued.

6 Conclusions

We investigated the solution to Einstein equations sourced by to a weakly-coupled self-

gravitating fermionic fluid at finite temperature in global AdS spacetime. They form a

three-parameter family, indexed by the central degeneracy, the central temperature and

the particle mass. According to the value of such parameters, a well defined core-halo

structure appears when the mass is large, and it becomes better defined as the central

degeneracy grows and the central temperature decreases.

With the obtained backgrounds, we evaluated the two point correlator of a scalar

operator of the dual field theory at constant time. We found that it shows a swallow tail

structure when evaluated on near to critical solutions with small central degeneracy. This is

to be compared to a similar phenomenon previously reported in the case of non-equilibrium

quenched states. The presence or absence of such swallow tail sets a frontier in the phase

diagram, that allows us to identify separated regions. In such limited sense, the appearance

of a swallow tail can be interpreted as a phase transition.

A possible future line of research is the comparison of free energies between the present

configuration for finite temperature matter and the black hole solution. Another possibility

is the extension of the present results to a charged fluid in the Poincare patch of AdS, the

so-called electron star solution.
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discussions regarding the interpretation of the swallow tail structure on the boundary

correlation function.
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[15] C.R. Argüelles, N.E. Mavromatos, J.A. Rueda and R. Ruffini, The role of self-interacting

right-handed neutrinos in galactic structure, JCAP 04 (2016) 038 [arXiv:1502.00136]

[INSPIRE].

– 13 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.83.125002
https://arxiv.org/abs/0907.2694
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2694
https://doi.org/10.1103/PhysRevD.79.086006
https://doi.org/10.1103/PhysRevD.79.086006
https://arxiv.org/abs/0809.3402
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3402
https://doi.org/10.1007/JHEP10(2010)020
https://doi.org/10.1007/JHEP10(2010)020
https://arxiv.org/abs/0907.2695
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2695
https://doi.org/10.1007/JHEP01(2011)144
https://arxiv.org/abs/1010.5784
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5784
https://doi.org/10.1103/PhysRevD.83.046003
https://doi.org/10.1103/PhysRevD.83.046003
https://arxiv.org/abs/1008.2828
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2828
https://doi.org/10.1007/JHEP08(2011)096
https://arxiv.org/abs/1105.3197
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3197
https://doi.org/10.1126/science.1174962
https://arxiv.org/abs/0904.1993
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1993
https://doi.org/10.1103/PhysRevLett.106.121601
https://arxiv.org/abs/1011.6469
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6469
https://doi.org/10.1007/JHEP01(2011)117
https://arxiv.org/abs/1011.6261
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6261
https://doi.org/10.1016/S0146-6410(02)00136-9
https://doi.org/10.1016/S0146-6410(02)00136-9
https://inspirehep.net/search?p=find+J+%22Prog.Part.Nucl.Phys.,48,291%22
https://doi.org/10.3938/jkps.65.801
https://arxiv.org/abs/1402.0700
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.0700
https://doi.org/10.1093/mnras/stv1016
https://arxiv.org/abs/1409.7365
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.7365
https://doi.org/10.1088/1475-7516/2016/04/038
https://arxiv.org/abs/1502.00136
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00136


J
H
E
P
0
5
(
2
0
1
8
)
1
1
8
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