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We explore intriguing links connecting Hellmann–Feynman’s
theorem to a thermodynamics information-optimizing principle
based on Fisher’s information measure.
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1. Introduction

The connection Information Theory ⇔ Thermodynamics + Statistical Mechanics was established
by Jaynes half a century ago [1,2], its core being a variational approach that entails extremization of
Shannon’s informationmeasure subject to the constraints imposed by the a priori knowledge onemay
possess concerning the system of interest. In this way, the whole of statistical mechanics can be el-
egantly reformulated, if one chooses Boltzmann’s constant as the informational unit and identifies
Shannon’s measure with the thermodynamic entropy. The concomitant methodology is referred to
as the Maximum Entropy Principle (MaxEnt) [1,2]. More recently, a similar program was successfully
developed that replaces Shannon’s information measure S by Fisher’s one (FIM) I (see, for instance,
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[3–11]). Such an approach provides a new viewpoint within the so-called Wheeler program of es-
tablishing an information-theoretical foundation for the basic theories of physics [12]. Indeed, much
effort is being focused upon FIM applications. A not exhaustive small sample is that of [13–25].

In the two cases just mentioned, the connection with thermodynamics is made by means of a set
of first-derivative reciprocity relations that involve

• the Lagrange multipliers that emerge from the variational process,
• the information quantifier (S or I), and
• the expectation values that constitute the prior knowledge regarding the system of interest that

are provided as input information within the formalism.

In the Fisher case, a Schrödinger-like equation is involved [6,8,26], a fact thewill be employed below to
pave theway for the construction of an intriguing connectionwith the celebratedHellmann–Feynman
theorem of quantum mechanics.

2. Hellmann–Feynman theorem

The Hellmann–Feynman theorem (HFT) [27–31] demonstrates the relationship between
perturbations in an operator on a complex inner product space and the corresponding perturbations
in the operator’s eigenvalue. The theorem establishes that to evaluate the derivative of an eigenvalue
with respect to a parameter of the above-mentioned operator, we only need the concomitant
eigenvector and the derivative of the operator. The Hellmann–Feynman theorem states that a non-
degenerate eigenvalue Ei(b) of a parameter-dependent Hermitian operator H(b), with associated
(normalized) eigenvector ψi(b), changes with respect to the parameter b according to the formula

∂Ei
∂b

= ⟨ψi(b)|
∂H
∂b

|ψi(b)⟩. (1)

The HFT has a distinguished history, and it plays a central role in many areas of applied quantum
mechanics [28]. In particular, it plays a central role in the quantum mechanical evaluation of forces
in chemical systems. The FHT holds both for exact eigenstates and also for approximate eigenstates
determined via variational methods [29]. The proof of the theorem is well known. However, since the
HFT plays a vital role in the present considerations, for the sake of clarity and completenesswe include
a brief sketch of the proof in the Appendix.

3. MaxEnt and reciprocity relations

Statistical mechanics and thereby thermodynamics can be formulated on the basis of information
theory if the concomitant density distribution f (x) is obtained by recourse to MaxEnt [1,2], which
asserts that assuming that your prior knowledge about the system is given by the values of M
expectation values ⟨A1⟩, . . . , ⟨AM⟩, then f (x) is uniquely fixed by extremizing

S(f ) = −

∫
dxf (x) ln f (x), (2)

subject to the constraints given by theM conditions

⟨Aj⟩ =

∫
dxf (x)Aj(x), (3)

together with normalization∫
dxf (x) = 1, (4)

entailing the introduction of M Lagrange multipliers λi. Here, x stands for a point in the relevant
(micro)state space associated with the system under consideration. It is customary in appealing
to information theory tools (like S) to regard the accompanying probability distribution functions
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(PDFs) as being dimensionless quantities. In any case, because of normalization, dxf (x) must be
dimensionless. Additionally, in the case of Fisher’s information (see below), one deals with derivatives
of the form ∂

∂θ


ln f (x; θ)


=

1
f
∂ f
∂θ

, which can obviously be expressed without explicitly using the ln
function. Consequently, the units of f pose no problem here.

In the process of applying theMaxEnt principle, one discovers that the information quantifier S can
be identified with the equilibrium entropy of thermodynamics if our prior knowledge ⟨A1⟩, . . . , ⟨AM⟩

refers to extensive quantities. S(maximal), once determined, yields complete thermodynamical
information with respect to the system of interest [1]. f (x), the classical MaxEnt PDF, associated to
the Boltzmann–Gibbs–Shannon logarithmic entropy S, is given by [1,2]

f (MaxEnt) = f (x) = exp


−


Ω +

M−
i=1

λi Ai(x)


, (5)

with [1,2]

Ω(λ1, . . . , λM) = ln

∫
dx


exp


−

M−
i=1

λiAi(x)


≡ −λo, (6)

∂Ω(λ1, . . . , λM)

∂λj
= −⟨Aj⟩, (j = 1, . . . ,M), (7)

and

S = Ω +

M−
i=1

λi⟨Ai⟩, (8)

entailing

dS =

M−
i=1

λid⟨Ai⟩. (9)

The Euler theorem holds [2]:

∂S
∂λi

=

−
k

λk
∂⟨Ak⟩

∂λi
, (10)

and, using (8), one arrives at

dS =

M−
i=1

λid⟨Ai⟩ H⇒
∂S
∂⟨Ai⟩

= λi

S = S(⟨A1⟩, . . . , ⟨AM⟩). (11)

Effecting now the Legendre transform

Ω = Ω(λ1, . . . , λM) = S −

M−
i=1

λi⟨Ai⟩, (12)

one immediately ascertains that reciprocity holds;, namely,

∂S
∂⟨Aj⟩

= λj and
∂Ω

∂λj
= −⟨Aj⟩; j = 1, . . . ,M, (13)

where the second set of equations, together with (6), yields the Lagrange multipliers as a function
of the input information regarding expectation values [2]. The reciprocity relations (13) are a
manifestation of the Legendre-invariant structure of thermodynamics and also its most salient
structural mathematical feature.
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4. Extremizing Fisher’s information measure

Consider a system that is described by a normalized probability density (PDF)

f (x; θ) = ψ(x; θ)2, (14)

characterized by a fixed physical parameter θ and an amplitude ψ . Information measures are
functionals of the PDF that assign to it a real number indicative of its information content. In particular,
Fisher’s information measure (FIM) I is defined as [4]

I =

∫
dxf (x; θ)


∂

∂θ
ln[f (x; θ)]

2

. (15)

The idea for employing it refers to an estimation of the value of θ on the basis of measurements
of x [4]. Suppose that the PDF f is unknown, and one wishes to determine it. An observer makes a
measurement and obtains a value, say x1, of x. The observer has to best infer θ from this isolated
measurement, and calls the resulting estimate θest = θest(x1). One wonders how well θ can be
determined. Estimation theory asserts [4] that the best possible estimator θest(x), after a very large
number of samples (x-values) is examined, suffers a mean-square error e2,

e2 =

∫
dxf (x, θ)[θ − θest(x)]2, (16)

that obeys a relationship, called the Cramer–Rao bound, involving Fisher’s informationmeasure I . One
has [4]

e2 ≥ 1/I. (17)

Eq. (16) gives the variance Varx of x. If one defines a ‘‘Fisher length’’ δx =
1

√
I
, that quantifies the length

scale overwhich f varies in a significant fashion, the Cramer–Rao boundmay then be recast as a length
inequality

1x ≥ δx (18)

for the root-mean-square deviation1x of x.
The simplest and arguably most fundamental θ-instance is that of translational families. These are

mono-parametric distribution families of the form

f (x + ϵ). (19)

Given any probability density f (x), we can generate a translational family consisting of the densities
f (x + ϵ) resulting from uniform translations of the original density f (x). In this case, since the
parameter ϵ is additivewith respect to x, the parameter derivative appearing in the I definition reduces
to the derivative f ′(x) of the density f with respect to the coordinate x itself. That is, this FIM does not
explicitly involve any structural parameters of f . Now, this FIM adopts the form (remember f = ψ2

according to (14)) [4]:

I =

∫
dxf (x)


∂

∂x
ln[f (x)]

2

= 4
∫

dx∇ψ∇ψ. (20)

This particular form of Fisher’s information is specially important in physical applications because
it constitutes the main ingredient of a powerful variational principle devised by Frieden and Soffer
(FS), which gives rise to a substantial portion of (the thus far known) physics ([4] and references
therein). In this work, we use the special instance of the principle in which FIM is minimized with
adequate constraints, the so-called minimum Fisher information (MFI) approach (see Refs. [4,6] for
more details). Consequently, one assumes that the relevant PDF is always of the form (19).

It is worthmentioning that some interesting relationships have been recently established between
Fisher’s and Shannon’s measures that are to be mentioned here. As a first result, we mention that
Fisher’s information measure places an upper bound on the entropy increase for a wide variety of
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processes, namely, those in which the pertinent probability distribution is governed by a continuity
equation, as shown by Plastino and Plastino in [32]. This bound is of the form

|(dS/dt)| ≤ constant
√
I. (21)

In the case of diffusion equations (the paradigm of irreversible behavior), Plastino, Plastino, andMiller
have demonstrated some additional important relationships [33]. These are

(dS/dt) = I ≥ 0, (22)

and

(dS2/dt2) = (dI/dt) ≤ 0, (23)

from which one deduces the fact that [33]

St=0 ≤ S(t) ≤ St=0 + (t − t0)I(t = 0). (24)

S and I are intimately related, and it is clear that I regulates the entropy growth. Parenthetically, it is
worth stating a direct relationship that links I to the celebrated Kullback–Leibler relative entropy K
between two probability distributions f (x) and f (x + ϵ). It reads [4]

K [f (x + ϵ) ‖ f (x)] ∝ ϵ2I + higher order terms in ϵ. (25)

In the remainder of the paper, we will consider a system that is specified by a set ofM parametersµk
which are the mean values ofM relevant physical quantities,

µk = ⟨Ak⟩, with Ak = Ak(x) (k = 1, . . . ,M).

The set ofµk-values constitutes our prior knowledge. This is empirical information that someone has
measured. Let the pertinent probability distribution function (PDF) be f (x). Then,

⟨Ak⟩ =

∫
dxAk(x)f (x), k = 1, . . . ,M. (26)

These mean values play here the role of extensive thermodynamical variables [6]. In this context, it is
well known [6] that the relevant PDF f (x) extremizes the FIM (20) subject to (i) the prior conditions
(26) and, of course, (ii) the normalization condition∫

dxf (x) = 1. (27)

Why dowe extremize I instead of Shannon’s S? Because in the latter case the PDF result is always of
an exponential form. This is good enough for many purposes, but nor for all. For instance, power-law
PDFs do not arise naturally in this way. Working with I allows for a much greater degree of versatility
because the variational process leads to a differential equation and not to a fixed functional form [6].
Consequently, we now briefly review the formalism developed in Ref. [6]. The MFI approach adopts
the appearance

δ


I − α

∫
dxf (x)−

M−
k=1

λk

∫
dxAk(x)f (x)


= 0, (28)

where we have introduced the (M + 1) Lagrange multiplier. Variation leads to
1
f 2


∂ f
∂x

2

+
∂

∂x


2
f
∂ f
∂x


+ α +

M−
k=1

λkAk(x) = 0. (29)

To put the above equation in a more manageable form [34,6,35], we introduce the function ψ(x) via
the identificationψ(x)2 = f (x) (see comment below Eq. (32)) so that Eq. (29) adopts the Schrödinger
wave equation (SWE) form

−
1
2

∇
2ψ −

M−
k=1

λk

8
Akψ =

α

8
ψ, (30)
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which can be formally interpreted as a Schrödinger wave equation for a particle of unit mass moving
in the potential

U = U(x) = −
1
8

M−
k=1

λkAk(x). (31)

Then, in order to find the PDF one has to solve the above wave equation (WE), where the Lagrange
multiplier (α/8) plays the role of an energy eigenvalue E = α/8. The Lagrange parameters λk are
fixed, of course, by recourse to the available prior information. Notice that the eigenenergy α/8
automatically yields the value of the Lagrange multiplier associated to normalization (cf. Eq. (6) for
the Shannon instance). The square of the solutions ψ yields the PDF

ψ(x)2 = f (x), (32)

and we point out that ψ(x) is always real in the case of one-dimensional scenarios, or for the ground
state of a real potential in N dimensions [36]. The reader may wonder whether the complex real
Schrödinger equation can also be obtained with the same procedure. The answer is in the affirmative.
One starts with a complex definition for I advanced by Frieden and Soffer [4,5] that uses a complex
amplitude ψ∗, namely,

I = 4
∫

dx∇ψ∗
∇ψ. (33)

For our present purposes, the real, standard I definition suffices. The connection between the solutions
of Eq. (30) and thermodynamics has been established in Refs. [6,8]. Let us summarize the pertinent
main details. The reciprocity relations (13) and their Fisher counterparts (to be found below) are an
expression of the Legendre-invariant structure of thermodynamics and constitute its essential formal
ingredient [37]. It is of the essence for our present purposes that they also hold for the Fisher treatment.
Standard thermodynamics makes use of the derivatives of the entropy S with respect to both λi and
⟨Ai⟩ parameters (for instance, pressure and volume, respectively). Analogous properties of ∂ I/∂λi and
∂ I/∂⟨Ai⟩ are valid as well. Substituting (32) into Eq. (20), we find

I = 4
∫

∂

∂x


ψn
∂ψn

∂x


dx − 4

∫
ψn

∂2

∂x2
ψndx = −4

∫
ψn

∂2

∂x2
ψndx. (34)

Then, via the SWE (30), we easily get

I =

∫
ψn


α +

M−
k=1

λkAk


ψn dx. (35)

Now, through (i) the prior conditions (26) and (ii) the normalization condition (26), we arrive at

I(⟨A1⟩, . . . , ⟨AM⟩) = α +

M−
k=1

λk ⟨Ak⟩ , (36)

the Fisher counterpart of (8). Note that the Legendre transform of I is α; that is,

α = I(⟨A1⟩, . . . , ⟨AM⟩)−

M−
k=1

λk ⟨Ak⟩ = α(λ1, . . . , λM), (37)

so

∂α

∂λi
= −⟨Ai⟩. (38)

Finally, according to (36),

λk =
∂ I

∂ ⟨Ak⟩
, (39)
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and, moreover,

∂ I
∂λi

=

M−
k

λk
∂⟨Ak⟩

∂λi
, (40)

which is a generalized Fisher–Euler theorem that was previously proved in [6]. We see that the
reciprocity relations (13) are also a feature of the Fisher treatment, whichmakes it reasonable to speak
of a Fisher thermodynamics.

5. Fisher–Hellmann–Feynman connections

Weare now in a position to establish a Fisher–Hellmann–Feynman link. According to the preceding
section, let us consider a Schrödinger equation for a particle of unit mass,

−
1
2
∇

2ψ + U(x)ψ = Eψ. (41)

If the eigenfunction ψ(x) is real (which is always the case in one-dimensional scenarios, or for
the ground state of a quantum system described by an N-dimensional configuration space and a real
potential [36]), we can ascribe to (41) a Fisher measure

I =

∫
dxf (x)


∂

∂x
ln[f (x)]


; f = ψ2. (42)

Now, let us assume that the potential function U can be series expanded in the form

U(x) =

−
k

akxk = −
1
8

−
k

λkxk, (Ak = xk), (43)

where the second equality refers to Eq. (30). We then make the identifications

α = 8E; and λk = −8ak, (44)

so that (cf. Eq. (38))

∂(8E)
∂(−8ai)

= −⟨xi⟩. (45)

It follows now from Eqs. (39)–(45) that the coefficients ak satisfy the relations

∂ I
∂⟨xk⟩

= λk = −8ak, (46)

and

∂E
∂ak

= ⟨xk⟩. (47)

The last equation above is an instance of the Hellmann–Feynman theorem if the ak are regarded
as parameters of the Hamiltonian. Noticing that E in (47) is the particular Lagrange multiplier
guaranteeing normalization of the probability distribution that yields an extremum for I , such an
equation turns out to constitute a nice, and as far as we know new, relation between Fisher’s measure,
expectation values, and the coefficients of the potential’s series expansion.We have encountered that
the coefficients ak in theU(x)-expansion behave, in a fashion, like the temperature T or the pressure p,
typical ‘‘Lagrande multipliers’’ in statistical thermodynamics, our main (and non-trivial) finding here.
Of course, we could have, instead of (43), a more general expansion in terms of arbitrary functions
fk(x) of the form

U(x) =

−
k

akfk(x), (48)
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with reciprocity relations of the type (46) that would now involve the ⟨fk(x)⟩ instead of the ⟨xk⟩. What
happens if no expectation values are known a priori? Then, according to (36), one has

I = α = 8E, (49)

which entails that theHF theoremgets expressed directly in I-terms. If the energy depends upon some
parameter ξ then so does the FIM, and we have

(1/8)
dI(ξ)
dξ

=
dE
dξ
, (50)

which substitutes for the HFT, in the sense that I plays the role assigned to H in the theorem, a new
I-property, as far as we know.

6. Examples

We illustrate now in simple examples how the Hellmann–Feynman strictures apply in a Fisher
context. We set h̄ = m = 1.

6.1. Quantum square well

Consider a free particle moving along the x-axis between infinitely high walls at x = ±a. The
eigenstates are, for example,

ψn = a−1/2 cos(nπx/2a); n odd integer. (51)

Our parameter here is, of course, a. The eigenenergies read

En = π2n2/(8a2). (52)

Since no mean value is known, one wonders whether relation (50) will hold. Here, the Fisher mea-
sure is

I = 4
∫ a

−a
dx(ψ ′

n)
2

= π2n2/a2, (53)

so relation (50) indeed holds.

6.2. Ground state of the harmonic oscillator

We have, with λ2 = −8a2 and a2 = ω2/2,
−

1
2

d2

dx2
+ a2x2


ψ =

α

8
ψ. (54)

The Gaussian wave function,

ψ(x) =

2πσ 2−1/4

exp


−
x2

4σ 2


, (55)

is a solution of the above Schrödinger equation [38] with α, λ2 linked in the fashion

n⟨x2⟩ = σ 2 α =
2
σ 2
, λ2 = −

1
σ 4
, a2 =

1
8σ 4

, (56)

entailing

ψ(x) = (ω/π)1/4 exp


−
ωx2

2


. (57)
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The pertinent I(f ) turns out to be

I = IHO =

∫
dxf (x)


∂

∂x
ln[f (x)]

2

= σ−2
= 2ω ⇒ (dIHO/d⟨x2⟩) = −8a2 = λ2, (58)

as it should (first reciprocity relation). We also have

α = 4ω, λ2 = −4ω2 E = α/8 = ω/2 =


8a2/4,

(dE/da2) = (1/

8a2) = σ 2

= ⟨x2⟩, (59)

and we reobtain the second reciprocity relation as an instance of the Hellmann–Feynman theorem. It
is perhaps instructive to spell out the canonical form I = α + λ2⟨x2⟩, which can be cast here in the
fashion

I = 2ω = 4ω + [−4ω2
][1/2ω] = 4ω[1 − 1/2]. (60)

6.3. Harmonic oscillator in a uniform field

Our unit-mass particle moving in the harmonic oscillator (HO) potential is now assumed
additionally (i) to have electrical charge q and (ii) to be subjected to a uniform electric field ϵ in the
x-direction. We have

−
1
2

d2

dx2
+ a1x + a2x2


ψ = Eψ, (61)

with a1 = −qϵ and a2 = ω2/2. In general, we may then add a term −ω2ξx to the HO term, which
results in a polarization energy ω2ξ 2/2 [38],

−
1
2

d2

du2
+

1
2
ω2u2


ψ = Ēψ, (62)

where

u = x − ξ, ξ =
qϵ
ω2
, Ē = E +

1
2
ω2ξ 2. (63)

A slightly modified version of (57) now represents the exact ground state,

ψ(x) = (ω/π)1/4 exp


−
ω(x − ξ)2

2


, (64)

for which the Fisher measure turns out to be

I = 2ω. (65)

Also,

⟨(x − ξ)⟩ = 0 −→ ⟨x⟩ = ξ,

⟨(x − ξ)2⟩ =
1
2ω

−→ ⟨x2⟩ =
1
2ω

+ ξ 2.

Then, with λ1 = −8a1 = 8qϵ and λ2 = −8a2 = −4ω2, we obtain

α = I − λ1⟨x⟩ − λ2⟨x2⟩ = 2ω − 8qϵξ + 4ω2


1
2ω

+ ξ 2


= 4ω − 8qϵξ + 4ω2ξ 24ω − 4ω2ξ 2,

so that the mandatory division by 8 (cf. (49)) yields the polarization energy mentioned above,

α = 4ω − 4ω2ξ 2 −→ E =
ω

2
−

1
2
ω2ξ 2,

and the reciprocity relations hold.
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7. Conclusions

In this communication, we have shown

• how to associate a (real) Schrödinger equation to a Fisher information measure, and
• how to link the Hellmann–Feynman theorem to the Jaynes reciprocity relations of information

theory (cf. Eq. (13)), for potential functions that can be series expanded. Here, the pertinent
expansion coefficients are to be regarded as Lagrange multipliers for the Fisher expression (36).

The Hellmann–Feynman theorem is seen to be just one special reciprocity relation. In order to find
this result, restriction to real wave functions was necessary. This is not so drastic as one might, at first
sight, think. Ifψ is an eigenfunction, so isψ∗, and, because of linearity, their sumψ+ψ∗, which is real,
is also an eigenfunction. Moreover, a quantum system’s eigenfunctions can always be taken as real for
one-dimensional scenarios, or for the ground state of systems with an N-dimensional configuration
space and a real potential function [36].
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Appendix. Sketch of the proof of the Hellmann–Feynman theorem

Let ψ ′ stand for (∂ψ/∂b), and remember that (1) H|ψi(b)⟩ = Ei|ψi(b)⟩ and (2) ⟨ψi(b)|ψi(b)⟩ =

1 ⇒ (d/db)⟨ψi(b)|ψi(b)⟩ = 0. Then,

∂Ei(b)
∂b

= ⟨ψ ′

i (b)|H|ψi(b)⟩ + ⟨ψi(b)|H|ψ ′

i (b)⟩ + ⟨ψi(b)|
∂H
∂b

|ψi(b)⟩

= ⟨ψ ′

i (b)|Ei(b)|ψi(b)⟩ + ⟨ψi(b)|Ei(b)|ψ ′

i (b)⟩ + ⟨ψi(b)|
∂H
∂b

|ψi(b)⟩

= Ei(b)(d/db)⟨ψi(b)|ψi(b)⟩ + ⟨ψi(b)|
∂H
∂b

|ψi(b)⟩

= 0 + ⟨ψi(b)|
∂H
∂b

|ψi(b)⟩, (66)

where, obviously, the differentiability of Ei,H and ψi with respect to b was assumed. The HFT, and
others derived from it, has been used in many areas of physics, and specially in solid state and
molecular physics after the pioneering work of Feynman [31].

References

[1] E.T. Jaynes, Phys. Rev. 106 (1957) 620.
[2] A. Katz, Principles of Statistical Mechanics: The Information Theory Approach, Freeman and Co., San Francisco, 1967.
[3] B.R. Frieden, Phys. Rev. A 41 (1990) 4265.
[4] B.R. Frieden, Physics from Fisher Information Measure, Cambridge University Press, Cambridge, 1998.
[5] B.R. Frieden, B.H. Soffer, Phys. Rev. E 52 (1995) 2274.
[6] B.R. Frieden, A. Plastino, A.R. Plastino, B.H. Soffer, Phys. Rev. E 60 (1999) 48. 60.
[7] B. Nikolov, B.R. Frieden, Phys. Rev. E 49 (1994) 4815.
[8] S.P. Flego, B.R. Frieden, A. Plastino, A.R. Plastino, B.H. Soffer, Phys. Rev. E 68 (2003) 016105.
[9] A.R. Plastino, A. Plastino, Phys. Rev. E 54 (1996) 4423.

[10] A. Plastino, A.R. Plastino, H.G. Miller, Phys. Lett. A 235 (1997) 129.
[11] A.R. Plastino, M. Casas, A. Plastino, Phys. Lett. A 246 (1998) 498.
[12] J.A. Wheeler, in: W.H. Zurek (Ed.), Complexity, Entropy and the Physics of Information, Addison Wesley, New York, 1991,

pp. 3–28.
[13] V. Kapsa, L. Skala, J. Chen, Physica E 42 (2010) 293.
[14] B.R. Frieden, B.H. Soffer, Physica A 388 (2009) 1315.
[15] M.R. Ubriaco, Phys. Lett. A 373 (2009) 4017.
[16] S. Lopez-Rosa, J.C. Angulo, J.S. Dehesa, R.J. Yanez, Physica A 387 (2008) 2243.
[17] K.D. Sen, J. Antolin, J.C. Angulo, Phys. Rev. A 76 (2007) 032502.



S.P. Flego et al. / Annals of Physics 326 (2011) 2533–2543 2543

[18] A. Nagy, Chem. Phys. Lett. 449 (2007) 212.
[19] A. Nagy, Chem. Phys. Lett. 425 (2006) 154.
[20] A. Hernando, C. Vesperinas, A. Plastino, Physica A 389 (2010) 490.
[21] A. Hernando, C. Vesperinas, A. Plastino, Phys. Lett. A 374 (2009) 18.
[22] F. Pennini, G.L. Ferri, A. Plastino, Entropy 11 (2009) 972.
[23] F. Olivares, F. Pennini, A. Plastino, Physica A 389 (2010) 2218.
[24] F. Pennini, A. Plastino, B.H. Soffer, C. Vignat, Phys. Lett. A 373 (2009) 817.
[25] F. Pennini, A. Plastino, Phys. Rev. E 71 (2005) 047102.
[26] M. Reginatto, Phys. Rev. A 58 (1998) 1775.
[27] D.J. Griffiths, Introduction to QuantumMechanics, Prentice Hall, Englewood Cliffs, NJ, 1995.
[28] David W. Wallace, An introduction to Hellmann–Feynman theory, Master Thesis, University of Central Florida, Orlando,

Florida, (2005) (unpublished).
[29] W. Namgung, J. Korean Phys. Soc. 32 (1998) 647.
[30] H.G.A. Hellmann, Z. Phys. 85 (1933) 180.
[31] R.P. Feynman, Phys. Rev. 56 (1939) 340.
[32] A.R. Plastino, A. Plastino, Phys. Rev. E 52 (1995) 4580.
[33] A. Plastino, A.R. Plastino, H.G. Miller, Phys. Lett. A 235 (1997) 129.
[34] R.N. Silver, E.T. Jaynes Jr., in: W.T. Grandy, P.W. Milonni (Eds.), Physics and Probability, Cambridge University Press,

Cambridge, 1992.
[35] P.I. Richards, Manual of Mathematical Physics, Pergamon Press, London, 1959, p. 342.
[36] R.P. Feynman, Statistical Mechanics. A Set of Lecures, Benjamin, London, 1972.
[37] E.A. Desloge, Thermal Physics, Holt, Rinehart and Winston, New York, 1968.
[38] W. Greiner, B. Müller, Quantum Mechanics. An Introduction, Springer, Berlin, 1988;

D.R. Bates, Quantum Theory, Academic Press, New York, 1961.


	Fisher information, the Hellmann--Feynman theorem, and the Jaynes reciprocity relations
	Introduction
	Hellmann--Feynman theorem
	MaxEnt and reciprocity relations
	Extremizing Fisher's information measure
	Fisher--Hellmann--Feynman connections
	Examples
	Quantum square well
	Ground state of the harmonic oscillator
	Harmonic oscillator in a uniform field

	Conclusions
	Acknowledgment
	Sketch of the proof of the Hellmann--Feynman theorem
	References


