
Advances in Engineering Software 43 (2012) 27–43
Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft
Enhancing the BYG gridification tool with state-of-the-art Grid scheduling
mechanisms and explicit tuning support

Cristian Mateos a,b,⇑, Alejandro Zunino a,b, Matías Hirsch c, Mariano Fernández c

a ISISTAN Research Institute, UNICEN University, Campus Universitario, Tandil (B7001BBO), Buenos Aires, Argentina
b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
c UNICEN University, Campus Universitario, Tandil (B7001BBO), Buenos Aires, Argentina

a r t i c l e i n f o
Article history:
Received 25 June 2011
Received in revised form 25 August 2011
Accepted 26 August 2011
Available online 25 September 2011

Keywords:
Grid computing
Gridification
Java
BYG
Policies
Satin
GridGain
0965-9978/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.advengsoft.2011.08.006

⇑ Corresponding author. Tel.: +54 2293 439682x35
E-mail address: cmateos@conicet.gov.ar (C. Mateo
a b s t r a c t

Grid Computing allows scientists and engineers to run compute intensive experiments that were unfea-
sible not so long ago. On the downside, for users not proficient in distributed technologies, programming
for Grids is difficult, tedious, time-consuming and error-prone. Then, disciplinary users typically waste
precious time that could be instead invested into analyzing results. In a previous paper, we introduced
BYG (Mateos et al., 2011) [28], a Java-based software that automatically parallelizes sequential applica-
tions by directly modifying their compiled codes. In addition, BYG is designed to harness Grid resources
by reusing existing Grid platforms and schedulers. In its current shape, however, BYG lacks support for
some state-of-the-art Grid schedulers and mechanisms for introducing application-dependent optimiza-
tions to parallelized codes. In this paper, we present several extensions to BYG aimed at overcoming these
problems and thus improving its applicability and delivered efficiency. We also report experiments by
using traditional computational kernels and real-life applications to show the positive practical implica-
tions of the proposed extensions.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Grid Computing [9] is a well-established distributed computing
paradigm that allow scientists and engineers to build applications
that demand by nature a huge amount of computational resources
(e.g. CPU cycles, memory, disk). To this end, Grid Computing plat-
forms provide the illusion of the existence of a large virtual super-
computer, which in turn virtualizes and combines the hardware
capabilities of a number of much less powerful, geographically-dis-
persed machines. Common uses of Grid Computing environments
include aerodynamic design, weather prediction, catastrophe sim-
ulation, financial modeling, and so on.

The inherent distributed and parallel nature of Grid applica-
tions, however, places a huge burden on regular users willing to
exploit the hardware capabilities of such supercomputers, since a
significant development effort and knowledge on distributed and
parallel programming are required to put a Grid application to
work [26]. Particularly, when deploying an algorithm to a Grid
for execution, a user must take into account what his application
does from a functional perspective as well as how to parallelize
it according to the characteristics of the underlying Grid execution
infrastructure. The second aspect is absent when developing tradi-
tional, single-machine applications, and is rather difficult to under-
ll rights reserved.

; fax: +54 2293 439681.
s).
take by users with limited knowledge on Grid programming
concepts.

The traditional approach to address the problem of simplifying
Grid programming is based on supplying users with simple and de-
signed-from-scratch programming APIs. In this arena, MPI [34] and
PVM [34] appear as the most popular API-based programming
tools among scientists and practitioners. Specifically, both tools of-
fer intuitive (and standardized) library calls through which users
can parallelize an application and execute parts of it in a distrib-
uted environment. However, even though MPI and PVM greatly
mitigate the complexity inherent to writing Grid applications, their
APIs still require users to have a solid knowledge in parallel and
distributed programming [41]. Another problem of these tools is
that they are essentially intrusive, i.e. parallelizing a sequential
algorithm means ‘‘polluting’’ its code with a lot of parallel direc-
tives in the form of annotations and function calls. Then, there is
not a clear separation between algorithmic code and parallel one.
Consequently, introducing purely algorithmic optimizations re-
main error prone and require a considerable amount of testing
[26], which demands time and effort.

The recent notion of ‘‘gridification’’ [26] has introduced a radical
twist in the way Grid applications are built. Tools materializing this
notion operate by automatically building a Grid-aware code from
its sequential version. Amongst the advantages of this new ap-
proach compared to the traditional way of constructing Grid appli-
cations mentioned above are precisely supporting non-expert

http://dx.doi.org/10.1016/j.advengsoft.2011.08.006
mailto:cmateos@conicet.gov.ar
http://dx.doi.org/10.1016/j.advengsoft.2011.08.006
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft

28 C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43
developers, avoiding the inclusion of API-specific parallel instruc-
tions within the source code of sequential applications, and in gen-
eral simplifying and accelerating Grid application bootstrapping
and execution. However, materializing the concept is challenging
from both a conceptual and a technological standpoint [28]. Be-
sides, much research is still being conducted to determine whether
the performance achieved by automatically-gridified applications
is competitive with that of hand-coded Grid-aware codes.

In a previous paper, we proposed BYG (BYtecode Gridifier) [28],
a gridification tool that accepts as input the compiled code of a
sequential application developed in Java and automatically outputs
its parallelized counterpart. This process roughly comprises two
broad tasks, namely heuristically detecting prospective portions
within the input application for inserting parallelism, and includ-
ing proper bytecode for actually executing the Grid-enabled binary
code on a specific Grid platform. BYG targets Java applications
developed under the divide and conquer model (D&C), a versatile
technique for algorithm design by which an individual problem
is solved by dividing it into several subproblems until trivial1 sub-
problems are obtained. Upon executing a sequential D&C applica-
tion, BYG modifies its bytecode so that subproblems are executed
in parallel on a Grid via an existing task scheduler. Preliminary
experiments have confirmed the feasibility of the approach.

Despite the encouraging results obtained so far, we believe that,
in its current shape, the broad applicability of BYG is still somehow
compromised. On one hand, to execute parallelized applications,
BYG does not reinvent the wheel by providing yet another distrib-
uted task scheduler. Instead, a key design driver of its runtime was
to exploit existing Grid platforms. However, at present, BYG is inte-
grated with only one Grid platform. On the other hand, BYG is
based exclusively on an implicit form of gridification by which par-
allelism is introduced transparently in an application, i.e. by
requiring almost no user intervention. Clearly, this implicit form
of parallelism allows users to gridify applications without thinking
about parallelism. With the explicit approach to parallelism fol-
lowed by tools such as MPI and PVM, or newer Grid platforms like
Satin [40] and GridGain [13], the burden of managing parallelism
falls on developers. However, explicit parallelism supplies APIs so
that developers have more control over parallel programming,
and thus potentially more efficient applications can be built [10].

Consequently, we have been working on addressing these is-
sues, which resulted in a number of extensions to the software tool
presented in [28]. In this sense, in this paper we introduce the fol-
lowing relevant contributions:

� The integration of BYG with more Grid middlewares, an hence
the inception of newer bytecode rewriting mechanisms. This
feature indirectly offers users a broader range of Grid schedul-
ers to execute their gridified applications. The extended version
of BYG offers binding to Satin [40],2 a well-established and
healthy academic project, and GridGain [13],3 a relentlessly
growing commercial platform for Grid Computing.
� A simple programming model based on policies, or rules that

allows users to ‘‘throttle’’ the amount of parallelism and control
task location in their applications according to both the nature
of their codes and the characteristics of the Grid environment
where they run. Rules can be specified in Java, Python and
1 Whether a problem is trivial or not depends on the nature of the application at
hand.

2 The full version is available at http://users.exa.unicen.edu.ar/cmateos/files/
BYG-1.0.zip.

3 A preliminary out-of-the-box version is available at http://code.google.com/p/
easyfjp-imp.
Groovy. This extension essentially aims at providing a balance
to the simplicity versus performance tradeoff inherent to impli-
cit and explicit parallel programming.

To evaluate the extended tool, we conducted two set of exper-
iments. First, we executed several microbenchmarks to quantify
the performance penalty of supporting Java-based and script-based
policies. Second, we assessed the effectiveness of our extensions in
terms of execution performance by using some explicit parallel
models, BYG and policies to gridify two resource-intensive applica-
tions, namely the ray tracing 3D scene rendering technique and an
algorithm for pairwise gene sequence alignment, on an emulated
Grid. Basically, we compared hand-coded applications using con-
temporary Grid programming libraries against codes also exploit-
ing these libraries but automatically obtained by using BYG plus
policies. We believe that the competitive performance levels
achieved by BYG across the various experimental scenarios and
the improved flexibility and applicability of the extended gridifica-
tion mechanisms, make BYG a valuable alternative for rapidly exe-
cuting both engineering and scientific applications while
efficiently exploiting Grid resources.

The rest of the paper is structured as follows. Section 2 over-
views BYG by taking a user-centric approach to describe its capa-
bilities in terms of application programming and integration with
external Grid platforms. After that, Section 3 explains the exten-
sions for tuning BYG applications and provides several source code
examples. Section 4 reports a detailed experimental evaluation of
BYG. Later, Section 5 discusses relevant related efforts. Finally, Sec-
tion 6 concludes the paper.
2. The BYG (BYtecode Gridifier)

BYG is a gridification tool that allows developers to non-inva-
sively gridifying their applications, or in other words, without tying
their sequential codes to specific parallel and distributed libraries.
Central to the gridification model promoted by BYG is the concept
of Fork-Join Parallelism (FJP), a simple but effective technique that
expresses parallelism via two primitives: fork, which starts the
execution of a method in parallel, and join, which blocks a caller
until the execution of methods finishes. FJP represents an alterna-
tive to thread-based parallel programming models, which have
been criticized due to their inherent complexity [23], and the
bureaucratic approach to parallelism of parallel libraries such as
MPI [34] or PVM [34]. In fact, the Java language, which has offered
threads as first-class citizens for years, includes now an FJP pack-
age for multicore CPUs (http://openjdk.java.net/projects/jdk7/
features).

Certainly, FJP is not circumscribed to multicore programming,
but is also applicable in execution environments where the no-
tions of ‘‘task’’ and ‘‘processor’’ exist. Interestingly, multicore
CPUs, clusters and Grids alike can execute FJP tasks, as they
conceptually comprise processing nodes (cores or individual ma-
chines) interconnected through communication ‘‘links’’ (a system
bus, a high-speed LAN or a WAN). This uniformity arguably
allows the same FJP application to be run in either environments,
provided there is a platform aware of the underlying execution
support. Intuitively, FJP is suitable for parallelizing divide and
conquer (D&C) applications, an algorithmic abstraction useful to
solve many problems. This is because D&C applications are
mostly developed in a recursive way, thus recursive calls can be
mapped to independent parallel tasks. By basing upon these pre-
mises, BYG essentially contributes with bytecode analysis and
generation techniques that automatically introduce FJP-based
parallelism into sequential D&C applications. Broadly speaking,
while most of the existing work on automatic parallelization of

http://openjdk.java.net/projects/jdk7/features
http://openjdk.java.net/projects/jdk7/features
http://users.exa.unicen.edu.ar/cmateos/files/BYG-1.0.zip
http://users.exa.unicen.edu.ar/cmateos/files/BYG-1.0.zip
http://code.google.com/p/easyfjp-imp
http://code.google.com/p/easyfjp-imp

Fig. 1. An overview of BYG: both the static (left) and runtime views (right) of a BYG application are illustrated.

Fig. 2. Adapting sequential bytecodes to run on a Grid platform.

C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43 29
sequential codes focuses on loops [17], supporting D&C applica-
tions is interesting since there is an important class of algorithms
that cannot be straightforwardly and efficiently expressed as
loops because recursion is needed [1].

Another distinctive aspect of BYG is that, instead of providing its
own task scheduler, our tool is designed to take advantage of the
scheduling services of existing Grid platforms for executing parall-
elized applications. Architectonically, this is done through the use
of connectors, which implement the necessary plumbing operations
to access the execution services of specific Grid platforms. Apart
from the code for supporting method-level parallelism itself, con-
nectors are also non-invasively injected into the input sequential
bytecode to delegate the execution of certain application methods
to a Grid platform.

Fig. 1 depicts an overview of BYG. Our approach conceptually
takes as input the executable code – i.e. the bytecode – of a sequen-
tial Java application, and dynamically transforms their classes to
run on a Grid middleware the specific methods of the user’s choice.
The developer must indicate through a configuration file which
Java methods should be run on a Grid and which Grid middlewares
should be used. Then, BYG processes the configuration, intercepts
all invocations to such methods (in the example, methodA1), and
delegates their execution to the target middleware (in the exam-
ple, GridGain) by means of an appropriate connector. From an
architectural perspective, BYG provides a software tier that medi-
ates between an ordinary Java application, or the client side, and
Grid middlewares, or the server side. Gridified classes are run at
the server side by means of connectors, whereas non-gridified clas-
ses remain running unmodified at the client side. BYG-enabling an
application only requires the user to specify an XML file listing
which methods of an application are to be gridified and what Grid
platform must be employed to execute them. It is also possible to
delegate different methods of classes belonging to the same appli-
cation to various Grid middlewares.

From a runtime perspective, preparing or modifying an individ-
ual method for Grid execution involves two tasks. First, its body is
rewritten to transparently delegate its execution to the connector
associated to the method. In our case, a GridGain parallel job is cre-
ated from the binary code of the target method, which is submitted
to a Grid running GridGain. In this way, every time this method is
invoked from the application, the method is not executed locally
but an adapted version of it is handled by GridGain. The second
task is precisely responsible for performing this adaptation, which
is done by modifying the original bytecode of the method in order
to exploit the parallel API library functions of the target platform.
Depending on the middleware to be used for method execution,
additional modifications at the class level may be necessary, as
some platforms require jobs for example to extend from certain
API classes. Fig. 2 overviews the mechanism described above,
which dynamically obtains the gridified counterpart of a
sequential class. Middleware-dependent transformations are the
ones performed at step 2.

At present, BYG provides a connector for accessing the services
of Satin [40], a Java-based platform for parallelizing and running
applications on clusters and wide-area Grids. Also, we have devel-
oped a connector for the GridGain middleware [13]. Efforts to-
wards providing a connector for the popular Condor-G platform
[37] are also underway, whose implementation relies on a Java
interface to this platform [30]. However, in the following subsec-
tions we will concentrate on Satin and GridGain as they are the
most stable versions of our BYG connectors. Moreover, more de-
tails on the configuration needed to Grid-enable conventional
applications and the core mechanics of the BYG runtime support
can be found in [28]. In the following section we will focus on

30 C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43
illustrating the mechanisms used by BYG to Grid-enable sequential
applications from a user’s perspective.

2.1. BYG: programming model

The divide and conquer (D&C) model is an algorithm construc-
tion technique that allows users to solve a problem by breaking it
down into several subproblems of the same type until trivial prob-
lems are obtained. The solutions to the different subproblems are
then combined to build the solution to the whole problem. Most
of the time, D&C algorithms are implemented recursively, i.e. by
issuing several recursive calls to the same code (method or func-
tion) implementing the problem. Moreover, trivial problems are
processed directly, in the sense that they are not further subdi-
vided but instead computed by a portion of non-recursive code.

Let us take for example the code shown below, which includes a
recursive integrate method that computes the integral of a fixed
function within a given interval (a,b). The integral value is approx-
imated by systematically dividing the input interval into two sub-
intervals as long as the difference between the area of the
trapezoid and the sum of the areas of the trapezoids associated
to the subintervals is not smaller than some threshold epsilon:
1
 public class AdaptiveIntegration {

2
 public double function (double value){. . .}

3
 public double integrate (double a, double b, double

epsilon){

4
 double delta=(b-a)/2;

5
 double total = delta⁄(function (a)+function (b));

6
 double deltaHalf = delta/2;

7
 double left = deltaHalf⁄(function (a)+function

(a + delta));

8
 double right = deltaHalf⁄(function (b)+function

(a + delta));

9
 double diff = total-(left + right);

10
 diff=(diff < 0)? -diff: diff;

11
 if (diff < epsilon)

12
 return total;// base case for D&C

13
 else {

14
 double res1 = integrate (a, a + delta, epsilon); //

subproblem#1

15
 double res2 = integrate (a + delta, b, epsilon); //

subproblem#2

16
 return res1 + res2;

17
 }

18
 }

19
 }
The recursive calls of lines 14 and 15 are the divide phase of the
algorithm, in which the problem at hand is large enough to be sub-
divided. Lines 11–12 represent its conquer phase, or the case when
a (sub) problem becomes trivial. As the reader can see, for clarity
purposes, the above code is not completely optimized since we
have deliberately repeated some of the intermediate calculations.

2.2. Using BYG in conjunction with Satin

The Satin Grid platform refines the ordinary semantics of
sequential D&C applications such as AdaptiveIntegration to intro-
duce parallelism in the divide phase. The Satin library cleanly sup-
ports FJP through the spawn and sync primitives. The former allows
users to create parallel subcomputations. Methods considered for
parallel execution must be included in a regular Java interface
(marker interface) that extend the satin.Spawnable interface. More-
over, the syncprimitive is shipped as a library call and is used to
programmatically block the execution of a task until the execution
of its child tasks finish. For example, the Satin version of the Adap-

tiveIntegration class is:
1
 public interface AdaptiveIntegrationMarker extends
satin.Spawnable{
2
 public double integrate (double a, double b, double
epsilon);
3
 }

4
 public class AdaptiveIntegration extends

satin.SatinObject

5
 implements

AdaptiveIntegrationMarker{

6
 . . .
7
 public double integrate (double a, double b, double
epsilon){
8
 . . .
9
 else {

10
 double res1 = integrate (a, a + delta, epsilon);

11
 double res2 = integrate (a + delta, b, epsilon);

12
 super.sync ();

13
 return res1 + res2;

14
 }

15
 }

16
 }
Basically, AdaptiveIntegrationMarker indicates Satin which meth-
ods of the application under analysis must be executed in parallel
and as such trigger independent parallel subtasks at runtime.
Methods not included in the marker interface are executed in a
sequential way. Also, users have to explicitly indicate in the appli-
cation code the points in which it is necessary to wait for child
computations to complete, or in other words providing a join point
to cause subtasks not to proceed and to wait for divide parts of the
problem. To this end, the call to sync at line 12 ensures that the
subresults computed by the subtasks spawned at lines 10 and 11
are instantiated to build a larger result at line 13. This simple syn-
chronization mechanism is at the same time the main source of
programming errors when employing Satin. A rule of thumb for
correctly using the sync primitive and therefore avoid attempting
to access not yet computed subresults involves checking that at
least one call to the primitive is performed between the statements
including recursive calls and those that access their results. For
more complex algorithms, however, this analysis is rather tedious,
time-consuming and, even more important, error-prone.

Once the application has been (re) written to exploit the Satin
API, it is necessary to pass the compiled counterpart of the parallel
source code to a special postprocessor. Conceptually, this support
transparently further modifies the application in such a way that,
at runtime, an independent or forked task is created for every in-
voked recursive call. Tasks are in turn managed by a Satin sched-
uler capable of sending/retrieving tasks to/from remote hosts to
take advantage of distributed computing resources.

Our Satin connector automates the previous manual tasks from
a compiled D&C application not explicitly coded to use the Satin
API. To this end, the Satin connector generates the marker interface
based on the configuration of the application (i.e. the one depicted
in Fig. 1, left), and rewrites the bytecode of the class being gridified
(i.e. the class A in Fig. 1) to extend/implement the necessary classes
and interfaces so that the sequential class follows the parallel
application structure prescribed by Satin. The connector also in-
serts calls to sync by deriving a high-level representation from
the bytecode and analyzing the points where joins are needed.

In summary, the connector carries out three main tasks. First, as
explained, Satin requires applications to include a marker

4 http://www.gridgain.com/javadoc.

C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43 31
interface, which lists the methods considered for parallel execu-
tion. The connector builds this interface from the methods listed
in the hclassesi section of the user-supplied configuration. Second,
Satin codes must implement a marker interface and to extend from
SatinObject. Then, a clone (or in BYG terminology a peer) of the
sequential class under consideration is created by the Satin con-
nector and modified to fulfill these requirements. Lastly, the con-
nector inserts calls to the Satin sync primitive at appropriate
places of the spawnable methods of the peer based on an heuristic
algorithm. The algorithm preserves the operational semantics of
the (sequential) original algorithm while minimizing the calls to
the primitive.

The algorithm for inserting barriers works by iterating the
instructions of a method and detecting the points in which a local
variable is either defined or used by a statement. A variable is de-
fined when the result of a recursive call is assigned to it, whereas
it is used when its value is read. To work properly Satin requires
that statements can read such variables provided a sync has been
previously issued. Then, our algorithm operates by modifying the
bytecode to ensure a call to sync is done between the definition
and use of a local variable, for any execution path between these
two points. Moreover, as sync suspends the execution of the meth-
od until all subcomputations associated to defined variables finish,
our algorithm uses an heuristic to keep the correctness of the pro-
gram while minimizing the inserted calls to sync for the sake of effi-
ciency. For simplicity, we have left the discussion of the internals of
this heuristic algorithm out of the paper.

2.3. Using BYG in conjunction with GridGain

GridGain is a very stable open source Grid platform that has be-
came popular for developing distributed applications. The tool sup-
ports several programming models for developing parallel
applications. Particularly, GridGain natively supports the classical
master-worker paradigm by means of an extension to the standard
Java futures package. In a broad sense, a future is an abstraction
that allows users to represent and manipulate an individual asyn-
chronous computations. The package offers an API that exposes ob-
jects and methods to parallelize applications on multicore
machines and hides programmers from many low-level details re-
lated to parallelism such as thread creation and coordination. Basi-
cally, GridGain extends the package by allowing such threads (or
tasks) to cooperatively execute not only on multiple cores but also
across many machines.

The weak point of manually using GridGain, however, is the
bureaucratic nature of its master-worker API, which even though
it uses nice parallel abstractions based on conventional Java fu-
tures still demands parallel and distributed programming concepts
from developers. Again, this is a threat to adoption when it comes
to engineers and scientists. GridGain also provides alternative par-
allel development models apart from master-worker that have
simpler APIs, but which also require expertise.

In this sense, we have designed an algorithm for both inserting
barriers and generating parallel applications that exploits the mas-
ter-worker API for D&C applications. Regarding barrier insertion,
the algorithm is materialized as an adaptation to that of associated
to Satin, and as such looks for definitions and uses of parallel vari-
ables for incorporating parallelism. With respect to code genera-
tion, a challenging issue concerns parallel programming model
adaptation. Supporting libraries in BYG already based on D&C such
as Satin mostly requires source-to-source translation, i.e. recursive
methods in the input application are forked in the output applica-
tion via proper calls to the target library API. But, libraries relying
on conventional execution models – e.g. master-worker or bag-of-
tasks – in which there are not hierarchicalrelationships between
parallel tasks, is not straightforward as BYG must somehow adapt
the task structure of the input D&C application. Precisely, an exam-
ple of such a library is GridGain.

Let us illustrate the code obtained when generating parallel
applications based on the GridGain library (version 2.1.0 4). To this
end, we will use as input the D&C code given by the sequential
version of the AdaptiveIntegrationclass presented at the beginning of
Section 2.1:
1
 import org.gridgain.grid.Grid;

2
 import org.gridgain.grid.GridFactory;

3
 import

org.gridgain.grid.kernal.executor.GridExecutorCallableTask;

4
 import org.gridgain.grid.GridTaskFuture;

5

6
 import java.util.concurrent.Callable;

7
 import java.io.Serializable;

8

9
 public class AdaptiveIntegration implements Serializable{

10
 public double function (double value){. . .}

11
 public double integrate (double a, double b, double

epsilon){

12
 return new_integrate (a, b, epsilon);

13
 }

14
 // The GridGain-enabled method

15
 protected double new_integrate (double a, double b,

double epsilon){

16
 Grid grid = GridFactory.getGrid ();

17
 GridExecutorCallableTask exec = new

GridExecutorCallableTask ();

18
 . . .
19
 else {

20
 //subproblem #1

21
 GridTaskFuture < double> res1future = grid.execute (

22
 exec, new AdaptiveIntegrationTask (this, a, a + delta,

epsilon);

23
 // subproblem #2

24
 GridTaskFuture < double> res2future = grid.execute (

25
 exec, new AdaptiveIntegrationTask (this, a + delta, b,

epsilon);

26
 return res1future.get () + res2future.get ();

27
 }

28
 }

29
 }

30
 // Subcomputation

31
 public class AdaptiveIntegrationTask implements Callable{

32
 //Instance variable declaration

33
 public AdaptiveIntegrationTask (AdaptiveIntegration

application,

34
 double a, double b, double epsilon){

35
 // Copy arguments into instance variables

36
 }

37
 public Serializable call (){

38
 return this.application.integrate (a, b, epsilon);

39
 }

40
 }
As shown in the example, the generated class contains a wrap-
per method (lines 11–13) that invokes the actual automatically
parallelized method (lines 15–28), whose code has been derived
from the original integrate method but modified to include
GridGain forks and joins (lines 20–25 and 26, respectively).

Moreover, instances of AdaptiveIntegrationTask carry out the
subcomputations by calling AdaptiveIntegration.integrate (double,

http://www.gridgain.com/javadoc

32 C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43
double, double) on individual branches of the whole execution tree.
Although not shown in the source code snippet, there are other
modifications that are introduced into the generated code in or-
der to keep track of important runtime information such as the
depth of the execution tree. The additional modifications are
essentially glue code for invoking policies by passing along con-
text information. The next section discusses the policy subsystem
of BYG.
3. Optimizing BYG applications: a policy-based programming
model

In a broad sense, a policy is a mechanism that allows developers
to express, separately from the application logic, customized strat-
egies to achieve better performance [25]. In practice, a policy is
materialized via a user-specified rule that governs the parallel
behavior of an application. As mentioned earlier, BYG was ex-
tended with a policy-inspired tuning support that let developers
to introduce common optimization heuristics without altering
their applications.

Policies considered by BYG are application-specific or environ-
ment-specific. The former group represents tuning decisions that
depend on the algorithmic nature of the applications being parall-
elized. On one hand, application-specific policies model the no-
tions of threshold (see Section 3.1), memoization (see Section
3.2) and task placement (see Section 3.3). A threshold policy
establishes a defined limit to the number of parallel tasks
spawned at runtime for an application. Memoization policies,
complementary, allow users to reuse task results in those cases
in which subcomputations overlap. Lastly, task mapping policies
represent a mechanism to customize the physical location of
spawned tasks.

On the other hand, environment-specific policies are optimiza-
tion rules that regulate the amount of parallelism according to the
computing capabilities and to some extent the topology of the
underlying environment. To make decisions, these policies use dy-
namic information provided by the BYG runtime environment
(CPU and memory availability, network conditions, and so forth).
For coding environment-specific policies, BYG exposes a well-de-
fined interface to system metrics. To this end, a profiling module
is provided, through which users are able to query for example
for the overall CPU load or the amount of parallel runtime tasks un-
der execution within a cluster. Then, a user may code for instance a
policy to relate the amount of parallelism of an application as an
inverse function of the average CPU availability. Users can never-
theless develop policies combining application-specific optimiza-
tions with environmental conditions. For example, the amount of
memoized results for a memory-intensive application may be con-
trolled by also taking into account the available memory in the
executing cluster. The following subsections focus on explaining
application-specific policies, which are the most intuitive and use-
ful for non-experienced developers. For more details on environ-
ment-specific policies, please refer to [27].

We have also developed a support for application-specific poli-
cies implemented in scripting languages. Currently, we support Py-
thon and Groovy. Firstly, Python is a very popular interpreted
language among scientists [31,33]. Secondly, the Groovy language
has recently proved to be a cost-effective and feasible alternative
for coding engineering applications [32]. Section 3.4 explains this
support.
3.1. Threshold-based policies

Threshold policies are useful for avoiding parallelizing a
(sub) computation more than needed and otherwise run it
sequentially. For example, in the AdaptiveApplication class, we
may want to limit the number of generated parallel tasks that
are injected into the runtime system depending on the depth
of the execution tree of the method at runtime. This decision
is indicated to BYG by associating the following policy to the
integrate method:

import byg.policy.Policy;
import byg.policy.ExecutionContext;
public class MyThresholdPolicy implements Policy{

static final int THRESHOLD = 100;
public boolean shouldFork (ExecutionContext ctx){

// integrate (a, b, epsilon)
double a=(double) ctx.getArgument (0);
double b=(double) ctx.getArgument (1);
return ((b-a)>THRESHOLD);

}
}

The code implements the Policy interface from the BYG policy
API and allows each execution of integrate to be forked provided
the difference between the two x-axis coordinates (i.e.a andb) is
aboveTHRESHOLD. In this way, less parallel tasks are injected into
the Grid, thus avoiding unnecessary scheduling overheads. Execu-

tionContext provides operations to further introspect the execution
of the application, in this case obtaining the values of method
parameters. The policy uses ExecutionContext to access the value
of the first and second arguments of each call to integrate via the
getArgument API method. To attach any policy to an application,
such as the above threshold policy to the AdaptiveIntegration class,
users must supply the corresponding declaration in the configura-
tion of the application.
3.2. Memoization policies

Memoization is a common optimization technique that is useful
to gain efficiency by avoiding forking a subcomputation when the
same or similar results have been already computed by another
subcomputation. From a programmer’s perspective, coding a mem-
oization policy requires deciding whether to fork or not, and in the
latter case to identify the particular result that should be reused.
For instance, let us suppose we have a D&C code for computing
the Nth Fibonacci number:

public class Fibonacci{
public long fibonacci (int n){

if (n==0)
return 1;

long f1 = fibonacci (n-1);
long f2 = fibonacci (n-2);
return f1 + f2;

}
}

Then, parallelizing this code with BYG allows the two recur-
sive calls to execute in parallel. Naturally, the same applies to
the two subproblems generated from either calls, and so forth.
However, the overlapping nature of the subcomputations – i.e.
the same code is run against the same set of inputs many times
– makes an opportunity for an optimization based on memoiza-
tion policies. In this sense, we could for example provide the fol-
lowing policy:

Fig. 3. Task placement example: an application processing a quadtree data
structure.

C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43 33
import byg.policy.MemoizationPolicy;
import byg.policy.ExecutionContext;
public class MyMemoizationPolicy implements

MemoizationPolicy{
public boolean shouldFork (ExecutionContext ctx){

long n=(Long) ctx.getArgument (0);// fibonacci (n)
return (n%2== 0);

}
public String buildResultKey (ExecutionContext ctx){

return String.valueOf (ctx.getArgument (0));
}

}

The policy indicates BYG to fork and hence to ignore previously
computed results if the argument of a call to fibonacci is even.
Moreover, whenever shouldFork evaluates to false, BYG attempts
to reuse the value from a result cache with the key as indicated
by buildResultKey. However, if shouldFork evaluates to false but the
key is invalid and leads to a cache miss, the sequential execution
of fibonacci takes place. For storing results, BYG is based at present
on a distributed caching support built around the memcache li-
brary [27].

Although illustrative in our example, memoization strategies
like the one implemented by MyMemoizationPolicy, in which only
a subset of previously calculated results are reused, are useful to
minimize the negative effects of querying the cache. This is since
depending on the number of independent executing tasks, and
the number of configured replicas storing cache entries, there
may be far more queries than cache servers able to solve the que-
ries, thus affecting performance. Furthermore, another use of such
strategy is in parallel optimization problems where actually fork-
ing a subproblem may yield a better solution than reusing a similar
computed suboptimal result [2]. All in all, memoization policies are
useful for cache-friendly applications.

3.3. Task placement policies

Task placement refers to the problem of assigning unfinished
tasks to available executing nodes. Broadly, tasks are mapped to
computing nodes on an off-line (i.e. statically) and a runtime (i.e.
dynamically) fashion, respectively [21]. Precisely, tasks resulted
from executing D&C applications belong to the second category,
because the execution of an individual task may trigger the execu-
tion of N more. In BYG, the node in charge of executing a task is not
determined by the user application but the underlying Grid sched-
uler selected upon configuring connectors. However, the hierarchi-
cal task structure of BYG applications indirectly determines task
dependencies that, unless considered by the scheduler, may cause
the resulting performance to be suboptimal. Therefore, the goal of
these policies is to allow the user to control the placement of
forked tasks by selectively ignoring some of the decisions taken
by the underlying task scheduler.

Consider, for instance, an application that performs some recur-
sive computation on a quadtree data structure, such as an algo-
rithm for localized image processing. Every parallel task creates
four more tasks, each in charge of processing a particular region
of the data (see Fig. 3). If we execute this application on a Grid
comprising clusters connected through wide-area links, Fig. 4 (left)
depicts one possible task mapping, assuming that we launch the
execution of our application at cluster C1. Alternatively, Fig. 4
(right) depicts another task mapping, by which taskdþ11 and
taskdþ12 have been explicitly forced to be located at cluster C1

and the placement of the rest of the siblings tasks of taskd1 has been
delegated to the scheduler. Depending on the amount of data inter-
changed between taskd1 and taskdþ11 /taskdþ12 , the semi-automatic
mapping may greatly justify the loss of processing power available
at cluster C4.

Roughly, this decision can be specified through a task place-
ment policy, which decides, based on an API object representing
a task identifier, where to submit parallel tasks for execution:

import byg.policy.TaskPlacementPolicy;
import byg.policy.ExecutionContext;
import byg.policy.TaskId;
public class MyTaskPlacementPolicy implements

TaskPlacementPolicy{
public boolean shouldMap (ExecutionContext ctx){

//Avoid overloading the local node by checking whether
//the current executing task’s depth is odd or even
if (ctx.getCurrentDepth ()% 2!= 0)

return false;
TaskId id = ctx.getCurrentTaskId ();
//Only the first two quadrants (1 and 2) are explicitly mapped
//Quadrants 3 and 4 are not affected by the policy
return (id.getSubtaskNumber () < 3);

}
public String mapTo (ExecutionContext ctx){

return ‘‘127.0.0.1’’;//Local IP address or hostname
}

}

Basically, the shouldMap method tells BYG whether to activate
explicit task mapping or not for a given subcomputation, whereas
mapTo instructs the underlying platform to which node the task
should be submitted. Each forked task is assigned a unique identi-
fier that comprises its own identifier and a subtask identifier. In
other words, if a given task whose identifier is I spawns N more
tasks, spawned subcomputations are identified as I+‘‘.’’+1, I+ ‘‘.’’+
2, . . ., I+‘‘.’’+N. For efficiency, identifiers are encoded as alphanu-
meric strings. In the example, we have forced the subtasks to be
placed in the same physical node as the parent tasks originating
them. However, other complex actions could had been taken, such
as mapping tasks to any node of a given cluster, or even a cluster
where a certain task is executing. Finally, task placement policies
assume that the underlying Grid platform API has support for ex-
plicit task mapping, a feature that is not present in all Java-based
parallel tools. However, many modern platforms such as GridGain
[13] and ProActive [3] support this feature. Particularly, as BYG
provides a connector for GridGain, users are allowed to employ
task-mapping policies for their applications when using BYG in
conjunction with this platform.

3.4. Script-based policies

Scripting languages enable rapid and easy development of
applications and have become popular in scientific and engineering
environments. One of the most attractive features of these lan-

Table 1
Input and output objects available for coding policies.

Object
type

Object Default value Description

Input opCode N/A. Its value can be one of ‘‘shouldFork’’, ‘‘buildResultKey’’,
‘‘shouldMap’’ or ‘‘mapTo’’

Selector indicating the optimization function being executed

Output ctx N/A Same as ExecutionContext for Java-based policies
fork true Indicates whether to further split the current computation into

subtasks or not
map false Indicates whether explicit task mapping must be used or not
resultKey null Holds the identifier associated to the task result to be reused
destination null Holds the destination node to which the current computation

must be placed

Fig. 4. Task placement example: scheduler-based (left) and semi-automatic (right) task mapping.

34 C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43
guages is faster application writing. In addition, most scripting
languages are interpreted and as such can be exploited without
the tedious code-compile-execute sequence. Furthermore, many
scripting engines, nevertheless, allow scripts to be compiled to
an intermediate representation that can be then executed. As a
consequence, BYG offers support for executing threshold, memo-
ization and task placement policies written in Python and Groovy.
Basically, to use this support, users must provide an individual
script file with.py or.groovy extension where the specific optimiza-
tion to be used for an individual gridified method is declared. For
efficiency reasons, policy scripts are compiled on background upon
executing applications.

Irrespective of the scripting language employed, in order to
introspect application execution and specify policy decisions,
developers must manipulate some standard input and output
objects defined by the BYG runtime. These objects are popu-
lated into the associated scripting engine upon evaluating a
script. Input objects are read-only, whereas the value of output
objects can be both read and modified. Table 1 lists the afore-
mentioned objects. All objects have an untyped value field that
actually contains the data associated to the object. Besides pro-
viding uniformity and thus simplifying object manipulation at
the source code level, this allows BYG to abstract away data-
types differences across scripting languages. For example, bool-
ean variables in some flavors of Python and Groovy are inter-
nally represented as numbers (0 is false) and booleans (true
and false), respectively.

The following code shows an example policy that is basically
the Python counterpart of the memoization policy discussed in
Section 3.2:
def shouldFork ():
fork.value = eq (ctx.value.getArgument (0) % 2, 0)

def buildResultKey ():
resultKey.value = ctx.value.getArgument (0)

Entry point of the script
if opcode.value==’’shouldFork’’:

shouldFork ()
elif opcode.value==’’buildResultKey’’:

buildResultKey ()

whereas the Groovy version of the task placement policy described
in Section 3.3 is:

def shouldMap () {
if (ctx.value.getCurrentDepth () % 2, 0) {
def id = ctx.value.getCurrentTaskId ();
if (id.getSubtaskNumber () < 3)

map.value = true;
}

}
def mapTo () {

destination.value=’’127.0.0.1’’;
}
Entry point of the script if (opcode.value==’’shouldMap’’) {

shouldMap ();
}
else
if(opcode.value==’’mapTo’’) {

mapTo ();
}

Table 2
Recursive calls performed in the different runs.

Application/size Small Medium Large

Ad 51,799,943 159,945,610 384,298,033
PF 32,767 557,054 4,751,357
FFT 4,194,303 12,582,910 29,360,125

Table 3

C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43 35
Of course, more complex policies than the ones exemplified
above can be implemented. Furthermore, for developing this sup-
port, we followed a similar approach to the JLab [32] numerical
computational environment, since we used the Java Scripting
API5 for managing the binding between Java and scripts. This API
is shipped as a package bundled into the JVM since version 6 and of-
fers a generic engine for executing scripts implemented in a variety
of scripting languages (Python, Groovy, JavaScript, Rhino, Ruby, and
many more).
Java policies: overhead.

Average runtime (s) Overhead (s)

No policies Threshold Memoization Threshold Memoization

Small input
Ad 14.569 14.673 16.169 0.104 1.600
PF 1.836 2.021 1.962 0.185 0.126
FFT 3.829 3.993 4.074 0.164 0.245

Medium input
Ad 28.469 28.87 28.987 0.401 0.518
PF 18.322 18.682 19.068 0.360 0.746
FFT 7.23 7.638 7.367 0.408 0.137

Large input
Ad 66.769 67.005 67.646 0.236 0.877
PF 183.386 186.461 187.302 3.075 3.916
FFT 15.432 16.308 15.552 0.876 0.120
4. Evaluation

This section describes the experiments that were performed to
empirically evaluate the extensions to BYG described so far. We
performed two type of experiments. On one hand, we executed
several performance benchmarks to quantify the costs introduced
by the extra source code for supporting Java-based policies in-
serted by BYG upon parallelizing user applications. This is reported
in Section 4.1. Then, we evaluated the performance overheads of
script-based policies. Roughly, the purpose of these experiments
was to evaluate the effect of policies in parallelized applications
without considering middleware-specific instructions. On the
other hand, we assessed the effectiveness of BYG and policies to
parallelize two real-life applications. These results are reported in
Section 4.2. Comparisons were performed by using manually-gen-
erated parallel versions of their codes by using the GridGain paral-
lel library, plus variants built by using the automatic
parallelization support of BYG and policies.
4.1. Microbenchmarks

In order to quantify the execution overheads associated to BYG
policies, we executed various benchmarks with our policy-based
bindings to Java, Python and Groovy. Particularly, we used the fol-
lowing benchmark applications:

� Ad (adaptive numerical integration): Approximates a function
f(x) within a given interval (a,b) by replacing its curve by a
straight line from (a, f(a)) to (b, f(b)). The application receives
as parameters f(x), a, b, and an epsilon that controls the mechan-
ics of the algorithm. We used f(x) = 0.1 ⁄ x ⁄ sin(x), a = 0,
b = 250000. On the other hand, we used epsilon = [0.001,0.0001,
0.00001].
� PF (prime factorization): Splits an integer I into its prime factors

such that their multiplication is equal to I. For the tests, we used
I = [155768907,1557689076,15576890767].
� FFT (Fast Fourier transform): Approximates a continuous func-

tion by a sum of sinusoids. The function is in turn approximated
by a finite number of points P sampled over a regular interval. In
the experiments, we used P = [2097152,4194304,8388608].

As suggested, for epsilon, I and P we employed three different
values, which in turn determined three input sizes – small, med-
ium and large – for each application that increased the computa-
tional costs. Table 2 shows the number of recursive calls
necessary to process the different inputs by the D&C sequential
versions of the applications. On the other hand, the overheads
introduced by the policy support in terms of extra Java objects allo-
cated in RAM were left out of the analysis as they proved to be
negligible.

To set the basis for comparison, for each application and input
size, we executed four variants:
5 http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting.
1. A variant not relying on policies given by the original sequential
D&C codes without BYG preprocessing.

2. A variant using a threshold policy that simply decides to fork
upon every single call to shouldFork.

3. A variant using a memoization policy that forked execution pro-
vided the current depth is below a 75% of the final depth of the
entire execution tree. The target depth in each case was deter-
mined beforehand and used to initialize the policy. For example,
for the Ad application and input size small, this value was
approximated by the formula e(0.75 ⁄ log251,799,943). As a
consequence, fewer forks compared to (2) were issued but
cache usage was involved. Moreover, the buildResultKey method
of the policy just returned a default value, therefore during exe-
cution spurious objects were put into the local result cache,
which were retrieved but not reused.

Put simply, (2) was designed to stress out our basic policy run-
time framework, while (3) represented a potentially common sce-
nario of threshold-memoization combinations in order to provide
an evaluation as realistic as possible. Lastly, for the sake of accu-
racy, we disabled the code insertions necessary to support task
launching and synchronization, thus only the policy-related code
from the BYG runtime was executed.

Table 3 shows the average execution time of the variants listed
above for all input sizes. Experiments were executed on a Intel�

Core i3 M380 CPU running at 2.53 GHz (only one core was used).
It can be seen from the Table that the variants using policies in-
curred in some overheads, but in all cases they were below 4 sec-
onds. On the other hand, in general, the overheads tended to
decrease as the size of the experiments increased. For example,
for small input sizes, policies added an execution overhead of up
to 10%, whereas for large input sizes, the overhead was in the range
of 1–5%. We could reasonably extrapolate these results to argue
that, for very large input sizes and thus execution times in the or-
der of hours, overheads would be negligible.

In a second round of tests, we run some experiments to evaluate
the performance of script-based policies. Broadly speaking, inter-
preted languages are more expensive than compiled languages.
Therefore, we decided to provide script-enabled versions of the

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting

Fig. 5. Python policy (left) and Groovy policy (right) used during the experiments.

 0

 5

 10

 15

 20

 25

 30

 35

 0 200000 400000 600000 800000 1e+06A
c
c
u
m
u
l
a
t
e
d

e
l
a
p
s
e
d

t
i
m
e
(
s
e
c
o
n
d
s
)

Number of invocations

Python
Groovy

Fig. 6. Accumulated total elapsed time when executing the script-based policies.

36 C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43
benchmarks policies described before. We derived two policies,
one based on Python and another one coded in Groovy (see
Fig. 5). After that, we separately evaluated these policies up to
1,000,000 times by sequentially calling their shouldFork and buildRe-

sultKey methods. This allowed us to quantify the main cost compo-
nent of supporting script-based policies since most of the
associated performance penalty resides in the library classes of
the JVM that are used to bind the Java code implementing these
methods and their associated scripting codes. Results are shown
in Fig. 6 by depicting the total elapsed time within accumulative
windows of 1,000 runs. We also run the same experiment with
the Java versions of the policy, however their associated elapsed
times were not included in the graphic as they were very small.

As expected, evaluating script-based policies has associated an
inherent cost that is explained by the interpreted nature of script-
ing languages. This does not mean that script-based policies are
not viable, but rather they should be used sparingly by controlling
the granularity of the computations. By granularity we refer to the
number of parallel tasks in which a single unit of computation is
split. In this way, the more the number of effective forks, the finer
the granularity of the whole application (many tasks with small
computational requirements). However, the cost of evaluating pol-
icies increases. Likewise, the less the number of forks, the coarser
the granularity (few tasks with high computational requirements).
Here, the negative incidence of policies in the execution time de-
creases. This clear trade-off can be formally expressed by the fol-
lowing formula:

Overhead ¼ ð2ðN�1Þ � 1Þ � costpolicy

ð2ðN�1Þ � 1Þ � costpolicy þ ð2N � 1Þ � costtask
where:

� Overhead is the percentage of the total execution time an appli-
cation spends evaluating policies.
� N is the number of nodes in the execution tree associated to the

application.
� costpolicy is the average cost (in time units) of evaluating a policy.
� costtask is the average cost (in time units) of executing a parallel

task but without considering the cost of executing its (recur-
sive) subtasks.

For simplicity, this overhead model makes some assumptions
that may not hold in practice, i.e. the formula assumes that the cost
of executing task code does not depend on task depth, and all tasks
further divide their computation into two subtasks. All in all, as
suggested, when using script-based policies the granularity should
be controlled. This essentially means keeping N below a reasonable
limit.

On the other hand, the average overhead of evaluating the
Groovy policy with respect to its Python counterpart was 73%,
with a standard deviation of 2%. In addition, its curve was stee-
per. Indeed, Groovy is an agile dynamic language that combines
the convenience of scripting with the functionality provided by
the Java language itself. Groovy has many of the features of
other scripting languages such as Python and Ruby, which are
made accessible by relying on a Java-like syntax. However, users
should take into account the trade-off between the flexibility of-
fered by Groovy versus its computational requirements. One ap-
proach to reduce this overhead would be relying on a lighter
version of Groovy so that script parsing and interpretation is less
expensive. In principle, this can be solved by incorporating a
new scripting engine into the JVM and adding the necessary sup-
port to our policy API.
4.2. Real-life applications

To empirically evaluate the applicability of the extensions to
BYG described up to now, we conducted several experiments in or-
der to measure the performance that resulted from employing
GridGain and BYG for parallelizing two real-world applications,
namely ray tracing and sequence alignment. The goal of the exper-
iments was twofold. On one hand, we wanted to determine
whether the automatic approach to gridification of BYG via its
GridGain connector delivers competitive performance compared
to parallelizing applications by hand with GridGain. On the other
hand, another goal was to assess the effectiveness of policies for
optimizing automatically-gridified applications. Moreover, for an
evaluation of the Satin connector, see [28].

Similarly to the experiments described in [28], we used an emu-
lated Grid setting comprising 15 machines running Mandriva Linux

 0

 5

 10

 15

 20

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

S
p
e
e
d
u
p

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(a) Fine granularity

 0

 5

 10

 15

 20

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

S
p
e
e
d
u
p

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(b) Medium granularity

 0

 5

 10

 15

 20

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

S
p
e
e
d
u
p

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(c) Coarse granularity

Fig. 7. Ray tracing: Speedup.

C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43 37
2010, Java 5 and GridGain 2.1.0 connected through a 100 Mbps
network. We used 8 single core nodes with 2.80 MHz CPUs and
1.25 GB of RAM, and 7 single core nodes with 3 MHz CPUs and
1.5 GB of RAM. A wide-area Grid on top of this LAN was established
by using the WANem version 2.2 [36] WAN emulation software.
The resulting Grid was then composed of 3 clusters C1, C2 and C3

by using 4, 5 and 6 of the nodes of the LAN, respectively. Each emu-
lated WAN link had a bandwidth of 1,544 Mbps (i.e. T1 connection)
with a round-trip latency of 160 ms and a jitter of 10 ms, therefore
inter-cluster latencies were in the range of 150–170 ms. Note that
these are network conditions commonly found in Internet-wide
Grids. For the sake of fairness, GridGain – and hence BYG – were
configured to use the load balancing scheme that best fitted the
established Grid, in this case the Round Robin scheduler with the
default configuration. All in all, apart from the challenging nature
of the execution environment, the test applications had a high cyc-
lomatic complexity, thus they were representative to stress our
code analysis mechanisms.

4.2.1. Ray tracing
Ray tracing is a widely-known rendering technique that gener-

ates a digital picture from an abstract description of a 3D scene
[15]. We based our experiments on an existing D&C parallel ray
tracing algorithm from the Satin project, which works by deriving
an initial image from the input scene, dividing this image in four
portions to recursively apply the algorithm, and then joining the
results to build the final picture. From this code, several variants
for comparison purposes were coded:

� A variant exploiting the parallel annotations provided by the
GridGain platform. With this support, developers annotate their
sequential codes for parallelism, and execution of parallelized
codes are handled by using a middleware-level mechanism that
extends conventional Java futures for distribution.
� A GridGain implementation by altering the original Satin code

to exploit the Google’s MapReduce parallel programming model
[8], which is similar to the master-worker model and is cleanly
supported by GridGain. The MapReduce model roughly pro-
vides abstractions to generate independent tasks from input
data (the map phase) and combines subresults into a larger sub-
result or result (the reduce phase).
� A BYG variant using a threshold policy to control task granular-

ity. The policy allows the code to spawn tasks provided the size
(i.e. width ⁄ height) of the subimage being processed is above
some given value.
� A BYG variant using a task mapping policy that extends the pre-

vious policy with a simple task allocation scheme that places
some quadrants belonging to the same subimage in the same
cluster. The rationale behind this scheme is to minimize inter-
cluster data transfer upon joining subresults.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

A
v
e
r
a
g
e

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(a) Fine granularity

 0

 50

 100

 150

 200

 250

 300

 350

 400

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

A
v
e
r
a
g
e

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(b) Medium granularity

 0

 50

 100

 150

 200

 250

 300

 350

 400

Scene 1
(1024x1024)

Scene 1
(2048x2048)

Scene 2
(1024x1024)

Scene 2
(2048x2048)

A
v
e
r
a
g
e

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

Scene

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(c) Coarse granularity

Fig. 8. Ray tracing: Average execution time.

6 The sequential variant of the application was run on the Grid node featuring the

38 C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43
To sum up, we used two hand-coded variants and two automat-
ically-parallelized versions of the application. The GridGain and
BYG implementations were obtained by removing from the base
Satin code any statement related to parallelism and tuning applica-
tion execution to derive the sequential D&C counterparts of the
application first, and manually or automatically parallelize them
later according to the target application structure. As suggested
earlier, both BYG variants ended up generating GridGain source
code. As the nature of the ray tracing application does not provide
an opportunity for using memoization policies, we did not coded
the associated variant. Experiments with real benchmark parallel
applications that do benefit from memoization policies can be
found in [27].

For executing the applications, we used three task granularities:
fine, medium and coarse, i.e. about 17, 4 and 1 parallel tasks per
Grid node, respectively. As input, we employed two scenes with
two different resolutions (1024 � 1024 and 2048 � 2048). Unlike
the experiments reported in [28], we decided not to process scenes
with lower resolutions or spawn more tasks per node as GridGain
has proved not to work very well when handling very fine-grained
parallelism.

Fig. 8 illustrates the average running time of the applications for
40 executions. The standard deviation was below 11%, which is
acceptable considering the random factors that characterize the
underlying scheduler and the variability inherent to WAN links
in terms of bandwidth and latency. As a complement, Fig. 7 shows
the speedup achieved by the different implementations for the
various configurations. Speedup was computed by the formula
Tseq/Tpar, being Tseq and Tpar the times required to execute the
sequential6 and parallel versions of the ray tracing application,
respectively. On the other hand, the theoretical maximum was
established not at the number of cluster machines (i.e. 15) but at a
value of 18, because the processors of the different machines sup-
ported hyper-threading, a hardware technology that emulates two
processors within the same physical CPU. Then, task schedulers that
exploit this feature (typically via threads) such as the one provided
by GridGain usually increase CPU performance by 22% at the aver-
age. In this sense, the theoretical maximum was approximated as
c(#machines + #machines⁄0.22).

All in all, compared to GridGain, BYG performed rather well,
considering that its design goal is not to outperform existing paral-
lel Grid libraries but automating as much as possible parallel pro-
gramming and therefore the usage of such libraries while
achieving competitive performance. Note that the execution times
uniformly increased as granularity became coarser for all tests,
best processing capabilities.

 0

 5

 10

 15

 20

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

S
p
e
e
d
u
p

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(a) Fine granularity

 0

 5

 10

 15

 20

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

S
p
e
e
d
u
p

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(b) Medium granularity

 0

 5

 10

 15

 20

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

S
p
e
e
d
u
p

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(c) Coarse granularity

Fig. 9. Pairwise sequence alignment: Speedup.

7 http://www.jppf.org.

C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43 39
which shows a good overall correlation of the different variants.
This makes sense because coarser task granularity means that few-
er parallel tasks are generated and thus the chance of nodes of
being idle or underused during a computation increases.

As depicted in Fig. 8, results show that for the case of fine gran-
ularity BYG was able to outperform their two competitors since
through its parallelization heuristics in conjunction with either
policies BYG achieved performance gains of up to 29% (Scene 1,
1024 � 1024). For the rest of the inputs, BYG and policies per-
formed very close to the GridGain variants. On the other hand,
for medium granularity, the plain threshold policy proved to be
insufficient for this test application. However, this did not translate
into an irremediable problem, since the task placement policy
introduced significant performance improvements. As explained
in earlier Sections, switching between policies does not lead to
modification of the target parallel application. In this sense, when
a specific policy does not deliver the expected results, users can
easily supply the same parallel application code with another tun-
ing rule.

Finally, for the coarse granularity, for some scenes the best BYG
variants introduced overheads of 1–9% with respect to the most
efficient GridGain implementations. As expected, task placement
and therefore data locality turned out counterproductive, because
the performance benefits of placing a set of related tasks (in this
case those that process near regions of the input scene) in the same
physical cluster scene became negligible for this experiment be-
cause worse load balancing is obtained. Again, the most efficient
granularities were fine and medium in the sense they delivered
the best data communication over processor usage ratio. This sug-
gests, in principle, that the GridGain connector of BYG is more effi-
cient when coarse task granularities are not used, which in turn
means that users should reflect this fact in their policies when
adjusting granularity.
4.2.2. Pairwise sequence alignment
Local pairwise sequence alignment is a well-known problem in

bioinformatics that involves representing a biological entity (e.g. a
gene) in a computer-understandable way – usually strings of char-
acters – and manipulating the resulting representation by using se-
quence alignment algorithms. These algorithms allow scientists to
determine for example whether a newly obtained sample protein
sequence represents a virus or not.

As the second real-life test application we then used an existing
parallel code from the JPPF project,7 consisting of a master-worker
implementation of an application for aligning protein sequences
based upon the Smith-Waterman alignment algorithm [12]. The
algorithm roughly outputs a coefficient that represents the level of
similarity between two given input sequences by employing a scor-
ing matrix from a set of predefined matrixes. As the original JPPF
source code was already parallelized, we first removed the library-

http://www.jppf.org

40 C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43
dependent parallel code before obtaining its sequential version.
Based on this latter, we derived four parallel variants:

� A variant using the parallel annotations provided by
GridGain.
� A GridGain implementation based on the Google’s MapReduce

parallel programming model [8].
� A D&C sequential version, after which we obtained a BYG vari-

ant using a threshold policy. Algorithmically, the derived D&C
code operated by comparing an input sequence against an
entire sequence database by dividing the portions of the data
to compare against into two different subproblems until a cer-
tain threshold T on the data was reached, which was enforced
by the policy.
� Same as before but employing a task placement policy extend-

ing the previous policy with an explicit task placement scheme
to place computations associated to contiguous data portions of
the input database in the same cluster.

Furthermore, we compared five different random sequences
against real-world protein sequence databases extracted from the
National Center for Biotechnology Information (NCBI) Web site.8

Upon running the experiments, data was replicated across the nodes
of the established Grid. Lastly, sequences in the different databases
did not follow any special order and therefore none of the imple-
mentations were favored over the others in this respect.

Fig. 10 shows the average running time of the applications for
40 executions. The standard deviation was similar to the case of
the experiments presented in the previous subsection. Further-
more, Fig. 9 illustrates the achieved speedups. Unlike ray tracing,
in which for each granularity an experiment-wide, or variant-inde-
pendent number of tasks was employed, for each parallel variant of
the sequence alignment application we used a number of subcom-
putations that depended on input sizes. This avoided to spawn
many ultra fine-grained parallel tasks when processing small dat-
abases, which would had been unfair to GridGain.

As shown in both Figures, and in opposition to ray tracing, the
running times were smaller as the granularity increased. This is
interesting as confirms that the algorithmic nature of our second
application is quite different compared to the first one, thus ensur-
ing the significance of our experiments. Furthermore, like for the
ray tracing application, BYG obtained better performance for the
fine granularity, and performed very competitively for the medium
granularity. However, again, the GridGain variants were slightly
more efficient when using coarse-grained tasks. In general, task
placement did not help too much in reducing execution time be-
cause, unlike ray tracing, parallel tasks had intuitively a higher de-
gree of independence in terms of processed data. One important
lesson learned from this fact concerns the applicability of our tun-
ing support. This is, the results do not imply that task placement
policies are not effective but their usage should be decided
depending on the nature of parallelized applications, which en-
forces similar previous findings [27]. In other words, this problem
is not exclusive to BYG but also affects in general any explicit par-
allel programming framework. The policy support discussed so far
is not designed to automate application tuning, but to provide a
customizable framework that captures common optimization pat-
terns in FJP applications. Then, whether these patterns benefit a
particular parallelized application or not depends on its nature.
In fact, only a subset of FJP applications are able to effectively take
advantage of memoization. The same applies to the rest of the
policies.
8 http://www.ncbi.nlm.nih.gov.
5. Related work

Undoubtedly, MPI and PVM appear themselves as the oldest
standards for building engineering and scientific general-purpose
parallel applications. When relying on the parallel abstractions
proposed by these standards, user applications are parallelized
by decomposing them into a number of independent distributed
components that communicate between each other via message
exchange. As MPI and PVM are standard specifications, several
implementations for a variety of languages have arisen. In the Java
world, MPI is more popular than PVM and is supported by quite a
few libraries, being mpiJava [16] and MPJ Express [35] the most re-
cent proposals. Nonetheless, PVM has been also successfully imple-
mented by libraries such as jPVM [39]. Moreover, the JCluster [42]
parallel platform, besides providing a distributed programming
model based on regular Java threads, provides bindings to both
MPI and PVM.

MPI and PVM have on the other hand received much criticism
[23] since they are basically low-level parallelization tools that re-
quire solid knowledge on both parallel and distributed program-
ming from users. In response, there are Java tools that attempt to
address this problem by raising the level of abstraction of the API
exposed to users and relieving them as much as possible from per-
forming parallel task creation and coordination. In some cases,
these tools also advocate to some forms of semi-automatic paral-
lelism of sequential codes, therefore gradually moving to a new
wave of gridification tools that ideally let users to exploit Grids
without any programming effort. This is achieved precisely by
automating task creation or coordination. Furthermore, other
Java-based tools get rid of APIs almost completely and at the same
time provide mechanisms that automate some of these aspects,
being in this way even closer to this ideal state. Hence, existing
tools can be categorized in principle according to two important
orthogonal dimensions: the size/complexity of their API, which
may be zero (no API is exposed), low, medium and high, and the
offered level of automatism for managing parallelism, which may
be manual, semi-automatic and (almost) fully-automatic [26]. By
manual and semi-automatic we mean that all the effort to turn a
sequential application into a Grid-aware source code, without con-
sidering configuration and deployment activities, is entirely or par-
tially performed by the user.

ProActive [3] is a rich Java platform for parallel distributed com-
puting that provides active objects, or regular Java objects that can
migrate between nodes and access computing resources locally.
Computations performed by these active objects can be split into
several (smaller) subcomputations, which are solved by other ac-
tive objects. However, managing parallelism still requires manu-
ally using its extensive API. Moreover, JavaSymphony [19] is a
performance-oriented platform that provides sophisticated mid-
dleware-level services for dealing with parallelism and load bal-
ancing of Grid applications, and at the same time allows
programmers to control such features via API calls placed directly
in the application code. Unfortunately, using JavaSymphony, which
is an API-inspired parallelization tool, unavoidably requires to
learn and manually use their associated APIs within the code of
sequential user application to create and synchronize tasks. Simi-
larly, JCluster [42], besides providing Java modules compliant to
MPI and PVM, offers an API for parallelizing applications. All in
all, the three tools are based on manual parallelism. Besides, both
JavaSymphony and JCluster promote threads as the base parallel
programming model, which makes application programming, test-
ing and debugging difficult due to the non-deterministic nature of
thread execution [23].

Furthermore, VCluster [43] supports execution of thread-based
applications on multicore clusters by relying on a thread migration
technique that achieves efficient dynamic load balancing of

http://www.ncbi.nlm.nih.gov

0

50

100

150

200

250

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

A
v
e
r
a
g
e

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(a) Fine granularity

0

20

40

60

80

100

120

140

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

A
v
e
r
a
g
e

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(b) Medium granularity

0

20

40

60

80

100

Escherichia−coli
(size=4289)

Influenza A
(size=4777)

Influenza B
(size=7672)

Influenza A
(size=9620)

Influenza A
(size=12325)

A
v
e
r
a
g
e

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

Database

BYG (threshold)
BYG (task placement)

GridGain (MapReduce)
GridGain (annotations)

(c) Coarse granularity

Fig. 10. Pairwise sequence alignment: Average execution time.

C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43 41
threads across the nodes of a cluster. Although based on manual
parallelism and a programming model based on threads, the VClus-
ter API is somewhat simpler compared to the tools listed above.
Similarly, DG-ADAJ [22] provides a mechanism for transparent
execution of multithreaded applications on desktop PC Grids.
Interestingly, DG-ADAJ automatically derives graphs from the
bytecode of a Java application by using representative sets of input
data. The graphs account for data and control dependencies within
the sequential code. Then, a scheduling heuristic is applied to place
mutually exclusive execution paths extracted from the graphs
among the nodes of a cluster, thus automatically further exploiting
the implicit parallelism of the application. As a consequence of
relying on regular threads but automating some aspects of their
parallel execution, DG-ADAJ is then based on semi-automatic
parallelism.

The two Grid platforms to which BYG provides integration dis-
cussed throughout this paper can be also considered as related ef-
forts. The Satin framework [40] avoids the explicit usage of threads
while allows parallelizing sequential D&C applications. The user is
responsible for implicitly indicating in the application code the
points in which forks (i.e. calls to recursive methods) should take
place, and explicitly stating joins (i.e. barriers to wait for child
computations). Once coded and compiled, Satin further modifies
the bytecode of applications to handle the execution of parallel
tasks on a Grid. As such, Satin requires partial user intervention
in the process of inserting parallel-specific API code prior to fully
Grid-enabling their compiled counterpart, which is done by a
built-in postprocessor that parallelizes the application bytecode
based on specified fork and join points. On the other hand, as dis-
cussed earlier, GridGain [13] is a Grid platform providing three
parallel development models, i.e. one based on Java futures (shown
in Section 2.3), a second using regular Java annotations and a third
based on MapReduce (mentioned in Section 4.2). GridGain is aimed
among other things at delivering APIs that are easy to learn and
use, but these models are based on manual parallelism.

Finally, another line of approaches to gridification aimed at
minimizing code modification in the input sequential application
and do not rely on parallel API provisioning are those promoting
separation of concerns between the functional aspects of the appli-
cation (pure behavior) and the Grid-specific behavior [14,24]. This
is commonly achieved via aspect-oriented programming (AOP)
[29] techniques, whereby a sequential code is attached one or
more ‘‘aspects’’ that encapsulate how the different portions of this
code are executed in parallel within a Grid. The weak point of these
approaches is that they unnecessarily impose a specific develop-
ment paradigm (i.e. AOP) which most developers from the scien-
tific community are not familiar with. This problem is minimized
by several tools such as PAL [7] or the approach described in [11]
that are are to a great extent inspired by the parallel programming
mechanism promoted by OpenMP [6]. In this sense, these two

Table 4
Analyzed tools: summary.

Tool API complexity Approach to parallelism Base parallel facility

ProActive high manual active object
JavaSymphony high manual thread
JCluster high manual thread
VCluster medium manual thread
DG-ADAJ zero semi-automatic thread
Satin low semi-automatic N/A
GridGain medium manual future, annotation, MapReduce task
Harbulot and Gurd zero manual aspect
Maia et al. zero manual aspect
PAL low manual annotation
Gonçalves and Ferreira Sobral low manual annotation
BYG low fully-automatic N/A

42 C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43
approaches use Java annotations in the source code of sequential
applications, thus they provide a more comfortable programming
abstraction compared to AOP-based programming tools. Similar
to OpenMP and SMP machines, annotated codes are then prepro-
cessed to generate Grid-enabled valid Java code. From a semantic
standpoint, these annotations operate just like an API but are far
more minimalistic. A key difference of those approaches and Open-
MP is, however, that the latter is a standard, cross-language set of
directives for shared memory parallel programming, whereas the
former offer non-standard parallel annotations aimed at parallel-
ism in Java only.

Table 4 summarizes the tools discussed so far. As depicted,
BYG differs from the abovementioned efforts since it allows nov-
ice developers to automatically introduce parallelism into the
compiled version of applications, which avoids the requirement
of thinking about how to exploit parallelism in their algorithms,
and learning and using parallel programming APIs for managing
task synchronization and coordination itself. Parallelism is per-
formed automatically based on heuristics that work by analyzing
the input sequential code and generating Grid-aware codes that
are in turn prepared to exploit existing Grid APIs. Even when
an API is provided by our tool, it is very intuitive and serves as
a mean of optionally tuning already parallelized applications.
Not surprisingly, it can be seen from the Table the extent to
which conventional language constructs of Java (i.e. threads and
annotations) have influenced the development of parallel Java-
based platforms. Alternatively, BYG does not explicitly prescribe
a specific base parallel facility, and is based on the pervasive
and intuitive divide and conquer programming model, an algo-
rithmic abstraction that is present in many real-world problems.
Indeed, except for the case of Satin, existing tools are based on
parallel programming abstractions that are difficult to manipulate
by disciplinary users.

6. Conclusions

In this paper we have described BYG (BYtecode Gridifier), a tool
to automatically prepare sequential Java bytecodes to exploit Com-
putational Grids. Particularly, we have focused on describing from
a user’s standpoint two important extensions of BYG, namely the
integration with state-of-the-art Grid schedulers and the incorpo-
ration of a policy-based explicit application tuning support. Basi-
cally, this support relies on a very simple API that allows users to
specify common optimizations for applications without actually
modifying their logic. Moreover, optimizations can be coded in
Java, Python and Groovy.

BYG offers an alternative balance to the dimensions of applica-
bility, code intrusiveness and expertise that concern parallel
programming tools. Good applicability is achieved by targeting
Java, FJP and D&C, and leveraging primitives of existing parallel
libraries. Low code intrusiveness is ensured by using mechanisms
to translate from sequential to parallel code while keeping tuning
logic – i.e. statements for optimizing applications – away from this
latter. Overall, users such as scientists and engineers can code their
algorithms without thinking about parallelism, and then use our
tool to Grid-enable their codes and optionally optimize them
whenever necessary. Our experimental results confirm that both
the heuristics for automatic parallelism and the policy-oriented ex-
plicit tuning of BYG are in tandem a viable approach to gridification
from a practical perspective.

At present, we are working on tools to make BYG easier to adopt
and use. We are developing a prototype implementation of a GUI
that lets developers to gridify their applications by graphically
selecting target methods and middlewares, and configuring poli-
cies. Eventually, this plug-in could also offer proper support for
deploying and monitoring the execution of applications by exploit-
ing the analogous services of the selected Grid platform. It is ex-
pected that the GUI will also let developers to inspect the
execution state of parallelized applications for debugging pur-
poses. In summary, our goal is to supply users with a full-fledged
frontend for gridifying D&C applications.

Another line of research involves materializing BYG concepts
directly into scripting languages that are commonplace in the sci-
entific and engineering community. The idea is to investigate how
to port and exploit the parallelization heuristics of BYG and its
associated concepts for such languages beyond script-based poli-
cies. As a starting point, we are rethinking our heuristics in the
context of the Jython library [20], a Java-based implementation
of the Python programming language that includes a module to
compile Python source code into Java bytecodes. Interestingly, Jy-
thon is compliant to Python 2.5, and supports nearly all of its core
standard modules. At present, we are developing a prototype to
parallelize applications on multicore servers. Nevertheless, Jython
provides extra support that makes it easy to use regular Java clas-
ses from within Python scripts. This will be useful to take advan-
tage of the already implemented bindings to existing Grid
schedulers shipped with BYG. This work in not being done in isola-
tion but we are also reusing previous advances in the topic re-
ported in the literature [18].

Likewise, we are investigating how to adapt our ideas not only
to interpreted languages but also to compiled languages that are
heavily employed within the scientific and the engineering com-
munities, such as C and C++. Although the algorithms for introduc-
ing parallelism and performance tuning are mostly language-
independent, their implementation unavoidably requires a lan-
guage-dependent mechanism for dynamically rewriting compiled
sequential codes. In this sense, a technological alternative for
implementing this mechanism in C and C++ is to use Dyninst
[38], an API that allows on-the-fly modification of native binary
codes. Dyninst is a very healthy library (version 7.0 was released
on March, 2011), works with a variety of operating systems, and
has been already used in similar developments, notably the MATE

C. Mateos et al. / Advances in Engineering Software 43 (2012) 27–43 43
(Monitoring, Analysis and Tuning Environment) for parallel appli-
cations [5].

Finally, a relatively recent distributed and parallel computing
paradigm that is rapidly gaining momentum is Cloud Computing
[9,4], which bases on the idea of providing an on-demand comput-
ing infrastructure to end users. Typically, users exploit Clouds by
requesting from them one or more machine images, which are vir-
tual machines running a desired operating system on top of several
physical machines (e.g. a datacenter). Interaction with a Cloud is
performed via Cloud services, which define the functional capabil-
ities of a Cloud, i.e. machine image management, access to soft-
ware/data, security, and so forth. Among the benefits of Cloud
Computing is precisely a simplified configuration and deployment
model compared to clusters and Grids [9], which is extremely
desirable for disciplinary users. In addition, Cloud infrastructures
intuitively have the capabilities to deliver good performance. Con-
sequently, we will investigate how to adapt BYG to exploit such
infrastructures.

Acknowledgments

We thank the anonymous referees for their comments to im-
prove the paper. We thank Cristian Clasadonte for his help manag-
ing the computing infrastructure required for the experiments
with real-life applications described in this paper. We also
acknowledge the financial support provided by ANPCyT through
Grant PAE-PICT 2007-02311.

References

[1] Abelson H, Sussman G. Structure and interpretation of computer programs.
2nd ed. Cambridge, MA, USA: MIT Press; 1996.

[2] Alba E, Blum C, Asasi P, Leon C, Gomez JA. Optimization techniques for solving
complex problems, parallel and distributed computing. Publishing: Wiley;
2009.

[3] Amedro B, Baude F, Huet F, Mathias E. Combining Grid and cloud resources by
use of middleware for SPMD applications. In: 2nd IEEE international
conference on cloud computing technology and science (CloudCom),
Indianapolis, USA. Los Alamitos, CA, USA: IEEE Computer Society; 2010. p.
177–84.

[4] Buyya R, Yeo C, Venugopal S, Broberg J, Brandic I, computing Cloud, et al. and
reality for delivering computing as the 5th utility. Future Gener Comput Syst
2009;25(6):599–616.

[5] Caymes-Scutari P, Morajko A, Margalef T, Luque E. Scalable dynamic
monitoring, analysis and tuning environment for parallel applications. J
Parallel Distrib Comput 2010;70(4):330–7.

[6] Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R. Parallel
programming in OpenMP. San Francisco, CA, USA: Morgan-Kaufmann
Publishers Inc.; 2000.

[7] Danelutto M, Pasin M, Vanneschi M, Dazzi P, Laforenza D, Presti L. PAL:
exploiting Java annotations for parallelism. In: Achievements in European
research on Grid systems. United States: Springer; 2008. p. 83–96.

[8] Dean J, Ghemawat S. MapReduce: a flexible data processing tool. Commun
ACM 2010;53:72–7.

[9] Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and Grid computing 360-degree
compared. In: Grid computing environments workshop (GCE ’08). Austin,
Texas,USA: IEEE Computer Society; 2008. p. 1–10.

[10] Freeh V. A comparison of implicit and explicit parallel programming. J Parallel
Distrib Comput 1996;34(1):50–65.

[11] Gonçalves R, Ferreira Sobral J. Pluggable parallelisation. In: 18th ACM
international symposium on high performance distributed computing (HPDC
’09), Garching, Germany. New York, NY, USA: ACM Press; 2009. p. 11–20.

[12] Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol
1982;162(3):705–8.

[13] GridGain Systems, GridGain=High Performance Cloud Computing; 2011.
<http://www.gridgain.com> [last accessed August 2011].
[14] Harbulot B, Gurd JR. Using AspectJ to separate concerns in parallel scientific
Java code. In: 3rd International conference on aspect-oriented software
development (AOSD ’04), Lancaster, UK. New York, NY, USA: ACM Press;
2004. p. 122–31.

[15] Heckbert P, Haines E. A ray tracing bibliography. In: Glassner A, editor.
Introduction to ray tracing. Academic Press Inc.; 1989. p. 295–303.

[16] Hernández E, Cardinale Y, Pereira W. Extended mpiJava for distributed
checkpointing and recovery. In: Recent advances in parallel virtual machine
and message passing interface. Lecture notes in computer science, vol.
4192. Berlin/ Heidelberg: Springer; 2006. p. 158–65.

[17] Herzeel C, Costanza P. Dynamic parallelization of recursive code. Part 1:
managing control flow interactions with the continuator. SIGPLAN Notices
2010;45:377–96.

[18] Hinsen K. Parallel scripting with Python. Comput Sci Eng 2007;9:82–9.
[19] Jugravu A, Fahringer T. JavaSymphony, a programming model for the Grid.

Future Gener Comput Syst 2005;21(1):239–46.
[20] Juneau J, Baker J, Wierzbicki F, Soto L, Ng V. The definitive guide to Jython:

Python for the Java platform. 1st ed. Berkely, CA, USA: Apress; 2010.
[21] Kim J-K, Shivle S, Siegel H, Maciejewski A, Braun T, Schneider M, et al.

Dynamically mapping tasks with priorities and multiple deadlines in a
heterogeneous environment. J Parallel Distrib Comput
2007;67(2):154–69.

[22] Laskowski E, Tudruja M, Olejnik R, Toursel B. Byte-code scheduling of Java
programs with branches for desktop Grid. Future Gener Comput Syst
2007;23(8):977–82.

[23] Lee E. The problem with threads. Computer 2006;39(5):33–42.
[24] Maia P, Mendonca N, Furtado V, Cirne W, Saikoski K. A process for separation

of crosscutting Grid concerns. In: ACM symposium on applied computing (SAC
’06), Dijon, France. New York, NY, USA: ACM Press; 2006. p. 1569–74.

[25] Mateos C, Zunino A, Campo M. JGRIM: an approach for easy gridification of
applications. Future Gener Comput Syst 2008;24(2):99–118.

[26] Mateos C, Zunino A, Campo M. A survey on approaches to gridification.
Software: Pract Exp 2008;38(5):523–56.

[27] Mateos C, Zunino A, Campo M. An approach for non-intrusively adding
malleable fork/join parallelism into ordinary JavaBean compliant applications.
Comput Lang Syst Struct 2010;36(3):288–315.

[28] Mateos C, Zunino A, Hirsch M, Fernández M, Campo M. A software tool for
semi-automatic gridification of resource-intensive Java bytecodes and its
application to ray tracing and sequence alignment. Adv Eng Software
2011;42(4):172–86.

[29] Murphy G, Schwanninger C. Guest editors’ introduction: aspect-oriented
programming. IEEE Software 2006;23:20–3.

[30] Nakada H. Condor-G Java API; 2008. <http://staff.aist.go.jp/hide-nakada/
condor_java_api/index.html> [last accessed May 2011].

[31] Oliphant T. Python for scientific computing. Comput Sci Eng 2007;9(3):10–20.
[32] Papadimitriou S, Terzidis K, Mavroudi S, Likothanassis S. Scientific scripting for

the Java platform with jLab. Comput Sci Eng 2009;11:50–60.
[33] Pérez F, Granger B, Hunter J. Python: an ecosystem for scientific computing.

Comput Sci Eng 2011;13(2):13–21.
[34] Ropo M, Westerholm J, Dongarra J. Recent advances in parallel virtual machine

and message passing interface. In: Proceedings of the 16th European PVM/MPI
user’s group meeting, Espoo, Finland, September 7–10, 2009. Lecture notes in
computer science. Berlin/Heidelberg: Springer-Verlag; 2009.

[35] Shafi A, Carpenter B, Baker M. Nested parallelism for multi-core HPC systems
using Java. J Parallel Distrib Comput 2009;69(6):532–45.

[36] TATA Consultancy Services, WANem; 2009. <http://wanem.sourceforge.net>
[last accessed April 2011].

[37] Thain D, Tannenbaum T, Livny M. Distributed computing in practice: the
Condor experience. Concurr Comput: Pract Exp 2005;17(2–4):323–56.

[38] University of Maryland, Dyninst api; 2011. <http://www.dyninst.org> [last
accessed August 2011].

[39] University of Virginia, jPVM; 1999. <http://www.cs.virginia.edu/ajf2j/
jpvm.html> [last accessed May 2011].

[40] Van Nieuwpoort R, Wrzesińska G, Jacobs C, Bal H. Satin: a high-level and
efficient Grid programming model. ACM Trans Program Lang Syst
2010;32(3):9:1–9:39.

[41] Wang L, Jie W. Towards supporting multiple virtual private computing
environments on computational Grids. Adv Eng Software
2009;40(4):239–45.

[42] Zhang B-Y, Yang G-W, Zheng W-M. JCluster: an efficient Java parallel
environment on a large-scale heterogeneous cluster. Concurr Comput: Pract
Exp 2006;18(12):1541–57.

[43] Zhang H, Lee J, Guha R. VCluster: a thread-based Java middleware for SMP and
heterogeneous clusters with thread migration support. Software: Pract Exp
2008;38(10):1049–71.

http://www.gridgain.com
http://staff.aist.go.jp/hide-nakada/condor_java_api/index.html
http://staff.aist.go.jp/hide-nakada/condor_java_api/index.html
http://wanem.sourceforge.net
http://www.dyninst.org
http://www.cs.virginia.edu/ajf2j/jpvm.html
http://www.cs.virginia.edu/ajf2j/jpvm.html

	Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support
	1 Introduction
	2 The BYG (BYtecode Gridifier)
	2.1 BYG: programming model
	2.2 Using BYG in conjunction with Satin
	2.3 Using BYG in conjunction with GridGain

	3 Optimizing BYG applications: a policy-based programming model
	3.1 Threshold-based policies
	3.2 Memoization policies
	3.3 Task placement policies
	3.4 Script-based policies

	4 Evaluation
	4.1 Microbenchmarks
	4.2 Real-life applications
	4.2.1 Ray tracing
	4.2.2 Pairwise sequence alignment

	5 Related work
	6 Conclusions
	Acknowledgments
	References

