
Advances in Engineering Software 42 (2011) 172–186
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft
A software tool for semi-automatic gridification of resource-intensive Java
bytecodes and its application to ray tracing and sequence alignment

Cristian Mateos a,c,⇑, Alejandro Zunino a,c, Matías Hirsch b, Mariano Fernández b, Marcelo Campo a,c

a ISISTAN Research Institute – Campus Universitario, Tandil, Buenos Aires, Argentina
b UNICEN University – Tandil, Buenos Aires, Argentina
c Consejo Nacional de Investigaciones Científicas y Técnicas – Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 January 2011
Accepted 15 February 2011

Keywords:
Computational grids
Gridification
Resource-intensive applications
Automatic parallelism
Parallelization heuristics
Java bytecode
0965-9978/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.advengsoft.2011.02.003

⇑ Corresponding author at: ISISTAN Research Institu
439682x35; fax: +54 2293 439681.

E-mail address: cmateos@conicet.gov.ar (C. Mateo
Computational Grids deliver the necessary computational infrastructure to perform resource-intensive
computations such as the ones that solve the problems scientists are facing today. Exploiting Computa-
tional Grids comes at the expense of explicitly adapting the ordinary software implementing scientific
problems to take advantage of Grid resources, which unavoidably requires knowledge on Grid program-
ming. The recent notion of ‘‘gridifying’’ ordinary applications, which is based on semi-automatically
deriving a Grid-aware version from the compiled code of a sequential application, promises users to
be relieved from the requirement of manual usage of Grid APIs within their source codes. In this paper,
we describe a novel gridification tool that allows users to easily parallelize Java applications on Grids.
Extensive experiments with two real-world applications – ray tracing and sequence alignment – suggest
that our approach provides a convenient balance between ease of gridification and Grid resource exploi-
tation compared to manually using Grid APIs for gridifying ordinary applications.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Computational Grids are distributed heterogeneous clusters
that allow scientists to build applications that demand by nature
a huge amount of computational resources such as CPU cycles
and memory [14]. Examples of such applications include aerody-
namic design, weather prediction, catastrophe simulation, finan-
cial modeling, drug discovery, amongst others. The sad part of
the story is that taking advantage of such computational infra-
structures requires significant development effort and knowledge
on distributed as well as parallel programming. In other words,
there is a very high coupling between the tasks of writing the
sequential implementation of the algorithm that represent a simu-
lation and obtaining its Grid-enabled version. As a consequence, at
development time, a user must take into account the functional as-
pects of his application (what the application does) as well as many
details of the underlying Grid execution infrastructure (how the
application executes). Clearly, the second requirement cannot be
easily accomplished by scientists and practitioners not proficient
in Grid programming.

The traditional approach to cope with the problem of easily
exploiting Grids is based on supplying users with programming
APIs such as MPI [44] and PVM [44], which provide standard
ll rights reserved.

te, Argentina. Tel.: +54 2293

s).
and simple interfaces to Grids through the provision of primitives
to execute parts of an application in a distributed and coordi-
nated way. To this end, a user must in principle indicate which
parts of its application can benefit from being parallelized by
inserting in the sequential code that implements his application
appropriate calls to such primitives. Interestingly, APIs like MPI
and PVM mitigate the complexity inherent to writing Grid appli-
cations as they encapsulate common distributed and parallel
patterns behind an intuitive API. However, such APIs still require
users to have a solid knowledge in parallel and distributed
programming, which prevents inexperienced users (e.g. scientists
or engineers) from effectively taking advantage of Grid technolo-
gies [53].

More recently, the notion of ‘‘gridifying’’ sequential applications
[35] has appeared as a fresh approach for rapidly developing and
seamlessly running applications on Computational Grids. Basically,
gridification tools seek to avoid the manual usage of APIs for dis-
tributed and parallel programming within the source code of user
applications and otherwise automatically derive the Grid counter-
parts from the (sequential) compiled code of these applications.
However, materializing the concept is indeed challenging, as it is
intuitively very difficult to automatically transform a sequential
application to run on a Grid and still deeply exploit parallelism
in the application to boost its performance.

In this paper, we describe a novel Java-based gridification
tool called BYG (BYtecode Gridifier), which operates by using some
novel techniques for modifying and parallelizing bytecodes – i.e.

http://dx.doi.org/10.1016/j.advengsoft.2011.02.003
mailto:cmateos@conicet.gov.ar
http://dx.doi.org/10.1016/j.advengsoft.2011.02.003
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft

C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186 173
the binary code flavor generated by the compiler of the Java
language – to produce efficient Grid applications. Basically, the
idea is to support users who would like to quickly parallelize and
run their sequential codes on a Grid without dealing with typically
complex Grid programming and infrastructure details. Further-
more, the current materialization of BYG targets Java applications
developed under the divide and conquer model, a well-known
technique for algorithm design by which a problem is solved by
systematically dividing it into several subproblems until trivial
subproblems are obtained, which are solved directly. Basically,
upon executing an ordinary application, its bytecode is modified
so that it is able to execute such subproblems in parallel using
the nodes of a Grid.

Preliminary experiments with our tool in a small LAN and re-
source-intensive benchmark applications showed the feasibility of
the approach [37]. Here, we evaluate BYG by gridifying and running
two resource-intensive and real-world applications, namely ray
tracing and sequence alignment, on a wide-area Computational
Grid. The former application is a popular rendering technique that
outputs a picture using an abstract description of a 3D scene, while
the latter is an algorithm for comparing gene sequences, a well-
known problem in bioinformatics. Furthermore, we derived vari-
ants of these applications by manually parallelizing them via the
GridGain [21] and Satin [54] Grid libraries, which are designed for
parallelizing and efficiently executing applications on both clusters
and Grids. The comparisons suggest that BYG offers a convenient
alternative to the problem of easy gridification of sequential appli-
cations, while delivers acceptable performance and fair resource
usage compared to manual parallelism. On the other hand, given
the ever increasing popularity of the Java language for distributed
programming, which is mostly explained by its platform-neutral
bytecode and its very good performance in large-scale distributed
environments compared to traditional languages [47], and the sim-
plicity and versatility of the divide and conquer model, we believe
that BYG is an attractive alternative for painlessly gridifying a broad
range of resource-intensive applications.

The rest of the paper is organized as follows. Section 2 discusses
the most relevant related works. Section 3 overviews BYG and ex-
plains how our approach improves over them. For the most part,
the Section describes the use of BYG in the context of a specific
Grid scheduler library, for which the current version of BYG pro-
vides integration. Section 4 reports the abovementioned experi-
mental evaluation. Section 5 concludes the paper and discusses
prospective future works.
2. Related work

The two common approaches that researchers have been fol-
lowed to address the problem of simplifying the development of
high-performance scientific applications are based on either pro-
viding domain-specific solutions or general–purpose tools. The
first approach aims at providing APIs and runtime supports for tak-
ing advantage of widely-employed scientific libraries from within
applications. Alternatively, the second approach allows users to
implement applications while not necessarily relying on specific
scientific libraries. Both approaches have their pros and cons, as
detailed below.

Among the efforts that follow the first approach is the work by
Baitsch and his colleagues [6], which propose a Java toolkit for
writing numerical intensive applications. The toolkit builds on
the efficiency of numerical Fortran libraries such as BLAS, LAPACK
and NAG by providing Java wrappers that directly access the corre-
sponding native libraries via the Java-to-C interface. In addition,
the toolkit provides a Java-based library that comprise classes for
common vector, matrix and linear algebra operations. Similarly,
f2j [45] is a Fortran-to-Java translator specially designed to obtain
the Java counterpart of the Fortran code of the BLAS and LAPACK
libraries (this latter is codenamed JLAPACK [11]). Moreover, the
jLab environment [43] offers a scripting language similar to Matlab
and Scilab for programming applications that are executed by an
interpreter implemented in Java. This environment supports the
basic programming constructs of Matlab (e.g. operators for manip-
ulating matrixes) and is embedded in a graphical development
environment. Furthermore, the work by Eyheramendy [13] pro-
poses a Java-based library for building Computational Fluid
Dynamics applications. In its current shape, the framework sup-
ports different finite elements formulations for basics mechanical
problems, and some of them can be parallelized by using multi-
threaded programming.

Indeed, the idea of providing domain-specific tools is not only
circumscribed to Java, as evidenced by similar supports for other
programming languages. An example is PyScaLAPACK [12], a
Python interface to ScaLAPACK [40]. ScaLAPACK is a subset of the
LAPACK linear algebra routines but adapted for cluster computing
by using the MPI [44] or the PVM [44] parallel libraries. Moreover,
the work by Mackie [32] proposes a finite element distributed sol-
ver written in the .NET platform. However, the two negative char-
acteristics of the efforts following the approach discussed so far is
that they restrict the kind of applications that can be written and,
except for few cases, they are not capable of exploiting clusters and
Grid infrastructures. Among the tools that do exploit distributed
environments, some works that deserve mention are the Alya sys-
tem [7], which provides several kernels for programming and exe-
cuting various types of Computational Mechanics applications in
parallel on large-scale clusters, and GMarte [2], a middleware for
programmatically building and running task-based applications
on Computational Grids, which has been recently applied to 3D
analysis of large dimension buildings [3].

Precisely, MPI and PVM are the oldest standards for building
general-purpose parallel applications. When using these libraries,
applications are parallelized by decomposing them into a number
of distributed components that communicate via message ex-
change. Several Java bindings for MPI (e.g. mpiJava [25], MPJ Ex-
press [46]), PVM (e.g. jPVM [51]) or both (JCluster [55]) exists.
However, MPI and PVM have also received much criticism [31]
since they are basically low-level parallelization tools that require
solid knowledge on both parallel programming and distributed
deployment from users. In response, there are some Java tools that
attempt to address these problems by raising the level of abstrac-
tion of the API exposed to users and relieving them as much as pos-
sible from performing parallelization and deployment tasks.

Particularly, ProActive [5] is a Java platform for parallel distrib-
uted computing that provides technical services, a flexible support
to address non-functional Grid concerns (e.g. load balancing and
fault tolerance) by plugging configuration external to applications
at deployment time. Moreover, ProActive features integration with
a wide variety of Grid schedulers, and supports execution of Scilab
scripts on dedicated clusters. JavaSymphony [27] is a performance-
oriented platform featuring a semi-automatic execution model that
automatically deals with parallelism and load balancing of Grid
applications, and at the same time allows programmers to control
such features via API calls. Unfortunately, using these API-inspired
parallelization tools unavoidably requires to learn and manually
use their associated APIs within the source code of the (sequential)
user application, which compromises usability since these tasks are
difficult to achieve for an average programmer.

In consequence, some tools aimed at further simplifying the
complexity of the exposed parallel library API and thus improving
usability have been proposed, such as VCluster [56] and DG-ADAJ
[30]. VCluster supports execution of thread-based Java applications
on multicore clusters by relying on a thread migration technique

174 C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186
that achieves efficient dynamic load balancing of threads across
the nodes of a cluster. Similarly, DG-ADAJ provides a mechanism
for transparent execution of multithreaded Java applications on
desktop PC Grids. DG-ADAJ automatically derives graphs from
the bytecode of a Java application by using representative sets of
input data. The graphs account for data and control dependencies
within the application. Then, a scheduling heuristic is applied to
place mutually exclusive execution paths extracted from the
graphs among the nodes of a cluster. The weak point of VCluster
and DG-ADAJ is that they promote threads as the base parallel pro-
gramming model, which makes programming, testing and debug-
ging of applications rather difficult due to the non-deterministic
nature of thread execution [31].

In this sense, the Satin framework [54] avoids the explicit usage
of threads while achieves semi-automatic parallelization and dis-
tribution of subcomputations by targeting recursive (divide and
conquer) applications and modifying the compiled code of an
application to handle the execution of parallel tasks on a Grid.
The user is responsible for indicating in the application code the
points in which a fork (i.e. calls to recursive methods) or a join
(i.e. to wait for child computations) should take place. A similar
framework for .NET applications is Volta [34], which recompiles
executables on the basis of declarative developer annotations in
order to insert remoting and synchronization primitives to trans-
form applications into their distributed form. Still, tools like Satin
and Volta require some modifications to the source code of a user
application to insert parallel-specific API code prior to actually
Grid-enabling their compiled counterpart. The same problem is
also exhibited by some parallelization tools for Java (e.g. PAL
[10], GridGain [9]) that use annotations in the source code of
sequential applications. Annotated codes are then preprocessed
to generate Grid-enabled valid Java code.

Finally, another line of approaches to gridification that effec-
tively minimize any form of code modification in the input sequen-
tial application are those promoting separation of concerns
between the functional aspects of the application (i.e. its pure
behavior) and the Grid-specific behavior [23,33,19]. This is com-
monly achieved via aspect-oriented programming (AOP) [28] tech-
niques, whereby a sequential code is attached one or more
‘‘aspects’’ that encapsulate how the different portions of this code
are executed in parallel within a Grid. The weak point of these ap-
proaches is that they unnecessarily impose a specific development
paradigm (i.e. AOP) which most developers from the scientific
community are not familiar with.

Our tool differs from the abovementioned works in several re-
spects. Firstly, BYG is not targeted at a specific application domain,
but can be used to parallelize codes coming from many scientific
areas. Secondly, BYG is based on the pervasive as well as intuitive
divide and conquer programming model, an algorithmic abstrac-
Fig. 1. An overv
tion that is present in many real-world problems. Thirdly, BYG al-
lows novice users to semi-automatically introduce parallelism into
the compiled version of applications, which avoids the require-
ment of learning parallel programming APIs and altering their
codes. In summary, the contribution behind BYG is a software tool
to easily and non-intrusively parallelize a wide range of resource-
intensive scientific codes so as to take advantage of Computational
Grids.
3. The BYG (BYtecode Gridifier) approach

BYG (BYtecode Gridifier) is a new general-purpose gridification
tool that allows developers gridifying their applications with min-
imal effort. To this end, BYG removes the need to explicitly alter
sequential application codes, and avoids imposing complex paral-
lel programming models not suitable for users with limited knowl-
edge on Grid programming. In addition, BYG does not seek to
provide yet another runtime system for supporting distributed
and parallel application execution, but aims at leveraging the
schedulers of existing Grid platforms through the use of connectors.
A connector implements the bridge to access the execution ser-
vices of a specific Grid platform. Connectors are non-invasively in-
jected into the input sequential application to delegate the
execution of certain parts of the application to a Grid platform.
The mapping of which parts of the application are Grid-enabled
is specified by means of user-supplied configuration external to
the sequential code being gridified.

Fig. 1 depicts an overview of BYG. Conceptually, our approach
takes as input the bytecode or executable code of an ordinary Java
application, and dynamically transforms their classes to run some
methods on different Grid middlewares. The developer must indi-
cate through a configuration file which Java methods should be run
on a Grid and which Grid middlewares should be used. Then, BYG
processes the configuration, intercepts all invocations to such
methods (in the example, method1), and delegates their execution
to the target middleware (in the example, Condor-G [49]) by
means of an appropriate connector. From an architectural perspec-
tive, BYG provides a software tier that mediates between an ordin-
ary Java application, or the client side, and Grid middlewares, or
the server side. Gridified classes are run at the server side by means
of connectors, whereas non-gridified classes remain at the client
side. In principle, BYG can exploit any Grid middleware exposing
a remote job submission interface for executing Java code.

When configuring connectors, employing or not a specific Grid
execution service such as Condor-G or Satin is mostly subject to
availability factors, i.e. whether an execution service running on
the target Grid is up and waiting for jobs. Furthermore, the choice
of gridifying an individual operation depends on whether the oper-
iew of BYG.

Fig. 2. Submitting ordinary Java methods as Grid jobs.

C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186 175
ation is suitable for execution on a Grid. The potential performance
gains in gridifying an application are subject to two user design
factors, namely the amount of data (i.e. parameter values) to be
passed on to the gridified operations, and the computational
requirements of such operations. In this sense, BYG alleviates the
burden of adapting and submitting an ordinary application for exe-
cution on a Grid, while both factors (i.e. amount of data and com-
putational requirements) must be estimated early by the user.
Basically, this is similar to the analysis that must be carried out
prior to introduce parallelism into any sequential code with tech-
nologies such as MPI or PVM in order to determine whether the
code may actually benefit from being parallelized or not.

The implementation of BYG works by modifying bytecodes at
runtime to delegate and submit the execution of certain applica-
tion methods to external Grid execution services. BYG-enabling
an application only requires the user to specify an XML file listing
which methods are to be gridified and what Grid services (or plat-
forms) are to be employed, and to add an argument to the Java Vir-
tual Machine (JVM) program in the command that initiates the
execution of the user application. BYG provides a connector for
accessing the services of Satin [54], a Java-based framework for
parallelizing applications on LANs and WANs. However, we are
developing connectors for other Grid middlewares as well. This
will allow users to take advantage of features not present in Satin
such as graphical monitoring of running computations.

An initial stable release of BYG has been developed, which sup-
ports the functionality described in the rest of the paper on top of
Satin version 2.1. The tool is open source and is available for down-
load at http://www.exa.unicen.edu.ar/cmateos/projects.html. The
next subsection focuses on providing a by-example explanation
of the use of this tool. Please refer to [37] for a comprehensive dis-
cussion on the implementation of BYG.
3.1. Gridifying applications with the BYtecode Gridifier

To gridify a conventional application with BYG, it is necessary to
supply a configuration file (XML 1 format), which lists both the
application classes to be Grid-enabled and the Grid middlewares
or execution services selected for execution. Particularly, users spec-
ify within this file the signature of the methods from these classes
that are to be processed with BYG, and the binding information that
depends on the node that plays the role of job executor of each ser-
1 A brief tutorial on XML can be found at http://www.w3schools.com/xml.
vice or middleware. A job executor is a frontend middleware-level
component that resides on a specific Grid node, accepts jobs for exe-
cution and can be contacted by using various protocols. Examples of
Grid job executors include the Manager component and the GRAM
service of the Condor-G [49] and Globus [15] Grid platforms, respec-
tively. Fig. 2 illustrates the notions exposed so far. As depicted, to gri-
dify an application with BYG, the user must provide the following
information:

1. The list of Java methods (owner class and signature) to be gridi-
fied. This information is enclosed within a <classes> element.

2. For each one of the above methods, the Grid execution service
and consequently the connector to be used. This information
is specified within a <connectors> element. Connectors are
implemented through different classes that are shipped
together with the BYG runtime.

3. For each one of the connectors, the IP address and the port of
the Grid node that hosts the target job executor, and the desired
job submission protocol from the set of the protocols supported
by the job executor. For instance, the Manager component of
Condor-G provides a socket-based job submission mechanism
but also a submission interface based on Web Services [52].
The IP address, port and protocol binding information is placed
within a <bindings> element.

For example, the following XML code gridifies the double inte-

grate(double a, double b, double epsilon) method from the exam-

ple.AdaptiveIntegration class by means of the job executor of the
Condor-G middleware:

<configuration
xsi:noNamespaceSchemaLocation=‘‘byg.xsd’’

xmlns:xsi=‘‘http://www.w3.org/2001/XMLSchema-
instance’’>

<!-- Methods to gridify -->
<classes>

<class name=‘‘example.AdaptiveIntegration’’>
<methods>

<method id=‘‘mymethod’’ name=‘‘integrate’’>
<parameter name=‘‘a’’ type=‘‘double’’/>
<parameter name=‘‘b’’ type=‘‘double’’/>
<parameter name=‘‘epsilon’’ type=‘‘dou-

ble’’/>
</method>

http://www.exa.unicen.edu.ar/cmateos/projects.html
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3schools.com/xml

176 C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186
</methods>
</class>

</classes>
<!-- Connectors to use -->
<connectors>

<connector methodId=‘‘mymethod’’

bindingId=‘‘mybinding’’

provider=‘‘org.isistan.byg.connectors.Con-

dorGConnector’’/>
</connectors>
<!-- Middleware-specific bindings -->
<bindings>
<binding id=‘‘mybinding’’ name=‘‘condor’’>
<property name=‘‘protocol’’>sockets</

property>
<property name=‘‘address’’>condor_man-

ager_ip_address</property>
<property name=‘‘port’’>condor_man-

ager_port</property>
</middleware>

</binding>
</bindings>

</configuration>

Basically, BYG supports 1:N relationships between classes and
methods (one or more methods of the same class can be gridified),
N:1 relationships between methods and connectors (the same con-
nector can be used for submitting different methods), and finally
1:1 relationships between connectors and bindings. In the above
example, we have defined one connector responsible for submit-
ting each invocation to the integrate method to the Condor-G Man-
ager listening at [condor_manager_ip:condor_manager_port] by using
socket-based communication. This bridging is performed by the
CondorGConnector class from the BYG library, and the BYG core run-
time, which injects this class into the compiled code of the Adap-

tiveIntegration application class so that, when executing the whole
application, each call to integrate is submitted to Condor-G instead
of executed locally.

To inject connector classes into ordinary ones, BYG relies on the
support for agents provided by Java. A Java agent is a pluggable
user-provided Java library that customizes the class loading pro-
cess by performing bytecode transformations. This is, upon loading
Fig. 3. Modifying user classe
any application class, the JVM contacts (if defined) the correspond-
ing Java agent and loads the bytecode resulted from passing the
class through the agent. Fig. 3 shows the differences between run-
ning a Java application in the usual way, i.e. without Java agents
(left), versus executing it by taking advantage of a Java agent
(right). In the former case, both the user and the Java runtime class
files are loaded and executed as is, whereas in the latter case a Java
agent intercepts the class loading process and optionally modify
user classes prior to execution.

Roughly, the BYG runtime is implemented as a Java agent. Pre-
cisely, the BYG agent dynamically modifies application classes to
‘‘talk’’ to the configured connectors to run the gridified methods
of the application. Particularly, to BYG-enable our example applica-
tion (i.e. to activate the BYG agent), the startup command that
launches the user application must look like:

java -javaagent:byg.jar=<config-file>
example.AdaptiveIntegration [application

parameters]

The -javaagentswitch instructs the JVM to use the Java agent
implemented by the byg.jar library. The characters enclosed within
the ‘‘<’’ and ‘‘>’’ are the options for initializing the agent. Then,
when the application starts, the BYG agent extracts from config-file

the list of methods to gridify and their associated connectors, and
then transforms the bytecodes of the methods as their owner clas-
ses are loaded by the JVM. To this end, BYG employs ASM [41], a
small and fast Java-based bytecode manipulation framework.

Modifying an individual method involves two different tasks.
First, its body is rewritten to include the instructions (or ‘‘stub’’)
for delegating its execution to the connector class associated to
the method (CondorGConnector in our case). The stub uses the cor-
responding binding information to submit the adapted version of
the bytecode of the method for execution to the Grid every time
this method is called by the application. Precisely, this adaptation
represents the second task, given by the modification of the origi-
nal bytecode of both the method and its owner class in order to be
compliant to the bytecode anatomy prescribed by the target Grid
middleware. Some platforms require applications to extend or to
implement specific API classes, use certain API calls to carry out
distribution and parallelism, and so on. Fig. 4 depicts an overview
of the mechanism implemented by the BYG agent to dynamically
s on the fly: Java agents.

Fig. 4. Overview of the BYG agent.

C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186 177
obtain the Grid-enabled counterpart of an ordinary class such as
AdaptiveIntegration.

The transformations performed at the second step (labeled in
the figure as ‘‘Bytecode adaptation’’) strongly depends on the Grid
middleware selected for connecting the input bytecode to a Grid
[37]. For example, middlewares such as Condor-G, which rely on
coarse-grained execution models that do not support parallelism
within a method, do not require much transformations. Moreover,
middlewares relying on a finer execution model and providing par-
allelism at the method level such as Satin makes the modification
process more challenging. The next subsection focuses on explain-
ing these notions in the context of the Satin platform, for which
BYG provides a connector.

3.2. The Satin connector

Satin [54] is a framework for programming parallel divide and
conquer Java applications on local-area and wide-area clusters. Sa-
tin provides programmatic mechanisms for indicating which
methods of a sequential application are parallelized and synchro-
nizing subcomputations. We have built a connector for this frame-
work, which relieves developers from the burden of manually
using the Satin API for parallelizing their applications by semi-
automatically deriving a Satin-aware application from a sequential
divide and conquer Java application. The next subsection explains
the parallel programming model proposed by Satin. Section 3.2.2
presents an overview of our Satin connector.

3.2.1. Satin: Programming model
The divide and conquer model is an algorithm design technique

that is based on implementing a problem by breaking them down
into several subproblems of the same type, until trivial subprob-
lems are obtained, which are in turn solved directly. The solutions
to the different subproblems are then combined to build the solu-
tion to the whole problem. Most divide and conquer algorithms are
then naturally implemented recursively, i.e. by issuing several
recursive calls to the method implementing the problem. On the
other hand, results of recursive calls are combined to give a solu-
tion to a larger problem.

Let us come back to the example AdaptiveIntegration class
introduced so far. Now, let us suppose we provide a divide and con-
quer implementation for the integrate method, which computes the
integral of a fixed function within a given interval (a, b). The inte-
gral value can be approximated by recursively dividing the input
interval into two subintervals as long as the difference between
the area of the trapezoid and the sum of the areas of the trapezoids
of the subintervals is not smaller than some threshold epsilon, as
follows:

1 class AdaptiveIntegration {
2 double function(double value){. . .}
3 double integrate(double a, double b, double
epsilon)

4 double delta = ((b�a)/2);
5 double total = delta

� (function(a) + function(b));
6 double left = (delta/2) � (function(a) + func-
tion((b � a)/2 + a));

7 double right = (delta/2) � (function(b) + func-
tion((b � a)/2 + a));

8 double diff = total � (left + right);

9 if (diff < 0)
10 diff = �diff;
11 if (diff < epsilon)
12 return total;
13 double res1 = integrate((b � a)/

2 + a, b, epsilon);

14 double res2 = integrate(a, (b � a)/2 + a, epsilon);

15 return res1 + res2;

16 }
17 }

Basically, the recursive calls to integrate of lines 13 and 14 are
the divide phase of the algorithm, while lines 11-12 represent its
conquer phase, i.e. the case when the problem at hand
becomes small enough to be solved directly without further subdi-
viding it.

The Satin programming model refines the sequential
semantics of divide and conquer applications such as the one
implemented by the above code to support parallelism in the
divide phase. Specifically, Satin allows recursive calls to be
solved in parallel to increase the performance of the algorithm
by providing two primitives: an implicit one (spawn) to create
parallel subcomputations, and an explicit one (sync), to pro-
grammatically block execution until subcomputations are fin-
ished. Methods considered for parallel execution must be
included in the so-called marker interfaces, which are regular
Java interfaces.

Let us parallelize our example application with Satin. To this
end, we have to specify the method that is subject to parallel exe-
cution in a marker interface, which in turn must extend the
satin.Spawnable interface from the Satin API:

178 C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186
interface AdaptiveIntegrationMarker extends
satin.Spawnable {

double integrate(double a, double b, double epsilon);

and then modify our application to implement the newly gener-
ated marker interface and to extend the satin.SatinObject API class:

class AdaptiveIntegration extends satin.SatinObject
implements AdaptiveIntegrationMarker{

. . .

}

Up to now, we have indicated Satin which methods of our appli-
cation must be executed in parallel or, in other words, trigger inde-
pendent parallel subtasks. However, we have to explicitly indicate
in the application code the points in which it is necessary to wait
for child computations to complete. This is like providing a join
point or barrier that causes any task not to proceed and to wait
for divide parts of the problem, whereupon the associated subre-
sults are available and can be used to build a larger result. Return-
ing to the example, the synchronized version of the integrate

method is:

1 double integrate(double a, double b, double epsilon){
2 . . .

3 double res1 = integrate((b � a)/2 + a, b, epsilon);

4 double res2 = integrate(a, (b � a)/2 + a, epsilon);

5 super. sync();
6 return res1 + res2;

7 }

As shown in the above code, at line 5, we have introduced a call
to sync, which is the Satin synchronization primitive inherited from
satin.SatinObject. This call prevents the application from combining
subresults represented by yet-not-assigned variables. A practical
rule for correctly using sync is to check that a call to this primitive
is issued between the statements including recursive calls (i.e.
lines 3 and 4) and those that access their results (i.e. line 6). It is
worth noting that this analysis is trivial for the case of our example,
but for applications involving more statements and complex con-
trol structures, it is tedious and significantly more error-prone.

In summary, after specifying the marker interface for the appli-
cation, modifying the structure of the corresponding class and
inserting appropriate synchronization calls into the application
code, the developer must feed a special postprocessor provided
by Satin with a compiled version of the application. This postpro-
cessor translates the invocations to the divide and conquer meth-
od(s) listed in the marker interface (in our case integrate) into a
Satin runtime task. In this way, at runtime, any call to this method
will activate their associated task, whose execution is performed in
parallel. Conceptually, this mechanism is similar to creating an
independent thread for executing such recursive calls. Moreover,
developers can configure Satin to exploit local and distributed clus-
ters to execute such tasks or ‘‘threads’’, thus potentially improving
the performance of the application.

3.2.2. Taking satin a step further
Our Satin connector semi-automatically reproduces the previ-

ous ‘‘satinification’’ tasks from a compiled, ordinary divide and
conquer application that has not been explicitly coded to exploit
the Satin API. Basically, the connector generates the marker inter-
face based on the configuration of the application, and rewrites the
bytecode of the corresponding class to extend/implement the nec-
essary classes and interfaces and thus make it compliant to the Sa-
tin application structure. In addition, and more important, the
connector inserts proper calls to sync by deriving a high-level rep-
resentation from the bytecode and analyzing the points where bar-
riers are needed. To execute the Satin-enabled version of
applications, BYG relies on a software layer that wraps the Satin
runtime. For more details on this extended Satin runtime, see [37].

Besides injecting instructions to execute ordinary methods on
Satin (the ‘‘Stub injection’’ task in Fig. 4), the Satin connector
dynamically adapts the bytecodes of both these methods and their
owner classes to be compliant with the application anatomy pre-
scribed by Satin. Basically, the connector carries out three main
tasks:

� Marker interface generation: As explained, Satin requires appli-
cations to include a marker interface, which lists the methods
considered for parallel execution. The Satin connector builds
this interface from the methods listed in the XML configuration
for the class being ‘‘satinified’’. The reader should recall that this
information is included within the <classes>section of the
configuration.
� Peer generation: Additionally, Satin applications must imple-

ment a marker interface and to extend from SatinObject. A clone
(from now on peer) of the sequential class under consideration
is created by the Satin connector and modified to fulfill these
requirements.
� Barrier insertion: Based on an heuristic algorithm, the connec-

tor inserts calls to the Satin sync primitive at appropriate places
of the spawnable methods of the peer. The heuristic aims at pre-
serving the operational semantics of the (sequential) original
algorithm while minimizing the calls to the primitive.

Fig. 5 depicts the steps performed by the connector to build the
Satin-enabled version of an ordinary class. The connector builds
the corresponding marker interface and a Satin peer from the class
being processed. In a subsequent step, the Satin connector inserts
Satin synchronization into the peer by using the heuristic algo-
rithm. Afterwards, the peer is instrumented with the tools of the
Satin platform. At runtime, the peer is instantiated and submitted
for execution to the abovementioned extended Satin runtime by
the ordinary application through the injected stub. To activate this
behavior, the configuration file of the input application must be:

<configuration
xsi:noNamespaceSchemaLocation=‘‘byg.xsd’’

xmlns:xsi=‘‘http://www.w3.org/2001/XMLSchema-
instance’’>

<!-- Methods to gridify (same as before) -->
. . .

<!-- Connectors to use -->
<connectors>
<connector methodId=‘‘mymethod’’

bindingId=‘‘mybinding’’

provider=‘‘org.isistan.byg.connectors.Sat-

inConnector’’/>
</connectors>
<!-- Middleware-specific bindings -->
<bindings>

<binding id=‘‘mybinding’’ name=‘‘satin’’>
<property name=‘‘protocol’’>sockets</

property>
<property name=‘‘address’’>satin_server_i-

p_address</property>
<property name=‘‘port’’>satin_server_port</

property>
</binding>

</bindings>
</configuration>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

Fig. 5. Satin-enabling ordinary bytecode: the Satin connector.

2 h t t p : / / w w w . g r i d g a i n s y s t e m s . c o m / w i k i / d i s p l a y / G G 1 5 U G
GridRoundRobinLoadBalancingSpi.

C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186 179
The algorithm for inserting barriers works by iterating the
instructions of a method and detecting the points in which a local
variable is either defined or used by a statement. A variable is de-
fined when the result of a recursive call is assigned to it, whereas
it is used when its value is read. To work properly Satin requires
that statements can read such variables provided a sync has been
previously issued. Then, our algorithm operates by modifying the
bytecode to ensure a call to sync is done between the definition
and use of a local variable, for any execution path between these
two points. Moreover, as sync suspends the execution of the meth-
od until all subcomputations associated to defined variables have
finished, our algorithm uses an heuristic to keep the correctness
of the program while minimizing the inserted calls to sync for the
sake of efficiency. It is out of the scope of this paper to discuss
the internals of this heuristic algorithm. For details on this algo-
rithm, please refer to [37].

4. Case studies

This section describes the experiments that were performed to
empirically evaluate BYG. The contents of the section are a much
more rigorous version of, and a complement to, the experiments
reported in [37], in which we used classic CPU-intensive bench-
mark applications to compare BYG against Satin on a small LAN.
To provide stronger evidence on the applicability of BYG, we mea-
sured the performance as well as resource usage that resulted from
employing GridGain, Satin and BYG for parallelizing two real-
world applications, specifically ray tracing (Section 4.1) and se-
quence alignment (Section 4.2), on a wide-area Grid. The goal of
the evaluation was to determine whether the automatic approach
to gridification followed by BYG is competitive compared to man-
ual gridification when using GridGain or Satin with regard to the
abovementioned aspects with realistic applications on a Grid set-
ting. On one hand, we used the Satin platform so as to assess the
differences between manually-generated Satin codes and Satin-en-
abled codes obtained by using BYG. On the other hand, we choose
GridGain since it is a stable and healthy open source Grid platform
that has recently became very popular for developing distributed
applications.

First, we set up a LAN comprising 15 nodes running Mandriva
Linux 2009.0, Java 5 and Satin 2.1 connected through a 100 Mbps
network. We used 8 single core nodes with 2.80 MHz CPUs and
1.25 GB of RAM, and 7 single core nodes with 3 MHz CPUs and
1.5 GB of RAM. Then, we established a wide-area Grid on top of this
LAN by employing WANem version 2.0 [48], a software for emulat-
ing WAN conditions over a local-area network. We emulated 3 re-
mote clusters C1, C2 and C3 by using 4, 5 and 6 of the nodes of the
LAN, respectively, which were connected together by using virtual
Internet links (see Fig. 6). Each WAN link was a T1 connection (i.e. a
bandwidth of 1544 Mbps) with a round-trip latency of 160 ms and
a jitter of 10 ms, therefore inter-cluster latencies were in the range
of 150–170 ms. Particularly, these are network conditions com-
monly found in Internet-wide Grids.

For the sake of fairness, all tools were configured to use the load
balancing algorithm that best fitted the experimental setting. On
one hand, for the GridGain applications we employed its Round Ro-
bin load balancing with the default configuration, which according
to the authors provides a fair distribution of tasks among the nodes
of a Grid and therefore works well in most cases.2 Basically, upon
/

http://www.gridgainsystems.com/wiki/display/GG15UG/GridRoundRobinLoadBalancingSpi
http://www.gridgainsystems.com/wiki/display/GG15UG/GridRoundRobinLoadBalancingSpi

Fig. 6. Setting used in the experiments.

180 C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186
executing an application, the algorithm randomly picks a Grid
node and then dynamically and sequentially assigns tasks for exe-
cution in a round-robin fashion. On the other hand, both the Satin
and the BYG implementations of the ray tracing and sequence
alignment applications were configured to take advantage of the
Cluster-aware Random Stealing (CRS) [54] task scheduling algo-
rithm provided by Satin. With CRS, when a Grid node becomes idle,
it attempts to steal an unfinished task both from nodes belonging
to the same local cluster or external nodes, however intra-cluster
steals have a greater priority than inter-cluster ones, minimizing
expensive WAN communication.
4.1. Ray tracing

Ray tracing is a widely-known rendering technique that gener-
ates a digital picture from an abstract description of a 3D scene
[24]. Basically, we based our experiments on a parallel divide
and conquer ray tracing algorithm from the Satin project,3 which
operates by deriving an initial image from the input scene, dividing
this image to recursively apply the algorithm, and then joining the
results to build the final picture. The BYG implementation was ob-
tained by removing from the original Satin code any statement re-
lated to parallelism and/or tuning application execution to derive
the sequential divide and conquer counterparts of the application.
On the other hand, the GridGain implementation was obtained by
altering the original Satin code to exploit the Google’s map reduce
parallel programming model [29], which is similar to the master-
worker model and is supported by GridGain. We considered two
variants of the application by altering the granularity of the run-
time tasks, i.e. by splitting the image into 8 � 8 and 1 � 1 squares.
In both cases, the algorithm first computes the correct color of each
subimage and then reassembles the whole image. The second var-
iant operates up to the pixel level, which allows the algorithm to
3 http://www.cs.vu.nl/ibis/satin.html.
output pictures with better quality but generates a larger number
of tasks to execute at runtime.

To execute the three implementations of the first variant, we
used two input scenes Scene 1 and Scene 2 (in NFF format [22])
with three different resolutions each (512 � 512, 1024 � 1024
and 2048 � 2048). Fig. 8 shows the resulting pictures for the larg-
est resolution. On the other hand, Fig. 7 illustrates the average exe-
cution time of this variant for 60 runs. In all cases, standard
deviations were in the range of 5–12%. Note that this percentage
is somewhat high, however it is mainly explained by (a) the fact
that GridGain used a random round robin load balancing support,
(b) the fact that Satin and BYG relied on CRS for task scheduling,
which implements a cluster-aware random task stealing algorithm,
and (c) the variability inherent to WAN links in terms of bandwidth
and latency. All in all, compared to Satin, BYG performed very well,
considering that our goal is not to outperform existing Grid li-
braries but automating as much as possible their usage while
achieving competitive performance. From Fig. 7a it can be seen
that BYG performed similarly to Satin for the 1024 � 1024 image
while incurred in an acceptable overhead of just few seconds for
the other two. Fig. 7b shows that the performances for the more
complex scene (Scene 2) were similar for the three resolutions.
On the other hand, GridGain performed much better than Satin
and BYG alike, which is explained by the less bureaucratic nature
of its task distribution scheme. Unlike Satin and therefore BYG, in
which each Grid node actively participates in the creation and
assignment of parallel tasks, GridGain uses a master node that is
in charge of distributing the tasks to the rest of the nodes. Then,
the GridGain version of the ray tracing application performed bet-
ter but as we explain next, it experienced an unfair assignment of
parallel tasks to Grid nodes.

We measured the resource usage among the nodes of our sim-
ulated Grid by using the load average system metric of the Linux
kernel, which is computed through an exponentially weighted
moving average and is periodically stored in the ‘‘/proc/loadavg’’
file. Roughly, this metric allowed us to obtain the trend in CPU load

http://www.cs.vu.nl/ibis/satin.html

Fig. 7. Performance of the ray tracing application (task granularity = 8 � 8 squares).

Fig. 8. Grayscale version of the pictures resulted from executing the ray tracing application (resolution = 2048 � 2048 pixels).

C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186 181
at every single node of our Grid, so as to compute the standard
deviation of these values to determine whether a node was more
loaded than the others during the runs. In this sense, a small devi-
ation is highly desirable, because it means that all nodes are evenly
used, i.e. there are no nodes underused/overused. It is worth noting
that CPU load is different from CPU utilization. Within a single
node, this latter metric provides trend information of CPU usage
but ignores the length of the queue maintaining the tasks waiting
for taking possession of the CPU. For applications like ray tracing,
which make extensive use of Grid resources, CPU utilization is al-
ways close to 100%. Hence, this metric is unable to accurately mea-
sure the load level of a node, which is in turn better reflected by the
CPU load metric.

Table 1 shows the resulting fluctuation in CPU load, which was
computed as the standard deviation of the load averages across
nodes taken both at a 5-min and a 15-min window at the end of
each test round. To obtain representative values, we introduced
appropriate delays between each test battery in order to ensure
that CPU load across nodes dropped down to zero. As the reader
can see, the table shows that both Satin and BYG achieved similar
and very uniform levels of CPU load among the Grid nodes. Con-
versely, GridGain experienced a rather uneven exploitation of the
available resources. In summary, at least for this application and
task granularity, GridGain achieved the best speedups but at the
cost of performing a less fair usage of computational resources.

Fig. 9a and b shows the performance of the second variant of the
application, i.e. the one using the smallest task granularity (sub-
images of 1 � 1 pixels). Note that the Figure does not show the
GridGain implementation, which proved to be too inefficient for
this task granularity, registering overheads above 300% with re-
spect to its competitors. Basically, using small granularities results
in more runtime tasks to execute, which makes task scheduling
more challenging to Grid middlewares. Although it cannot be gen-
eralized, this result in conjunction with the experiments illustrated
in Fig. 7 may suggest that GridGain is better suited for applications
with not-so-small task granularities. In contrast, Satin and BYG are
designed to support efficient scheduling of parallel tasks irrespec-
tive of their granularity. Furthermore, in the present experiment
BYG performed close to Satin, which is consistent with the results
of Fig. 7. Both implementations achieved average load fluctuations
in the range of 1–4% and 1–3% for the time windows of 5 and
10 min, respectively.

Table 1
Ray tracing: Fluctuation in CPU load (in percentage with regard to the average load across all nodes).

Scene 1 Scene 2

(5-Min) 512 � 512 1024 � 1024 2048 � 2048 512 � 512 1024 � 1024 2048 � 2048

GridGain 52 49 46 28 19 22
Satin 3 10 3 4 2 3
BYG 4 3 2 6 4 3

GridGain 26 31 39 28 18 16
Satin 2 2 2 2 6 1
BYG 3 1 1 4 3 2

Fig. 9. Performance of the ray tracing application (task granularity = 1 � 1 squares).

Fig. 10. Ray tracing: speedup factor. The upper dotted line represents the theoretical maximum.

4 http://en.wikipedia.org/wiki/Sequence_alignment.

182 C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186
As a complement, Fig. 10 shows the speedup factor achieved by
the different implementations for the two task granularities. This
factor was computed as Tseq/Tgrid, where Tseq and Tgrid are the times
required to execute the sequential and gridified versions of these
applications, respectively. To compute Tseq, the sequential ray trac-
ing application was run on a node of the experimental setting with
the best hardware capabilities in terms of CPU and memory.
4.2. Sequence alignment

The second test application was local pairwise sequence align-
ment,4 a well-known problem in bioinformatics. The problem in-

http://en.wikipedia.org/wiki/Sequence_alignment

Fig. 11. Sample protein sequence of the Influenza A H1N1 virus (obtained in England on December 31, 2007).

Fig. 12. Performance of the sequence alignment application.

Fig. 13. Sequence alignment: speedup factor. The upper dotted line represents the
theoretical maximum.

C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186 183
volves representing a biological entity such as a gene in a com-
puter-understandable way (usually strings of characters) and
manipulating the resulting representation by using sequence
alignment algorithms. Fig. 11 shows, for instance, a sample protein
sequence of the Influenza A H1N1 virus.

Basically, we took an existing parallel master–worker imple-
mentation of the application for aligning protein sequences. The
source code of the application was obtained from the JPPF pro-
ject[26]. Firstly, we derived the sequential version of this applica-
tion and then we parallelized it back with GridGain, Satin and
BYG. Furthermore, the original source code used JAligner [39], an
open source library that implements an improved version of the
Smith-Waterman algorithm [20]. Given any pair of sequences,
the algorithm outputs a coefficient that represents the level of sim-
ilarity between these two by using a scoring matrix from a set of
predefined matrixes. To execute the experiments, we used the
PAM120 matrix, which works very well in most cases.

The application aligned an unknown input sequence against an
entire sequence database, which was replicated across the nodes of
the experimental Grid to allow parallel tasks to locally access se-
quence data. The application operated by dividing the portions of
the data to compare against into two different subproblems until
a certain threshold on the data was reached. We used the same
threshold values for GridGain, Satin and BYG. Moreover, we com-
pared five different sequences against real-world protein sequence
databases extracted from the National Center for Biotechnology
Information (NCBI) Web site.5 The NCBI is an organization devoted
to computational biology that among other things maintains public
genomes databases, disseminates biomedical information and
develops bioinformatics software. It is worth mentioning that the
sequences in the databases did not follow any special order (e.g.
based on sequence size). Note that this allowed us to perform a fair
evaluation in the sense that none of the evaluated middlewares
and therefore their associated balancing strategies were favored
over the others regarding input data ordering.

Concretely, we employed the sequence databases shown in
Table 2. The last column of the Table indicates the number of gen-
erated parallel tasks as a consequence of using different thresholds.
Basically, the larger the database, the finer the task granularity that
was used, which enables for better parallelism. It is worth men-
tioning that the tests conceived the BYG implementation of the
application as a mean to provide more evidence about the perfor-
mance and resource usage of BYG compared to GridGain and Satin
by using a realistic application. In this sense, the goal of these
experiments it is not to come out with a better implementation
of sequence alignment in Grid settings, for which specialized
frameworks such as mpiBLAST [4] and G-BLAST [1] already exist.

Fig. 12 shows the average execution time for 60 runs of the dif-
ferent versions of the application, while Fig. 13 depicts the speedup
factor. As the application is CPU-intensive but at the same time
makes extensive use of sequence data, we did not achieve a high
5 http://www.ncbi.nlm.nih.gov.
CPU utilization when aligning just one instance per run. In conse-
quence, we decided to process two input target sequences simulta-
neously per execution. This resulted in CPU utilization close to
100% in the nodes of the experimental Grid, which in turn allowed
us to measure resource usage through the CPU load metric in a rep-
resentative manner. As illustrated in the figure, and similar to the
case of the ray tracing application, BYG behaved close to Satin for
all databases. On the other hand, standard deviations were in the
range of 3–5% and 4–8% for the case of Satin and GridGain, respec-
tively, and below 3% for the case of BYG. This fact may suggest that
the execution time of the BYG variant was less affected by the
data-intensive nature of the application, however this should be

http://www.ncbi.nlm.nih.gov

Table 3
Sequence alignment: Fluctuation in CPU load (in percentage with regard to the
average load across all nodes).

(5-Min) DB 1 DB 2 DB 3 DB 4 DB 5

GridGain 44 34 25 27 28
Satin 3 3 3 3 3
BYG 3 3 4 4 3

(15-Min) DB 1 DB 2 DB 3 DB 4 DB 5
GridGain 31 29 20 25 25
Satin 3 3 3 3 4
BYG 4 2 2 3 3

Table 4
Experimental results: qualitative analysis.

Middleware Task
granularity
support

Delivered
performance

Resource
usage

Programmability

GridGain Regular Very good Regular Good
Satin Very good Good Very good Good
BYG Very good Good Very good Very good

Table 2
Protein sequence databases used in the experiments.

Database Size (# of sequences) Size (MB) Disease Date # of generated tasks

DB 1 4289 1.7 Escherichia coli Unspecified 20
DB 2 4777 2.4 Influenza A (Human) 2009 outbreak (01/01/2009–31/06/2009) 20
DB 3 7672 3.5 Influenza B (Human) All registered cases up to now 40
DB 4 9620 4.8 Influenza A (Human) 01/01/2007–12/31/2008 80
DB 5 12,325 6.2 Influenza A (Human) 01/01/2006–12/31/2008 80

184 C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186
further corroborated. Finally, Table 3 shows the fluctuation in aver-
age CPU load during the executions, which shows that BYG made a
fair usage of Grid resources. Furthermore, the GridGain implemen-
tation steadily performed better than both Satin and BYG for the
case of DB1, DB2 and DB3. On the other hand, the tests involving
more runtime tasks resulted in execution overheads for the case
of DB4 (see the dip in the bars) and marginal gains for DB5. Simi-
larly to the ray tracing algorithm, GridGain had trouble in dealing
with larger amounts of runtime tasks, while it slightly outper-
formed Satin and BYG with smaller ones.

4.3. Discussion

The experimental results reported in the previous subsections
can be summarized according to several common dimensions of
the problem of gridifying applications in the context of the studied
platforms, namely task granularity support, delivered perfor-
mance, resource usage and programmability [35]. The next
paragraphs give some insights on these aspects in order to provide
guidelines as to when to use each platform and when not. Table 4
qualitatively summarizes the obtained results in relation to these
dimensions.

As mentioned, many Grid platforms work better when parallel
tasks created as a consequence of parallelizing a sequential appli-
cation have a coarse granularity. Under this scheme, the original
problem is split into a small to medium number of tasks. On the
contrary, other Grid platforms are oriented towards supporting fi-
ner tasks granularities. Therefore, their schedulers are designed to
manage much larger number of tasks at runtime. In our experi-
ments, the tests involving the usage of GridGain and fine granular-
ities caused excessive overheads for the variant of the ray tracing
application using 1x1 image squares, and resulted in performance
losses for DB4 and DB5 in the sequence alignment application with
respect to the rest of the databases.

Indeed, for sequence alignment, granularity could be made even
finer by splitting the problem into more tasks, or alternatively pro-
cessing DNA databases whose sequences are encoded by relying on
a smaller alphabet compared to protein databases and thus local
pairwise alignment at the sequence level becomes much less com-
putationally intensive. By basing on the overheads resulted from
using very fine task granularity for the case of the ray tracing appli-
cation, we can reasonably extrapolate this result to say that Grid-
Gain would also perform in an inefficient way, rendering the
comparison against Satin and BYG not viable. On the other hand,
in the experiments, Satin and BYG proved to be more versatile with
respect to task granularity. In fact, extensive recent experiments
with benchmark applications and ultra fine task granularities
[38] such as the ones that would result from feeding sequence
alignment with DNA databases and/or increasing the number of
parallel tasks that cooperatively align an input sequence confirm
that BYG delivers good performance compared to Satin under such
scenarios.

Moreover, for larger task granularities, GridGain outperformed
its competitors, however it clearly made a less fair use of Grid
resources. In addition, for more intensive experiments, the average
fluctuation in resource usage tended towards smaller but still
rather high values. For instance, the GridGain version of the ray
tracing application experienced a fluctuation of 46% and 22% for
Scene 1 and Scene 2, respectively. Likewise, the sequence align-
ment code had a fluctuation of 44% and 28% for DB1 and DB5,
respectively. On the other hand, the fluctuation in resource usage
for both test applications was in the range of 2–4% for the case of
Satin, which delivered less performance but resulted in much bet-
ter resource usage. All in all, the choice of whether to prioritize
application performance over Grid resource usage in principle de-
pends on the Grid setting being used. Specifically, bad resource
usage may not be acceptable in Desktop Grid environments [8],
which aim at arranging and taking advantage of idle CPU cycles
of regular desktop PCs in use by individuals. However, in a dedi-
cated Grid setting, a performance-oriented middleware like Grid-
Gain would suffice.

Furthermore, BYG behaved very competitively compared to Sa-
tin with respect to performance and resource usage, in spite of the
fact that BYG adds some technological noise, i.e. our extended Satin
runtime that handles the execution of transformed codes in paral-
lel, and the heuristic for automating the process of inserting
parallelism and synchronization into sequential applications. Intu-
itively, this should translate into rather different execution times.
However, the experiments show that in some cases BYG certainly
adds a performance overhead with respect to Satin, which we be-
lieve it is acceptable given the benefits of automatic parallelism in
Grid environments to support scientists not proficient in distrib-
uted programming. In fact, the BYG versions of the two test appli-
cations did not require to make explicit usage of API-specific code,
which in turn positively impacted on the size of the implementa-
tion code of the parallel applications. In this sense, Table 5 shows
the TLOC values for the test applications, i.e. the total lines of code
without considering neither blank nor comment lines. The Table
also shows the GLOC metric [36], which counts developer-supplied
lines explicitly invoking Grid API primitives within the application

Table 5
Test applications: code metrics.

Application Middleware TLOC GLOC

Ray tracing GridGain 1176 33
Satin 1065 4
BYG 1057 0

Sequence alignment GridGain 581 44
Satin 503 5
BYG 493 0

C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186 185
code. As illustrated, BYG is based on an automatic approach to par-
allelism and thus isolates users from API-related details. In con-
trast, more verbose, API-oriented gridification platforms such as
GridGain require users to know details of its programming library.

The differences obtained in Tgrid for BYG and Satin are mostly ex-
plained by the places of the application code in which the calls to
sync are located. Naturally, these differences stem from the fact that
the Satin versions of the applications were parallelized and pro-
vided with synchronization by hand, while the BYG counterparts
were parallelized by applying our heuristic on the sequential codes,
which precisely attempt to reproduce the parallelization and syn-
chronization tasks a human programmer would manually perform.
These results show that BYG certainly simplifies the usage of paral-
lel libraries like Satin without incurring in an excessive perfor-
mance penalty and thus achieving competitive speedups. In other
words, BYG stays competitive compared to directly using Satin,
which is explained by the effectiveness of our generic synchroniza-
tion heuristic. This claim is not done in isolation, but elaborated on
the grounds of the experiments reported in this paper as well as
similar results achieved with BYG in a cluster environment [37].
6 http://indico.cern.ch/conferenceProgram.py?confId=66398.
5. Conclusions and future work

This paper described BYG (BYtecode Gridifier), a new software
tool to easily port ordinary compiled Java applications to Computa-
tional Grids. BYG lets users to Grid-enable existing Java applica-
tions by indicating which parts of their bytecode should run on a
Grid without requiring programming effort and otherwise using
configuration external to the application. To this end, BYG is based
on novel bytecode rewriting techniques through which ordinary
bytecodes are semi-automatically furnished with parallelism to
exploit Grids. BYG targets Java applications implemented under
the popular and versatile divide and conquer programming model.
We can thus reasonably expect the tool will benefit a large number
of today’s applications.

At present, BYG is implemented on top of Satin, a framework that
supports execution of applications on LANs and WANs. We evalu-
ated BYG by gridifying two popular real-world resource-intensive
applications, namely ray tracing and sequence alignment, by using
both Satin and BYG on a wide-area Grid. Results show that most
of the BYG versions performed very similarly to their Satin counter-
parts, and thus achieved very competitive speedups and resource
usage. We believe this is an interesting result considering that
BYG automates the use of Satin without incurring in performance
overheads or unfair usage of Grid nodes to gridify applications. In
addition, we also compared GridGain and BYG, in order to provide
a wider spectrum of Java-based gridification tools and particularly
to discuss the applications and Grid settings for which our tool is
beneficial. In this sense, we concluded Section 4 by providing prac-
tical guidelines regarding when to use each tool and when not.

It is worth emphasizing that our approach does not aim at
replacing explicit distributed and parallel programming models,
such as the ones promoted by GridGain and Satin. Its utmost goal
is to target users who would need to rapidly turn their sequential
applications into parallel ones while dealing with as little parallel
exploitation problems as possible. Basically, BYG addresses this
requirement by advocating an automatic approach to support the
process of obtaining a Grid-aware application. However, it is a
well-known fact in parallel programming that such an implicit ap-
proach to parallelism may, in general, produce parallel applications
whose performance is below the levels reached by using explicit
parallelism [16], in which the developer has more control over
the parallel behavior of their applications. In the context of our
work, this means that using BYG may not necessarily lead to
exploiting parallelism in an optimal way. As shown, BYG effec-
tively inserts parallelism into sequential codes in a best-effort
and heuristic way, leading to competitive speedups for fine-
grained applications while offering adequate support for users
with limited knowledge on parallel and Grid concepts.

At present, we are extending BYG into several directions. Partic-
ularly, we are refining its bytecode rewriting techniques to recog-
nize some other high-level Java statements (e.g. try/catch and
switch/case) and to optimize the insertion of Satin barriers. It is
worth noting that this is not a limitation of our parallelization
and synchronization algorithm but of its current implementation.
We are also investigating how to generalize and support our gridi-
fication approach for other target Grid middlewares apart from Sa-
tin, and even other languages for scientific computing. On one
hand, a prototype implementation of BYG on top of the Condor-G
[49] middleware is underway. On the other hand, for gridifying
binary codes obtained through compiled languages, a technological
alternative is to employ Dyninst [50], an API that allows on-the-fly
modification of native binary codes. This will allow us to adapt the
ideas behind the BYG agent for introducing parallelism into the
binary code produced by widely-adopted languages such as C
and C++. Also, and similarly to the work by Papadimitriou and Ter-
zidis [43], we are investigating how to integrate BYG with the Java
scripting API [42], which allows developers to execute scripts
implemented in various interpreted languages (e.g. Python, Ruby,
BeanShell, etc.) within the Java runtime. Interestingly, this would
greatly simplify the adoption of BYG as most of these interpreted
languages are commonplace in scientific programming.

Finally, we will conduct experiments with BYG in larger Grid
settings. We are working on the gridification of the ray tracing
and the sequence alignment application on a real (i.e. not emu-
lated) high-speed wide-area Grid. The infrastructure is a result of
a country-wide Grid initiative of the Argentinian government that
will connect several academic clusters across different provinces of
Argentina, which was launched recently.6 In addition, we will
study the applicability of BYG to other domains, particularly finite
element analysis. As a starting point, we will gridify the SOGDE 2D
and 3D solver [17], which has been used for simulating tension
tests in metals [18].

Acknowledgments

We thank the anonymous referees for their comments to im-
prove the paper. We also thank Cristian Clasadonte for his valuable
help managing the computing infrastructure required for conduct-
ing the experiments described in this paper. Finally, we acknowl-
edge the financial support provided by ANPCyT through Grants
PAE-PICT 2007-02311 and PAE-PICT 2007-02312.

References

[1] Afgan E, Bangalore P. Dynamic BLAST – a Grid enabled BLAST. Int J Comput Sci
Network Security 2009;9(4):149–57.

[2] Alonso JM, Hernández V, Moltó G. GMarte: Grid middleware to abstract remote
task execution. Concurr Comput: Practice Exper 2006;18(15):2021–36.

[3] Alonso JM, Hernández V, Moltó G. A high-throughput application for the

http://indico.cern.ch/conferenceProgram.py?confId=66398

186 C. Mateos et al. / Advances in Engineering Software 42 (2011) 172–186
dynamic analysis of structures on a grid environment. Adv Eng Softw
2008;39(10):839–48.

[4] Archuleta J, Feng W-C, Tilevich E. A pluggable framework for parallel pairwise
sequence search. In: 29th Annual international conference of the IEEE –
Engineering in Medicine and Biology Society (EMBS ’07); 2007. p. 127–30.

[5] Baduel L, Baude F, Caromel D, Contes A, Huet F, Morel M, et al. Grid computing:
software environments and tools. In: Programming, composing, deploying on
the grid. Berlin, Heidelberg, and New York: Springer; 2006. p. 205–29.

[6] Baitsch M, Li N, Hartmann D. A toolkit for efficient numerical applications in
Java. Adv Eng Softw 2010;41(1):75–83.

[7] B.S. Center. Alya system – large scale computational mechanics; 2009. <http://
www.bsc.es/plantillaA.php?cat_id=552> [accessed January 2011].

[8] Choi S, Kim H, Byun E, Baik M, Kim S, Park C, et al. Characterizing and
classifying desktop grid. In: 7th IEEE international symposium on cluster
computing and the grid (CCGRID ’07), Rio de Janeiro, Brazil. Washington (DC,
USA): IEEE Computer Society; 2007. p. 743–8.

[9] da Silva Cunha CA, Ferreira Sobral JL. An annotation-based framework for
parallel computing. In: 15th Euromicro conference on parallel, distributed, and
network-based processing (PDP ’07), Naples, Italy. Los Alamitos (CA, USA): IEEE
Computer Society; 2007. p. 113–20.

[10] Danelutto M, Pasin M, Vanneschi M, Dazzi P, Laforenza D, Presti L. PAL:
exploiting Java annotations for parallelism. In: Achievements in European
research on grid systems. United States: Springer; 2008. p. 83–96.

[11] Doolin DM, Dongarra J, Seymour K. JLAPACK – compiling LAPACK Fortran to
Java. Scient Program 1999;7(2):111–38.

[12] Drummond LA, Galiano V, Migallón V, Penadés J. Interfaces for parallel
numerical linear algebra libraries in high level languages. Adv Eng Softw
2009;40(8):652–8.

[13] Eyheramendy D. Innovation in engineering computational technology. In:
High abstraction level frameworks for the next decade in computational
mechanics. Saxe-Coburg Publications; 2006. p. 41–61.

[14] Foster I. The grid: computing without bounds. Scient Am 2003;288(4):78–85.
[15] Foster I. Globus toolkit version 4: software for service-oriented systems. J

Comput Sci Technol 2006;21(4):513–20.
[16] Freeh VW. A comparison of implicit and explicit parallel programming. J

Parallel Distrib Comput 1996;34(1):50–65.
[17] García Garino C. Un modelo numérico para el análisis de sólidos

elastoplásticos sometidos a grandes deformaciones. PhD thesis. Barcelona
(Spain): E.T.S. Ingenieros de Caminos, Universidad Politécnica de Catalunya;
1993.

[18] Garcı́a-Garino C, Gabaldón F, Goicolea JM. Finite element simulation of the
simple tension test in metals. Fin Elem Anal Des 2006;42(13):1187–97.

[19] Gonçalves RC, Ferreira Sobral JL. Pluggable parallelisation. In: 18th ACM
international symposium on high performance distributed computing (HPDC
’09), Garching, Germany. New York (NY, USA): ACM Press; 2009. p. 11–20.

[20] Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol
1982;162(3):705–8.

[21] GridGain Systems. The GridGain open cloud platform; 2009. <http://
www.gridgain.com> [accessed January 2011].

[22] Haines E. Neutral file format (NFF); 1992. <http://local.wasp.uwa.edu.au/
pbourke/dataformats/nff/nff1.html> [accessed January 2011].

[23] Harbulot B, Gurd JR. Using AspectJ to separate concerns in parallel scientific
Java code. In: 3rd International conference on aspect-oriented software
development (AOSD ’04), Lancaster, UK. New York (NY, USA): ACM Press;
2004. p. 122–31.

[24] Heckbert P, Haines E. A ray tracing bibliography. In: Glassner A, editor.
Introduction to ray tracing. Academic Press, Inc.; 1989. p. 295–303.

[25] Hernández E, Cardinale Y, Pereira W. Extended mpiJava for distributed
checkpointing and recovery. In: Recent advances in parallel virtual machine
and message passing interface. Lecture notes in computer science, vol.
4192. Berlin/Heidelberg: Springer; 2006. p. 158–65.

[26] JPPF. JPPF Home; 2009. <http://www.jppf.org> [accessed January 2011].
[27] Jugravu A, Fahringer T. JavaSymphony, a programming model for the Grid. Fut

Generation Comput Syst 2005;21(1):239–46.
[28] Kiczales G, Lamping J, Menhdhekar A, Maeda C, Lopes C, Loingtier J-M, et al.

Aspect-oriented programming. In: Aks�it M, Matsuoka S, editors. 11th
European conference on object-oriented programming (ECOOP ’97). Lecture
notes in computer science, vol. 1241. New York (NY, USA): Springer; 1997. p.
220–42.

[29] Lämmel R. Google’s MapReduce programming model – revisited. Sci Comput
Program 2007;68(3):208–37.
[30] Laskowski E, Tudruja M, Olejnik R, Toursel B. Byte-code scheduling of Java
programs with branches for desktop grid. Fut Generation Comput Syst
2007;23(8):977–82.

[31] Lee EA. The problem with threads. Computer 2006;39(5):33–42.
[32] Mackie RI. Design and deployment of distributed numerical applications using

.NET and component oriented programming. Adv Eng Softw
2009;40(8):665–74.

[33] Maia PM, Mendonca NC, Furtado V, Cirne W, Saikoski K. A process for
separation of crosscutting Grid concerns. In: ACM symposium on applied
computing (SAC ’06), Dijon, France. New York (NY, USA): ACM Press; 2006. p.
1569–74.

[34] Manolescu D, Beckman B, Livshits B. Volta: developing distributed applications
by recompiling. IEEE Softw 2008;25(5):53–9.

[35] Mateos C, Zunino A, Campo M. A survey on approaches to gridification. Softw:
Practice Exper 2008;38(5):523–56.

[36] Mateos C, Zunino A, Campo M. On the evaluation of gridification effort and
runtime aspects of JGRIM applications. Fut Generation Comput Syst
2010;26(6):797–819.

[37] Mateos C, Zunino A, Campo M, Trachsel R, Programming Parallel. Models and
applications in grid and P2P systems. In: An approach to just-in-time
gridification of conventional Java applications. Advances in parallel
computing. Amsterdam (The Netherlands): IOS Press; 2009. p. 232–60
[chapter BYG].

[38] Mateos C, Zunino A, Trachsel R, Campo M. A novel mechanism for gridification
of compiled Java applications. Comput Inform, in press.

[39] Moustafa A. JAligner: open source Java implementation of Smith–Waterman;
2008. <http://jaligner.sourceforge.net> [accessed January 2011].

[40] National Science Foundation. ScaLAPACK; 2007. <http://www.netlib.org/
scalapack> [accessed January 2011].

[41] ObjectWeb Consortium. ASM; 2009. <http://asm.objectweb.org> [accessed
January 2011].

[42] Oracle Inc. javax.script (Java Platform SE 6); 2009. <http://
download.oracle.com/javase/6/docs/api/javax/script/package-summary.html>
[accessed January 2011].

[43] Papadimitriou S, Terzidis K. jLab: integrating a scripting interpreter with Java
technology for flexible and efficient scientific computation. Comput Lang Syst
Struct 2009;35(3):217–40.

[44] Ropo M, Westerholm J, Dongarra J. Recent advances in parallel virtual machine
and message passing interface. In: Proceedings of the 16th European PVM/MPI
users’ group meeting, Espoo, Finland, September 7–10, 2009. Lecture notes in
computer science. Berlin/Heidelberg: Springer-Verlag; 2009.

[45] Seymour K, Dongarra J. Automatic translation of Fortran to JVM bytecode.
Concurr Comput: Practice Exper 2003;15(3–5):207–22.

[46] Shafi A, Carpenter B, Baker M. Nested parallelism for multi-core HPC systems
using Java. J Parallel Distrib Comput 2009;69(6):532–45.

[47] Shafi A, Carpenter B, Baker M, Hussain A. A comparative study of Java and C
performance in two large-scale parallel applications. Concurr Comput:
Practice Exper 2009;21(15):1882–906.

[48] TATA Consultancy Services. WANem; 2008. <http://wanem.sourceforge.net>
[accessed January 2011].

[49] Thain D, Tannenbaum T, Livny M. Condor and the grid. In: Berman F, Fox G,
Hey A, editors. Grid computing: making the global infrastructure a
reality. New York (NY, USA): John Wiley & Sons; 2003. p. 299–335.

[50] University of Maryland. Dyninst api; 2009. <http://www.dyninst.org>
[accessed January 2011].

[51] University of Virginia. jPVM; 1999. <http://www.cs.virginia.edu/ ajf2j/
jpvm.html> [accessed January 2011].

[52] Vaughan-Nichols SJ. Web services: beyond the hype. Computer
2002;35(2):18–21.

[53] Wang L, Jie W. Towards supporting multiple virtual private computing
environments on computational grids. Adv Eng Softw 2009;40(4):239–45.

[54] Wrzesinska G, van Nieuwport R, Maassen J, Kielmann T, Bal H. Fault-tolerant
scheduling of fine-grained tasks in grid environments. Int J High Perf Comput
Appl 2006;20(1):103–14.

[55] Zhang B-Y, Yang G-W, Zheng W-M. JCluster: an efficient Java parallel
environment on a large-scale heterogeneous cluster. Concurr Comput:
Practice Exper 2006;18(12):1541–57.

[56] Zhang H, Lee J, Guha R. VCluster: a thread-based Java middleware for SMP and
heterogeneous clusters with thread migration support. Softw: Practice Exper
2008;38(10):1049–71.

http://www.bsc.es/plantillaA.php?cat_id=552
http://www.bsc.es/plantillaA.php?cat_id=552
http://www.gridgain.com
http://www.gridgain.com
http://local.wasp.uwa.edu.au/pbourke/dataformats/nff/nff1.html
http://local.wasp.uwa.edu.au/pbourke/dataformats/nff/nff1.html
http://www.jppf.org
http://jaligner.sourceforge.net
http://www.netlib.org/scalapack
http://www.netlib.org/scalapack
http://asm.objectweb.org
http://download.oracle.com/javase/6/docs/api/javax/script/package-summary.html
http://download.oracle.com/javase/6/docs/api/javax/script/package-summary.html
http://wanem.sourceforge.net
http://www.dyninst.org
http://www.cs.virginia.edu/ajf2j/jpvm.html
http://www.cs.virginia.edu/ajf2j/jpvm.html

	A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing and sequence alignment
	Introduction
	Related work
	The BYG (BYtecode Gridifier) approach
	Gridifying applications with the BYtecode Gridifier
	The Satin connector
	Satin: Programming model
	Taking satin a step further

	Case studies
	Ray tracing
	Sequence alignment
	Discussion

	Conclusions and future work
	Acknowledgments
	References

