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Abstract

Albendazole and fenbendazole are methylcarbamate benzimidazole anthelmintics extensively used to control gastrointestinal parasites
in domestic animals. These parent compounds are metabolised to albendazole sulfoxide and fenbendazole sulfoxide (oxfendazole),
respectively. Both sulfoxide derivatives are anthelmintically active and are manufactured for use in animals. They metabolites have
an asymmetric centre on their chemical structures and two enantiomeric forms of each sulfoxide have been identified in plasma, tissues
of parasite location and within target helminths. Both the flavin-monooxygenase and cytochrome P450 systems are involved in the enan-
tioselective biotransformation of these anthelmintic compounds in ruminant species. A relevant progress on the understanding of the
relationship among enantioselective metabolism and systemic availability of each enantiomeric form has been achieved. This article
reviews the current knowledge on the pharmacological implications of the enantiomeric behaviour of albendazole sulfoxide and oxfen-
dazole in domestic animals.
� 2008 Elsevier Ltd. All rights reserved.
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Introduction

The introduction of benzimidazole (BZD) anthelmintic
drugs was a major advance in the treatment of gastrointest-
inal parasites in veterinary practice. Rational use of these
compounds requires knowledge of their pharmacological
properties in the target animal species and may help to
optimise clinical efficacy and avoid the development of
resistance. The pharmacokinetic behaviour of albendazole
(ABZ) and fenbendazole (FBZ) have been studied in sev-
eral species including sheep, cattle, horses, donkeys, dogs,
pigs, goats, buffaloes and humans (Marriner and Bogan,
1980, 1985; Ngomuo et al., 1984; Prichard et al., 1985;
Marriner et al., 1986; McKellar et al., 1990, 1993, 1995,
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2002; Benchaoui et al., 1993; Hennessy et al., 1993a;
Sanyal, 1994, 1997, 1998; Alvarez et al., 1996; Sanchez et
al., 2000; Gokbulut et al., 2006a).

The BZD sulfoxide metabolites, albendazole sulfoxide
(ABZSO), fenbendazole sulfoxide (FBZSO) (also called
oxfendazole, OFZ) and their respective sulfone derivatives
(ABZSO2 and FBZSO2) are the main metabolic products
found systemically after ABZ and FBZ administration.
Two sequential oxidative steps, mediated by the enzymatic
systems flavin-monooxygenase (FMO) and cytochrome
P450, are involved in the production of the sulfoxide and
sulfone metabolites in the liver. Both ABZSO and OFZ
are available for anthelmintic therapy in sheep and cattle
and are reduced by ruminal microflora to their parent sul-
fides (ABZ and FBZ, respectively) after oral or intra-rum-
inal administration. In sheep, no differences in the systemic
availability of ABZSO were observed after administration
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Fig. 2. Metabolic pathway of fenbendazole and oxfendazole.
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of either ABZ or ABZSO. Furthermore, FBZ and its sulf-
oxide and sulfone metabolites were recovered in equal pro-
portions after the administration to sheep of both FBZ and
OFZ (Lanusse et al., 1995). Equivalent anthelmintic effi-
cacy has been shown following administration of the sulf-
oxide derivatives, compared with that observed after
treatment with the parent sulfides (Perez-Serrano et al.,
1997; Williams et al., 1997).

ABZSO and OFZ have an asymmetric centre in the sul-
fur atom of their chemical structure (Figs. 1 and 2). Thus,
two ABZSO and OFZ enantiomers have been identified in
the plasma of several species, including cattle, sheep, goats,
dogs, rats, mice, horses and humans following administra-
tion of the pro-chiral molecules ABZ and FBZ (Delatour et
al., 1990b, 1991a,b; Benoit et al., 1992; Garcı́a et al., 1999;
McKellar et al., 2002; Gokbulut et al., 2007).

Since the discovery of optical isomerism by Pasteur in
the nineteenth century, the study of the chiral behaviour
of a pair of enantiomers has become relevant for a proper
understanding of the differential pharmaco-toxicological
properties of different compounds administered as a race-
mate. Although enantiomers have similar or identical phy-
sico-chemical properties, they may exhibit different
pharmacodynamic and/or pharmacokinetic behaviour.
The available knowledge on the pharmacological implica-
tions of the enantiomeric behaviour of albendazole sulfox-
ide and oxfendazole in domestic animals is reviewed in the
current article.
Pharmacokinetic considerations

Changes in the enantiomeric proportions following the
administration of a racemate clearly indicate an enantiose-
lective pharmacokinetic behaviour of a given compound.
In addition, pharmacodynamic differences between enan-
tiomers may be qualitative or quantitative (Landoni et
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Fig. 1. Metabolic pathway of albendazole and albendazole sulfoxide.
al., 1997). After administration of a chiral drug, the
observed pharmacological response may represent the
combined effects of each enantiomeric form. Understand-
ing the pharmacokinetic behaviour and metabolic fate of
different BZD anthelmintics is necessary to optimise para-
site control in veterinary medicine. The pharmacokinetics
of ABZSO and OFZ enantiomers has been studied in sev-
eral species, including cattle, goats, sheep, horses, dogs,
humans and rats following FBZ, OFZ, ABZ or ABZSO
administration by different routes and formulations (Dela-
tour et al., 1990b, 1991a; Capece et al., 2000; Cristòfol et
al., 2000; McKellar et al., 2002; Goudah, 2003; Sanchez
Bruni et al., 2005a,b; Gokbulut et al., 2007).

Several investigations have shown species differences in
the pharmacokinetic behaviour of ABZSO and OFZ enan-
tiomers. After FBZ or ABZ administration to sheep, the
(+) antipodes represented 74% and 86% of the total plasma
area under the curve (AUC) of OFZ and ABZSO, respec-
tively (Delatour et al., 1990b; Sanchez Bruni et al., 2005b).
Delatour et al. (1991a) observed that the (+)-ABZSO AUC
value in dogs was 70% of the total-ABZSO. Similarly, (+)-
OFZ was the predominant enantiomer found in the plasma
of sheep and dogs treated with FBZ (Delatour et al., 1990b;
Sanchez Bruni et al., 2005b; Gokbulut et al., 2007). A pre-
dominance of the (+)-ABZSO was also seen following IV
(Cristòfol et al., 2000; Goudah, 2003) and oral (Capece et
al., 2000) administration of racemic ABZSO (rac-ABZSO)
to cattle and sheep. The evolution over time of OFZ enan-
tiomeric ratios in the plasma of horses treated with FBZ
showed that (�)-OFZ predominated up to 12 h post-treat-
ment. Afterwards, (+)-OFZ was the main enantiomeric
form recovered from the bloodstream in this species (San-
chez Bruni et al., 2005a).

These studies on the plasma enantiomeric behaviour of
ABZSO shows that (+)-ABZSO predominates in the
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plasma of most species studied including man (Delatour et
al., 1991a; Marques et al., 1999; Capece et al., 2000; Cris-
tòfol et al., 2000; Goudah, 2003), whilst its (�) antipode
is recovered in higher proportions in the plasma of rats
(Delatour et al., 1990a, 1991a; Capece et al., 2003) and
mice (Garcı́a et al., 1999; Garcı́a et al., 2003).

Tissue distribution

The lack of water solubility is an important limitation
for the formulation of the most potent BZD methylcarba-
mate anthelmintics, allowing their formulation only as sus-
pensions for oral/intra-ruminal administration in
ruminants. The oxidised sulfur atom present in ABZSO
and OFZ chemical structures enhanced their hydrosolubi-
lity and this physico-chemical property was exploited to
develop aqueous solutions introduced for subcutaneous
administration to cattle in South America. Independent
of the route of administration, the pharmacological effect
of the active BZD compounds depends on the presence
of sustained concentrations of active drug/metabolites at
the site of parasite location. Most of the BZDs, including
the asymmetric derivatives reach the receptors within the
parasites throughout passive drug transfer (Takayanagui
et al., 2002; Mottier et al., 2006).

ABZSO is well distributed in the body after IV adminis-
tration. The volume of distribution (Vd) values for this
molecule ranged between 0.67–1.2 L/kg for cattle and
sheep, respectively (Cristòfol et al., 2000; Formentini et
al., 2005). As consequence of the lack of differences in their
physico-chemical properties, ABZSO enantiomers have
similar pattern of distribution reaching parasite location
tissues, such as the digestive mucosa, ileal and abomasal
fluids, liver and lung (Cristòfol et al., 2001). The Vd values
for the enantiomeric forms after rac-ABZSO intravenous
administration ranged from 0.60–0.79 L/kg for (+)-
ABZSO and from 0.55–0.85 L/kg for (�)-ABZSO (Cristò-
fol et al., 2000, 2001).

Regardless of the route of administration, (�)-ABZSO
and (�)-OFZ are depleted faster from the bloodstream
than their respective (+) antipodes in domestic animals.
Following rac-ABZSO IV administration to sheep and cat-
tle, (�)-ABZSO was depleted faster from the bloodstream
than its (+)-ABZSO antipode (Cristòfol et al., 2000, 2001;
Goudah, 2003). A faster (�)-ABZSO depletion was also
observed after the oral administration of NTB, ABZ or
ABZSO to sheep, cattle, dogs and goats (Delatour et al.,
1990b; Benoit et al., 1992; Capece et al., 2000, in press;
Gokbulut et al., 2006b, 2007). Similarly, a more rapid elim-
ination of (�)-OFZ, compared to (+)-OFZ, was seen when
either FBZ or rac-OFZ were orally administered to dogs,
sheep and horses (Delatour et al., 1990b; McKellar et al.,
2002; Sanchez Bruni et al., 2005b; Gokbulut et al., 2007).
In consequence, a major contribution to the antiparasitic
effect of (+) enantiomers may be expected since their (�)
antipodes are rapidly eliminated from the body. Conver-
sely, in rats and mice, (�)-ABZSO was the main enantio-
meric form recovered in the systemic circulation
(Delatour et al., 1991a; Capece et al., 2003; Garcı́a et al.,
2003). Species differences on the disposition of ABZSO
enantiomers are attributed to the relative participation of
the hepatic enzymatic systems involved in the biotransfor-
mation of ABZ and ABZSO.

The BZD anthelmintics are distributed or re-distributed
from the plasma into the gastrointestinal (GI) tract. Fol-
lowing intra-ruminal administration of netobimin (NTB)
to cattle, the plasma profiles of ABZSO and ABZSO2

metabolites reflected their GI disposition (Lanusse et al.,
1993a). Peak concentrations of both metabolites were fol-
lowed by a well-defined elimination phase in both plasma
and GI compartments (rumen, abomasum and ileum).
However, whereas plasma concentrations fell to undetect-
able levels (at 30–36 h post-treatment), the profiles of
ABZSO and ABZSO2 in the rumen, abomasum and ileum
showed an ‘extra slow’ elimination phase up to 72 h post-
treatment. A plasma-gastrointestinal pH gradient may
facilitate the secretion of these molecules to the lumen of
the GI tract (Lanusse and Prichard, 1993).

Benzimidazole sulfoxide metabolites are weak bases
(pKa values around 7.8) and at plasma pH there will be
a higher proportion of these molecules in the lipophilic
non-ionic form, which would facilitate its passive diffusion
from plasma to different tissues including the digestive
tract. A greater plasma/abomasum pH gradient, compared
to that of the rumen and ileum, would produce a strong
ionic trapping effect which may have accounted for the sig-
nificantly higher concentrations of ABZSO and ABZSO2

found in the abomasal content in comparison with plasma
and other GI contents (Lanusse and Prichard, 1993).

ABZ sulfa-metabolites may also reach the intestinal
lumen through intestinal secretion (Redondo et al., 1999)
and biliary excretion (Hennessy et al., 1989). Moreover,
the extensive ionic trapping in the abomasum has been
shown following intra-ruminal administration of ABZ to
sheep (Alvarez et al., 1999) and cattle (Sanchez et al.,
1997) and also following the SC and IV administration of
ABZSO to cattle (Lanusse et al., 1998; Cristòfol et al.,
2001). Enhanced AUC values in abomasal and intestinal
fluids (compared to plasma) were observed for both
ABZSO enantiomeric forms in these GI compartments
(Cristòfol et al., 2001). These increased concentration pro-
files were found in abomasal and intestinal fluids compared
to their respective mucosal tissues, which may reflect the
higher affinity of ABZSO for the most polar medium repre-
sented by the GI fluids. This observation is consistent with
the higher hydrophilicity of this metabolite compared to its
parent compound ABZ.

The transfer of ABZSO enantiomers across membranes
of parasite location tissues, and also their uptake/accumu-
lation within the parasite, are not enantioselective pro-
cesses and depend on the passive diffusion of both
molecules. In general, the tissue distribution pattern of
(+) and (�)-ABZSO reflect the enantioselective disposition
of both antipodes in the plasma of steers treated with
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ABZSO (Cristòfol et al., 2001). Thus, a higher availability
of the (+) enantiomeric form was observed in several target
tissues/fluids following rac-ABZSO intravenous adminis-
tration to cattle. Moreover, (+)-ABZSO was the main
enantiomer recovered from Fasciola hepatica specimens
collected from the bile ducts of ABZ-treated sheep (Alvarez
et al., 2000).

In humans ABZSO crosses the blood–brain barrier
(Takayanagui et al., 2002) and also the placenta, reaching
the fetus and embryos in higher and sustained concentra-
tions in both sheep and rats (Cristòfol et al., 1995, 1997;
Capece et al., 2002, 2003). In patients with active brain
parenchymal neurocysticercosis, plasma concentrations
of ABZSO enantiomers in humans were around two-fold
higher than those observed in cerebrospinal fluid
(Takayanagui et al., 2002). In sheep, the AUC ratio
between (+)-ABZSO and (�)-ABZSO in the maternal
plasma was 2.8, while in the fetal plasma this ratio
decreased to 1.6 (Capece et al., 2002). Such difference
may indicate an enantioselective transport process
through the placental membranes (i.e. the transference
of (�)-ABZSO is more efficient) and also metabolic differ-
ences between mother and fetus. In fact, a lower cyto-
chrome P450-mediated oxidation of (�)-ABZSO in the
fetus liver may also have accounted for a higher propor-
tion of this enantiomer in the fetal plasma. Interestingly,
(�)-ABZSO is thought as the main substrate for the pro-
duction of ABZSO2 in a cytochrome P450-mediated reac-
tion (Benoit et al., 1992).

Metabolism

Benzimidazole and pro-BZD anthelmintics are exten-
sively metabolised in domestic animals and man. Their
metabolic pattern and the resultant pharmacokinetic beha-
viour are relevant in the attainment of high and sustained
concentrations of pharmacologically active drug/metabo-
lites at the target parasite (Lanusse and Prichard, 1993).
The metabolism of BZD compounds occurs in both hepatic
and extra-hepatic tissues (Villaverde et al., 1995; Virkel et
al., 2004) as well as in GI fluids (Lanusse et al., 1992;
Capece et al., 2001; Virkel et al., 2002) and involves oxida-
tion of the parent sulfides, reduction of their respective
sulfoxide derivatives as well as acetylation, hydroxylation
and conjugation reactions.

After ABZ administration, the parent drug was not
detected in the plasma of treated animal and this has been
attributed to a first-pass oxidation in the liver. In fact, the
oxidation of ABZ to ABZSO has been shown to be cata-
lysed by the liver microsomal mixed function oxidases
(cytochrome P450 and flavin-monooxygenase [FMO] sys-
tems) in rats (Moroni et al., 1995), pigs (Souhaili El-Amri
et al., 1987), sheep (Galtier et al., 1986; Lanusse et al.,
1993b), calves (Lanusse et al., 1993b), some wild animals
(Velı́k et al., 2005a) and humans (Rawden et al., 2000).
Cytochrome P450 is primarily involved in ABZ hepatic sul-
foxidation in rats (Moroni et al., 1995) and humans (Raw-
den et al., 2000). This enzymatic system is also the major
contributor to FBZ hepatic sulfoxidation in rats (Murray
et al., 1992).

Inhibition of the cytochrome P450-mediated sulfoxida-
tion by piperonyl butoxide showed the participation of this
enzymatic system in the hepatic metabolism of FBZ in
horses (McKellar et al., 2002). Conversely, it has been
demonstrated that FMO is primarily involved in ABZ
hepatic sulfoxidation in sheep (Galtier et al., 1986; Lanusse
et al., 1993b; Virkel et al., 2004) and cattle (Lanusse et al.,
1993b; Virkel et al., 2004). For example, the FMO-
mediated sulfoxidation of ABZ and FBZ accounted for
the major production of total-ABZSO (60%) and total-
OFZ (80%) in both species (Virkel et al., 2004).

On the other hand, the parent drug FBZ and its sulfox-
ide metabolite are found in the bloodstream after the
administration of both FBZ and OFZ to sheep (Lanusse
et al., 1995). The hepatic sulfoxidation of FBZ to form
OFZ has been shown in rats (Murray et al., 1992), horses
(Montesissa et al., 1989; McKellar et al., 2002), pigs, sheep
and cattle (Montesissa et al., 1989). Furthermore, both
anthelmintically active sulfoxide derivatives undergo a sec-
ond, slower and irreversible oxidative step, yielding the
inactive sulfone (ABZSO2 and FBZSO2) metabolites,
which are also found in the bloodstream after administra-
tion of their respective parent sulfides.

Enantioselectivity of metabolic products occurs when
chiral metabolites are generated differentially (in qualita-
tive or quantitative terms) from a single achiral substrate
(Testa and Mayer, 1988). Two different Km values for
the production of each ABZSO enantiomer have been
reported after ABZ (pro-chiral molecule) incubation with
liver microsomes obtained from rats (Moroni et al., 1995)
and calves (Virkel et al., 2000). These observations are con-
sistent with the involvement of two different enantioselec-
tive enzymatic pathways on the liver sulfoxidation of
ABZ. Indeed, FMO and cytochrome P450 are known to
be oppositely enantioselective (Cashman, 1998). In rat
liver, the FMO system produces �63–69% of (+)-ABZSO,
whereas the cytochrome P450 isoenzymes 2C6 and 2A1 are
mainly involved in the production of (�)-ABZSO (Moroni
et al., 1995). The FMO-mediated liver sulfoxidation of
ABZ was enantioselective (100%) towards the (+)-ABZSO
production in both sheep and cattle (Virkel et al., 2004). On
the other hand, cytochrome P450 was found to be mainly
involved in the production of (�)-ABZSO in the liver of
these species.

Both enzymatic systems are also involved in the hepatic
sulfoxidation of FBZ in sheep and cattle. The FMO-
mediated sulfoxidation of FBZ generated both (+)-OFZ
and (�)-OFZ enantiomers in these species, however the
percentage enantioselectivity towards (+)-OFZ production
was 65% in sheep and 79% in cattle (Virkel et al., 2004).
Thus, both enantiomeric forms of ABZSO and OFZ were
produced by the liver microsomal cytochrome P450 in both
species. Inhibition of the hepatic cytochrome P450-
mediated sulfoxidation of FBZ by piperonyl butoxide
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reduced the production of (�)-OFZ in horses (McKellar et
al., 2002).

Clearly, the relative involvement of both FMO and
cytochrome P450 enzymatic systems on the production of
ABZ and FBZ sulfoxides accounts for the observed enan-
tioselective plasma disposition of these metabolites in the
different species studied. For example, (+)-ABZSO and
(+)-OFZ prevailed in the plasma of sheep, cattle and
horses, which is consistent with a higher FMO-mediated
production of these enantiomers in the liver. A minor con-
tribution of the cytochrome P450 system correlates well
with lower plasma AUC values observed for (�)-ABZSO
and (�)-OFZ. Also, (�) enantiomers are thought to be
the primary substrates for the cytochrome P450-mediated
production of their inactive sulfone metabolites in sheep
and goats (Delatour et al., 1990b), which may accounted
for their faster depletion from plasma at least in these spe-
cies. Conversely, after the individual administration of each
ABZSO enantiomer to rats, both enantiomeric forms are
converted into ABZSO2 to the same extent, which may
indicate a lower cytochrome P450 substrate enantioselec-
tivity for the sulfonation reaction in this species.

Induction of a cytochrome P450 isoenzyme, possibly
belonging from CYP 1A subfamily, was observed follow-
ing ABZ administration in multiple doses to goats (Benoit
et al., 1992) and mouflon (Velı́k et al., 2005b). Repeated
administration of ABZ led to decreased AUC values for
ABZSO and increased AUC values for ABZSO2 in the
plasma of goats. It has been shown that this auto-inductive
effect of ABZ is due to a substantial increase in the activity
and the expression of a CYP1A isoenzyme in rats, humans
(Arteinza et al., 2000) and mouflon (Velı́k et al., 2005b).
This enhanced metabolism was shown to be related to an
increased (�)-ABZSO consumption after repeated admin-
istration of ABZ to goats (Benoit et al., 1992), which
may confirm the involvement of cytochrome P450 in the
production of ABZSO2. Overall, the inductive effect of
ABZ may give rise to a considerable decrease in the thera-
peutic efficacy, which in addition may contribute to the
development of parasitic resistance.

In comparison to the liver, where oxidative metabolism
predominates, the GI microflora is very active in reductive
reactions of foreign compounds, particularly those contain-
ing nitro (Acosta de Pérez et al., 1992) and sulfoxide (Ren-
wick et al., 1986; Rowland, 1986) groups. Drug metabolic
processes taking place in the rumen are particularly impor-
tant in ruminant therapeutics. Once ABZSO and OFZ have
been distributed from the plasma to different GI compart-
ments both molecules could be reduced back by the GI
microflora, providing a source of ABZ in the GI tract.
The in vitro ruminal sulforeduction of both ABZSO
(Lanusse et al., 1992; Virkel et al., 1999) and OFZ (Beretta
et al., 1987) has been demonstrated in sheep and cattle.

The comparative sulforeduction of ABZSO and OFZ
enantiomers was described in ruminal fluid obtained from
sheep and cattle under in vitro conditions (Capece et al.,
2001; Virkel et al., 2002). A higher rate of depletion was
observed for the (+) enantiomeric form when ABZSO
was incubated with ruminal fluid from both species. The
concentrations of ABZ formed were between 55% and
158% greater after incubation of cattle ruminal fluid with
(+)-ABZSO, compared to that produced when (�)-
ABZSO was the incubated substrate. Similarly, a higher
production of ABZ was obtained when (+)-ABZSO was
incubated with sheep ruminal fluid. The metabolic profile
of both OFZ enantiomers followed a similar pattern to that
observed for ABZSO enantiomers. These results showed
that (+) enantiomers may be the main substrates for the
ruminal sulforeduction to form ABZ. Interestingly, a bi-
directional chiral inversion of one enantiomer into its anti-
pode was also observed for ABZSO (Virkel et al., 2002).
Thus, the (+) enantiomer appeared in the incubation med-
ium when (�)-ABZSO was the incubated substrate, and
also the (�) antipode was detected after (+)-ABZSO incu-
bation with ruminal fluid obtained from both sheep and
cattle.

FBZ and ABZ were recovered in high concentrations
from the faeces of donkeys orally treated with either
ABZ, FBZ or OFZ (Gokbulut et al., 2006a). The presence
of FBZ in OFZ treated donkeys suggests the GI reduction
of the administered compound in this animal species. The
microflora present in the caecum (the largest forestomach
cavity in horses and donkeys) may be involved in such
metabolic reaction. The extra-hepatic sulforeduction of
ABZSO into ABZ was also suggested in rats (Capece et
al., 2008). These authors recovered small amounts of
ABZ in rat urine after oral administration of ABZSO.
Conversely, the sulforeduction of OFZ into FBZ was not
observed in dogs (Gokbulut et al., 2007).

Species differences in the stereoselective metabolism of ABZ

and FBZ

There are species differences on the enantioselective bio-
transformation process of ABZ and FBZ. The enantio-
meric ratio of (+)-ABZSO/(�)-ABZSO ranged between
2.8 and 3.8 after ABZ incubation with mouflon hepato-
cytes (Velı́k et al., 2003). Conversely, rat hepatocytes pro-
duced both enantiomeric forms in equal proportions
(enantiomeric ratio = 1.0–1.1). The mean ABZSO enantio-
meric ratio (±) found after ABZ incubation with sheep
liver microsomes was 4.11, higher than in cattle (2.63) (Vir-
kel et al., 2004). Stereoselective metabolism of drugs is
most commonly the major contributing factor to stereose-
lectivity in pharmacokinetics, and differences in the amount
or activity of the involved enzymes may be the source of
the species differences in the kinetics of the enantiomers.
For example, FBZSO2 was not detected in dogs (Gokbulut
et al., 2007), while it was detected in donkeys (Gokbulut et
al., 2006a), horses (McKellar et al., 2002; Sanchez Bruni et
al., 2005a), sheep (Marriner and Bogan, 1981a,b; Sanchez
Bruni et al., 2005b), pigs (Petersen and Friis, 2000), cattle
(Short et al., 1987a; Knox and Steel, 1997), goats (Short
et al., 1987b) and rabbits (Short et al., 1987c). These find-
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ings may indicate that different metabolic routes are
involved in OFZ elimination among species (Short et al.,
1987a,b, 1988a).

The oxidative metabolism of FBZ was studied in hepatic
subcellular fractions prepared from livers of cattle, sheep,
goats, chickens, ducks, turkeys, rats, rabbits and catfish.
All these species produced the sulfoxide metabolite OFZ,
and p-hydroxyfenbendazole (FBZ-OH) was produced by
all species except sheep (Short et al., 1988b). Horses meta-
bolise FBZ and OFZ more quickly than ruminants, with
low and short bioavailability and residence time (Marriner
and Bogan, 1985; McKellar et al., 2002; Gokbulut et al.,
2006b). These metabolic differences among species may
influence the disposition of the enantiomers.

The stereospecific ABZ sulfoxidation to (�)-ABZSO
was lower in young male goats and deer than in castrated
male goats, non castrated male mouflon and non castrated
male sheep (Velı́k et al., 2005a). In the same study, these
authors observed that (�)-ABZSO production from ABZ
was higher in roe deer stag, fallow buck and red deer stag.
In different studies carried out in rats, the proportion of
(+)-ABZSO/(�)-ABZSO was 1.0–1.1 (Velı́k et al., 2003).
Overall, a higher proportion of (�)-ABZSO was observed
in rats, whilst in man and other domestic and wild animal
species predominated the production of (+) ABZSO.

Excretion

ABZ, FBZ and their respective metabolites are excreted
in urine and faeces (Gyurik et al., 1981; Short et al., 1988a;
Hennessy et al., 1989; Capece et al., 2008). The magnitude
of the metabolite excretion depends on the animal species
and on the component formed in the metabolic pathways.
For example, Short et al. (1988a) observed that after FBZ
administration, FBZSO2 was the major metabolite excreted
in turkey, whereas in chickens and ducks it was hydroxy-
fenbendazole (FBZ-OH). In sheep, 47% of a total dose of
FBZ was excreted in bile (Hennessy et al., 1993b), and
34% as conjugated metabolites. In goats, the main metabo-
lite excreted was FBZ-OH (Short et al., 1987b). Small
amounts were recovered as OFZ, indicating that the oxida-
tive reaction is not the main pathway for FBZ elimination,
compared to ABZ, because the sulfoxide (ABZSO) is the
main metabolite recovered in urine (Hennessy et al.,
1989; Capece et al., 2008).

A stereoselective intestinal elimination of (�)-ABZSO
was observed in rats and sheep (Merino et al., 2003). How-
ever, similar plasma and urine ABZSO enantiomeric pro-
portions in rats may indicate that the urinary elimination
of ABZSO enantiomers was not enantioselective in this
species (Capece et al., 2008). On the other hand, a higher
renal clearance was observed for (�)-ABZSO compared
to (+)-ABZSO in humans (Lanchote et al., 2004), which
may indicate stereoselective urinary excretion in this spe-
cies. There are species differences in the renal excretion of
sulfoxide enantiomers and these may help to explain differ-
ences in their plasma disposition kinetics. The intestinal
excretion of ABZSO seems to occur though a complex
mechanism, combining passive diffusion and active trans-
port with involvement of ATP/glucose dependent or other
transporters which help to explain why this process could
be enantioselective (Merino et al., 2003).

In ewes treated with the pro-drug NTB, (+)-ABZSO
was the main enantiomeric form in plasma, whilst the ratio
of the faecal AUC of (�)-ABZSO (172.22 lg h/g) and (+)-
ABZSO (187.19 lg h/g) was 0.92 (Gokbulut et al., 2006b);
this observation may indicate an enantioselective biliary/
faecal elimination of this sulfoxide metabolite.

Pharmacodynamic aspects and side effects

An effective antiparasitic treatment depends on the abil-
ity of drugs to reach high, effective and sustained concen-
trations within the parasites. The relevance of drug
uptake by helminth parasites was observed by Mottier et
al. (2006), when living cestode and nematode specimens
were found to contain significantly low concentrations of
FBZ compared to dead parasites.

The uptake/accumulation of BZD compounds within
the parasite depends mainly on their passive drug transfer.
After ABZ administration to sheep, similar concentrations
of (+)-ABZSO were measured in plasma, bile and Fasciola

hepatica specimens recovered from bile ducts (Alvarez et
al., 2000) and this enantiomer may play a major part in
ABZ’s trematodicidal action.

The anthelmintic activity of BZD compounds also
depends on the affinity for the cytosolic proteins of differ-
ent helminth parasites. For example, ABZSO showed high
affinity for cestode cytosolic proteins compared to those of
nematodes and trematodes (Solana et al., 2002). It has been
shown that this binding is enantioselective; the enantio-
meric binding ratios (�)-ABZSO/(+)-ABZSO were 43/57,
36/64 and 91/9, for Ascaris spp., Moniezia spp. and Fas-

ciola hepatica, respectively (Solana et al., 2002).
The relative potency of ABZSO enantiomers have been

evaluated under in vitro conditions (Bolás-Fernández et
al., 2004). These authors observed that (+)-ABZSO has
higher activity against Trichinella spiralis than its antipode
or the racemic form. At 0.5 lg/mL in the incubation med-
ium, all three compounds were highly effective in reducing
the viability of the larvae, whereas at lower concentrations
(0.1 lg/mL) only (+)-ABZSO induced a significant reduc-
tion in larval viability compared to controls. Using Hae-

monchus contortus larvae as model, the efficacy of rac-
ABZSO and (+)-ABZSO were 94%, whereas the efficacy
of (�)-ABZSO was 72% (Mottier et al., 2004). These obser-
vations suggested a low pharmacological activity of (�)-
ABZSO. On the other hand, (�) ABZSO is the main sub-
strate for the production of ABZSO2, as explained above.
Altogether these observations support the idea that the
contribution of (�)-ABZSO is relatively low compared to
(+)-ABZSO under in vivo conditions.

OFZ and ABZSO exhibit high potency against suscepti-
ble parasites. However, they show low diffusion rates and
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low affinity for parasite tubulin compared to their parent
compounds (Lacey et al., 1987; Lubega and Prichard,
1991). For this reason, the in vivo anthelmintic efficacy of
the sulfoxide enantiomers may be facilitated by the gastro-
intestinal sulforeduction into their more active and lipophi-
lic sulfide forms.

In general, BZD anthelmintics compounds are safe.
Data on their teratogenic effects after NTB, ABZ and
ABZSO administration to rats (Delatour et al., 1981; Cris-
tòfol et al., 1997; Navarro et al., 1999; Capece et al., 2003;
Teruel et al., 2003), sheep (Fabre et al., 1989; Navarro et
al., 1998) and also in cell cultures of rat embryos (Whit-
taker and Faustman, 1991) are available. These authors
observed that these compounds cause weight loss, skeletal
malformations and embryotoxicity. In fact, the detection
of ABZSO in rats embryos (Cristòfol et al., 1997; Capece
et al., 2003) and sheep fetuses (Cristòfol et al., 1995;
Capece et al., 2002) may explain the malformations attrib-
uted to these molecules (Cristòfol et al., 1997; Navarro et
al., 1998, 1999; Capece et al., 2003). However, whether
these effects have been produced by one or both enantio-
meric forms is unknown. OFZ also induced mutagenic
effects and embryotoxicity, including teratogenicity in mice
(El-Makawy et al., 2006). Studies concerning the terato-
genic effect of each enantiomeric form separately may
improve the understanding of the toxicological effect of
these compounds.

Conclusions

Pharmacokinetic differences of OFZ and ABZSO enan-
tiomers were observed in all studied animal species after
administration of the racemic form and/or after adminis-
tration of their respective pro-chiral sulfide compounds.
However, there is a lack of information on the kinetic
behaviour after separate administration of each enantio-
meric form to domestic animals, particularly in ruminants.
Since the sulfoxide compounds are more hydrophilic than
the sulfide compounds, the preparation of the enantiomers
for parenteral administration may be feasible. However,
the available data on the pharmacological behaviour of
the BZD sulfoxide enantiomers could be only exploited
after the specific activity of each enantiomer against differ-
ent target parasites has been established. Limited informa-
tion is available on individual anthelmintic activity of the
enantiomers in domestic animals and further work is
required to assess the possible manufacture and use of
the different BZD sulfoxide enantiomers in livestock
animals.
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