
Computers and Electronics in Agriculture 87 (2012) 14–18
Contents lists available at SciVerse ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier .com/locate /compag
Application note

RESTful Web Services improve the efficiency of data transfer of a whole-farm
simulator accessed by Android smartphones

Mauricio Arroqui c,d,⇑, Cristian Mateos a,b,1, Claudio Machado c, Alejandro Zunino a,b,1

a ISISTAN Research Institute – UNICEN, Tandil (B7001BBO), Buenos Aires, Argentina
b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires, Argentina
c Facultad de Ciencias Veterinarias – UNICEN, Tandil (B7001BBO), Buenos Aires, Argentina
d Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), CABA, Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 December 2011
Received in revised form 15 May 2012
Accepted 24 May 2012

Keywords:
Agricultural Information Systems
Web Services
SOAP
REST
Simugan
Mobile devices
0168-1699/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.compag.2012.05.016

⇑ Corresponding author at: Facultad de Ciencias V
(B7001BBO), Buenos Aires, Argentina. Tel.: +54 2293

E-mail address: marroqui@alumnos.exa.unicen.edu
1 Tel.: +54 2293 439682x35; fax: +54 2293 439681.
The relentlessly increasing importance and application of Information and Communication Technologies
(ICTs) in Agriculture have given birth to a new field called e-Agriculture, which focus on improving agri-
cultural and rural development through a variety of technologies. In this sense, Agricultural Information
Systems (AISs) are distributed sources of information that exploit ICTs to make agricultural processes and
decision making more efficient. In order to integrate AISs and therefore build added value AISs, Web Ser-
vice technologies seem to be the right path towards heterogeneous systems integration. However, there
is still uncertain which is the best implementation approach to integrate Web Service-enabled AISs and
mobile devices, i.e., the remote information accessors by excellence in rural areas. We comparatively
explore the outcomes of employing either Simple Object Access Protocol (SOAP) or REpresentational State
Transfer (REST) approaches in a Web Service-enabled whole-farm simulator accessed from Android-pow-
ered smartphones. Memory usage was 24% lower in SOAP, but even older and lower-end smartphones
have enough RAM to avoid detrimental effects on performance. REST-based approaches broadly incur
in less byte transferred compared to SOAP, which has huge implications on costs. That is particularly
important when the Internet is accessed via GPRS or 3G protocols and pay-per-byte data plans as in most
of Latin America rural areas. However, when unlimited data usage became less costly and more available
in such areas, SOAP might be preferred due to the higher maturity of both the protocol and the available
developer environments.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

There is a rapid development of Information and Communica-
tion Technologies (ICTs) applied to Agriculture, such as geo-refer-
enced remote-sensing, on-line sensors, and public databases
(weather, markets, etc.). This fact poses a continuous and increas-
ing challenge to design and develop new technological strategies to
allow farmers accessing new and high quality data for using them
as specific information towards better decision making. Within
these ICTs, Agricultural Information Systems (AISs) are rich sources
of information that are created, maintained and published for the
benefit of farmers and agriculturalists (Laliwala et al., 2006). With
quite diverse goals such as real-time data monitoring, recommen-
dation and decision-making support and farm simulation, amongst
others, there are increasing examples of AISs published on the Web
ll rights reserved.

eterinarias – UNICEN, Tandil
439850x223.
.ar (M. Arroqui).
that expose information and data to end users (Murakami et al.,
2007; Liang et al., 2010; Ntaliani et al., 2010; Pimenidis and Geor-
giadis, 2010).

In this arena, there is now an increasing need for systems inte-
gration, in the sense that current AISs normally do not operate only
as information sources but also as information finders, extractors
and integrators, which means that a single AIS can use as input
the information produced by another AIS (Laliwala et al., 2006).
Service-Oriented Computing (SOC) is a contemporary computing
paradigm that supports the development of distributed applica-
tions in heterogeneous network environments (Huhns and Singh,
2005). Basically, SOC is often materialized through Web Services
technologies (Bichler and Lin, 2006), a set of well-known standards
that enable the construction of software components with well-de-
fined interfaces that can be located and called via ubiquitous Web
protocols (Curbera et al., 2003, Vaughan-Nichols, 2002).

Most of the existing Web Services have been built by employing
the Simple Object Access Protocol (SOAP) (Box et al., 2000), a ser-
vice construction approach by which Web Services are thought as
‘‘operations’’ that can be executed against the system (or an AIS in

http://dx.doi.org/10.1016/j.compag.2012.05.016
mailto:marroqui@alumnos.exa.unicen.edu.ar
http://dx.doi.org/10.1016/j.compag.2012.05.016
http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag


M. Arroqui et al. / Computers and Electronics in Agriculture 87 (2012) 14–18 15
our case), each composed of input and output parameters. In other
words, from the point of view of a client application, any system is
viewed as a remote module with one or more operations. More re-
cently, the REpresentational State Transfer (REST) construction ap-
proach (Vinoski, 2008) has appeared as a brand new and cost-
effective alternative for building Web Services, which is based on
exposing a system via ‘‘resources’’ rather than operations. REST
promotes and generalizes the principles of the World Wide Web,
in the sense that remote systems (sites) offer client applications
(browsers) access to resources (pages) by relying on a reduced
set of standard actions (GET, POST, PUT, DELETE, etc.). Although
there is a dilemma regarding which approach is better, it is known
that REST is more intuitive for modeling stateless – as in HTTP –
Web Services (Vinoski, 2008) and therefore accessing informa-
tion-oriented systems.

Moreover, mobile applications have been appointed as a new
alternative for economic and social improvement in rural commu-
nities (Cranston, 2010). Current mobile devices come in a number
of flavors (laptops, smartphones, tablets) and support several con-
nection mechanisms (2G, 3G, GPRS, HDSPA, Wi-Fi). As an example,
the Viticulture Service-Oriented Framework (VSOF) system (Cunha
et al., 2010) uses mobile devices for decoding certain physical tags
that are placed in the field. Then, by pointing a mobile device to a
tag, the field location is inferred, and a viticulturalist may down-
load or upload data such as climatic data or pest incidence from/
to a central database. Although processing capabilities and battery
lifetime of mobile devices have greatly improved over time, also
the quantity of available and needed information has increased.
Therefore, there is a need for more suitable technologies to use ser-
vices from resource-constrained devices. In this sense, the REST ap-
proach relies on lightweight invocation protocols (Vinoski, 2008),
which might be more smartphone-friendly when remotely access-
ing information-oriented systems such as AISs.

With the prospective of increasing simulator users through mo-
bile applications, in this work we comparatively explore the out-
comes of employing either SOAP or REST approaches in a Web
Service-enabled whole-farm simulator accessed by smartphones
particularly focusing on the Android platform due to its increasing
popularity among users (Butler, 2011).

2. Materials and methods

2.1. Simugan Web Service

Simugan is a web-based whole-farm simulator, oriented to as-
sist the research, teaching and technology transfer of alternative
beef cattle production systems (Machado et al., 2010). Any simula-
tion requires a scenario, which contains initial values and condi-
tional rules to manage a farm. Scenarios are built with data
entered through different user interfaces, which allow the user to
Fig. 1. Mapped domain information.
create, save, modify, retrieve or delete her/his own scenario(s).
Simulation outcomes are sent to the logged user’s mail account
as a spreadsheet file.

To design and develop Web Services for Simugan, the key infor-
mation normally requested by users through desktop Web brows-
ers was detected (Fig. 1). This information includes data about
users, scenarios, and running simulations (i.e., general data of all
of them and partial results of any in particular).

This information was exposed as seven generic services, form-
ing a Web Service frontier:

1. Getting a user’s scenarios (getScenarios).
2. Starting a simulation using a particular scenario (runSimulation).
3. Getting information of a particular running simulation (get-

SimulationData).
4. Getting a user’s running simulations (getRunningSimula-

tions).
5. Stopping a simulation (deleteStopSimulation).
6. Getting a particular user information (getUserInfo).
7. Updating a particular user information (putChangeInfo).

The technical design and implementation of the above services
varied according to the two possible Web Service materializations
of the SOC paradigm explored, i.e., SOAP and REST. These are de-
scribed next.

2.2. The service oriented computing paradigm

The key concept of the SOC paradigm is the interoperability be-
tween different software applications running on a variety of soft-
ware and hardware platforms (Huhns and Singh, 2005). SOC is
known as a loosely coupled architecture (Foster, 2005) and most
of its underpinning concepts are developed in the context of Web
Services (Singh and Huhns, 2006). The general architectural model
for Web Services is composed of a Service Provider (SP), a Service
Registry (SR) and a Service Consumer (SC). The SP publishes and
unpublishes services to an SR. Then, the SC looks for a desired ser-
vice in the SR. If the desired service is found, a binding between the
SC and SP takes place. This binding could be accomplished by using
two conceptually different approaches: SOAP and REST.

2.2.1. Simple Object Access Protocol
SOAP (Box et al., 2000) is a protocol for exchanging information

in a decentralized, distributed environment. The protocol specifica-
tion defines an XML-based (http://www.w3.org/XML/) envelope
for exchanging messages and a set of encoding rules for converting
AIS platform-specific data types into XML representations. This
information is contained in a document called Web Service
Description Language (WSDL, http://www.w3.org/TR/wsdl) that
acts as a contract between the SC and the SP for messaging (Cur-
bera et al., 2002).

In the SOAP approach, the seven exposed services were mapped
to seven SOAP operations. All these SOAP operations have a request
and response message. All request messages comprise the creden-
tials of the user who starts the request and, in some cases, extra
information. For the case of the runSimulation operation the
scenario identification that will be simulated is needed. In the case
of the getSimulationData and deleteStopSimulation opera-
tions the simulation identification associated to the simulation to
be returned or stopped, respectively, must be also included. Finally,
in case the putChangeInfo operation the user mail that will be
changed is needed. Response messages are composed by a data
type or a primitive integer, long or boolean value that defines the
data requested. Thus, our SOAP-based Web Service frontier com-
prised four data types: User, Scenario, SimulationRunning and Sim-
ulationData (Fig. 1).

http://www.w3.org/XML/
http://www.w3.org/TR/wsdl


Fig. 2. Screenshots of the mobile client developed for calling the implemented Web Services (the implemented application – including its source code – its available at http://
www.exa.unicen.edu.ar/c~mateos/files/android-simugant-client.zip).

16 M. Arroqui et al. / Computers and Electronics in Agriculture 87 (2012) 14–18
The implementation of the services was carried out by using the
Apache CXF Framework (http://cxf.apache.org/) with the contract-
first approach to WSDL generation (Erl, 2005, Mateos et al., 2010).
We wrote the WSDL and the framework automatically generates
Java classes (http://www.java.com/en/). In this case, 18 Java classes
were automatically generated, i.e., seven for request messages, se-
ven for response messages and four for the data types. The devel-
oper has to maintain the WSDL and an extra Java class that
connects the Web service frontier and the business Java model
classes.
Fig. 3. Average memory usage.
2.2.2. REpresentational State Transfer
REST (Fielding, 2000) is an architectural approach to SOC which

uses basic HTTP methods (PUT, POST, GET, and DELETE) to access a
resource applying the correct semantic usage of them. Strictly, a re-
source is any information that could be referenced by an Uniform
Resource Identifier (URI) such as a document, an image or a weath-
er forecast service (e.g., http://www.weather.gov/forecasts/xml/
rest.php).

In the REST-based Simugan Web Service frontier the GET meth-
od was used to retrieve a specific resource, which is analogous to
the operations getScenarios, getRunningSimulations, get-
SimulationData and getUserInfo from the SOAP variant of
the frontier. The POST method was used to start a new simulation
on the server (operation runSimulation), which creates a new
SimulationRunning resource. The DELETE method was used to stop
the execution of a running simulation (operation deleteStop-

Simulation), which deletes an instance of the SimulationRunning
resource. Finally, the PUT method was used to update some user
information, such as e-mail, address and phone (operation put-

ChangeInfo). In contrast to SOAP, the user credentials and the ex-
tra information are added to each URL when accessing each
resource. The response messages are composed by representating
domain information (Fig. 1) via JavaScript Object Notation (JSON,
http://www.json.org/).

The Jersey Framework (http://jersey.java.net/) and the JSON li-
brary were used for implementing the resulting REST resources
and encoding data to/from clients, respectively. We implemented
the domain information as four Java classes and one Java class that
connects the Web Service frontier and the business Java model
classes.

2.3. Android smartphone experiments

The client side application consuming both the obtained SOAP
and REST Web Services was designed and implemented over the
Android 2.2 (http://www.android.com) platform (Fig. 2). It in-
cluded four Web Service invocation supports, one for SOAP by
using the library ksoap2 (http://ksoap2.sourceforge.net/) and three
for REST by using Apache’s built-in HTTP Connector, the Spring An-
droid Client (http://www.springsource.org/spring-android) and
the Restlet invocation library (http://www.restlet.org/). The three
REST libraries present differences about programmability. While
Spring provides a complete, easy to use Application Programming
Interface (API), in the case of Restlet and Apache, the developer is
responsible for parsing the service response. Additionally, in the
latter library, the management of Internet connections is also
responsibility of the developer. It is worth noting that this client

http://cxf.apache.org/
http://www.java.com/en/
http://www.weather.gov/forecasts/xml/rest.php
http://www.weather.gov/forecasts/xml/rest.php
http://www.json.org/
http://jersey.java.net/
http://www.android.com
http://ksoap2.sourceforge.net/
http://www.springsource.org/spring-android
http://www.restlet.org/
http://www.exa.unicen.edu.ar/cmateos/files/android-simugant-client.zip
http://www.exa.unicen.edu.ar/cmateos/files/android-simugant-client.zip


M. Arroqui et al. / Computers and Electronics in Agriculture 87 (2012) 14–18 17
application served only as experimental material to test technolog-
ical options.

The evaluation of each invocation support was performed in an
experiment that included 15 runs to get dumps of allocated mem-
ory, time elapsed, and bytes sent/received in the Android smart-
phone application when calling the operations by using each
Web Service implementation client.

3. Results

The average memory usage was lower in SOAP by 24% (Fig. 3).
In our experiments, the highest differences regarding RAM alloca-
tion were between REST Spring and SOAP (i.e., 0.7 MB). The aver-
age time elapsed (Fig. 4a) was similar between each Web Service
approach. REST Spring delivered better performance in three ser-
vices (runSimulation, getSimulationData and getRun-

ningSimulations), SOAP had better performance in other three
services (getScenarios, getUserInfo and putChangeInfo)
and REST Apache registered the best performance in one service
(deleteStopSimulation). Regarding average total time results
(Fig. 4b), REST Spring had better performance than the other
Web Service implementations, whereas REST Apache and SOAP
delivered the longer times. Additionally, the average between REST
approaches was less than SOAP (i.e., 32,701 against 37,432 ms).
(a) Average elapsed time per service invocation.

Fig. 4. Elapse

(a) Average bytes sent by android client application.

Fig. 5. Bytes tr
The average bytes sent (Fig. 5a) and average bytes received
(Fig. 5b) by the Android application presented a clear difference
in favor of the REST-based implementations. In both figures, REST
Apache transferred less bytes, followed by REST Restlet, then REST
Spring, and lastly SOAP.

4. Discussion

Different authors have compared REST and SOAP from several
angles, in order to identify for example how the interactions be-
tween distributed parties manifest (zur Muehlen et al., 2005),
how architectural principles and decisions are applied (Pautasso
et al., 2008) and how the performance on interacting with stateful
resources is (Hamad et al., 2010). To the best of our knowledge, this
is the first comparative study consuming stateless (or REST ser-
vices) and SOAP services of a real AIS from Android-powered
smartphones. Smartphones are nowadays the most popular form
of mobile device for accessing remote information and the share
market of those Android-based ones, has been astonishingly grow-
ing (Butler, 2011).

The results showed that the SOAP approach saved 0.7 MB
against the worst REST approach in RAM allocation. However, this
is not a serious issue, since most smartphones in the market have
at least 256 MB of RAM nowadays. Instead, with respect to elapsed
(b) Average total time.

d time.

(b) Average bytes received by android client application.

ansferred.



18 M. Arroqui et al. / Computers and Electronics in Agriculture 87 (2012) 14–18
time, the REST-based Web Service frontier had a slightly better
performance than the SOAP-based frontier. In the case of bytes
sent and received the difference was greater, since REST Spring
was the worst REST-based approach and was 112% and 310% more
efficient than SOAP in bytes sent and in bytes received,
respectively.

By the nature of AIS, such as the whole-farm simulator Sim-
ugan, many users may need to access it from rural areas. In Latin
America, data transference is mostly restricted to 3G and GPRS pro-
tocols which present high variability in costs. Therefore, if the Web
Service will be consumed by smartphones, which protocol will be
applied is not a minor issue. For instance, a known international
carrier with branch offices in most of Latin America supplies 3G/
GPRS access from extreme values of US$ 0.01/MB in Brazil to US$
1.43/MB in Nicaragua. In the case of Argentina the cost is US$
0.263/MB for the same carrier, hence our 15-round test per Web
Service was US$ 0.073 (REST Apache), US$ 0.094 (REST Spring),
US$ 0.075 (REST Restlet) and US$ 0.367 (SOAP), which means over
costs of 350 % with the latter. To illustrate the cost difference by
method to a particular user, if a livestock consultant runs in aver-
age 15 simulations by month to model a particular small farm of
one of her/his clients, over REST Apache alternative she/he would
pay an extra 40, 5 or 530 US$ per year by using REST Spring, REST
Restlet or SOAP respectively.

5. Conclusions

Memory usage was 24% lower in SOAP, but even older and low-
er-end smartphones have enough RAM to avoid detrimental effects
on performance. REST-based approaches, particularly REST Apache,
provide better performance in terms of bytes transferred versus
SOAP, which has huge implications on costs. That is particularly
important when Internet is accessed via GPRS or 3G protocols as
in most of Latin America rural areas, and data plans are charged
per byte transferred. However, when unlimited data usage became
less costly and more available in such areas, SOAP might be pre-
ferred due to the higher maturity of both the protocol and the
available developer environments.

References

Bichler, M., Lin, K.-J., 2006. Service-oriented computing. IEEE Computer 39 (3), 99–
101.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,
Thatte, S., Winer, D., 2000. Simple Object Access Protocol. <http://www.w3.org/
TR/soap/>.

Butler, M., 2011. Android: changing the mobile landscape. IEEE Pervasive
Computing 10, 4–7.
Cranston, P., 2010. The Potential of Mobile Applications for Positive Social and
Economic Change in Rural Communities. <http://m4agriculture.pbworks.com/f/
Mobile+Applications+and+m-Agriculture.pdf>.

Cunha, C.R., Peres, E., Morais, R., Oliveira, A.A., Matos, S.G., Fernandes, M.A., Ferreira,
P., Reis, M., 2010. The use of mobile devices with multi-tag technologies for an
overall contextualized vineyard management. Computers and Electronics in
Agriculture 73 (2), 154–164.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S., 2002.
Unraveling the Web Services Web: an introduction to SOAP, WSDL, and UDDI.
Internet Computing, IEEE 6 (2), 86–93.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S., 2003. The next step in
Web Services. Communications of the ACM 46 (10), 29–34.

Erl, T., 2005. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

Fielding, R.T., 2000. Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. Thesis, University of California.

Foster, I., 2005. Service-oriented science. Science 308 (5723), 814–817.
Hamad, H., Saad, M., Abed, R., 2010. Performance evaluation of RESTful Web

Services for mobile devices. International Arab Journal of e-Technology 1, 72–
78.

Huhns, M.N., Singh, M.P., 2005. Service-oriented computing: key concepts and
principles. IEEE Internet Computing 9 (1), 75–81.

Laliwala, Z., Sorathia, V., Chaudhary, S., July 2006. Semantic and rule based event-
driven services-oriented agricultural recommendation system. In: Proceedings
of the 26th IEEE International Conference/Workshops on Distributed
Computing Systems. p. 24.

Liang, S., Wenxing, B., Bingbing, L., Guangming, L., Hui, P., 2010. Cow breeding
system research based on SOA and Web Services. World Congress on Software
Engineering 1, 317–320.

Machado, C., Morris, S., Hodgson, J., Arroqui, M., Mangudo, P., 2010. A Web-based
model for simulating whole-farm beef cattle systems. Computers and
Electronics in Agriculture 74 (1), 129–136.

Mateos, C., Crasso, M., Zunino, A., Campo, M., 2010. Separation of concerns in
service-oriented applications based on pervasive design patterns. In:
Proceedings of the 2010 ACM Symposium on Applied Computing. SAC ’10.
ACM, New York, NY, USA, pp. 849–853.

Murakami, E., Saraiva, A.M., Junior, L.C.R., Cugnasca, C.E., Hirakawa, A.R., Correa, P.L.,
2007. An infrastructure for the development of distributed service-oriented
information systems for precision agriculture. Computers and Electronics in
Agriculture 58 (1), 37–48 (Precision Agriculture in Latin America).

Ntaliani, M., Costopoulou, C., Karetsos, S., Tambouris, E., Tarabanis, K., 2010.
Agricultural e-government services: an implementation framework and case
study. Computers and Electronics in Agriculture 70 (2), 337–347 (Special Issue
on Information and Communication Technologies in Bio and Earth Sciences).

Pautasso, C., Zimmermann, O., Leymann, F., 2008. Restful Web Services vs. big Web
Services: making the right architectural decision. In: Proceeding of the 17th
International Conference on World Wide Web. WWW ’08. ACM, New York, NY,
USA, pp. 805–814.

Pimenidis, E., Georgiadis, C.K., 2010. Web Services for rural areas – security
challenges in development and use. Computers and Electronics in Agriculture
70 (2), 348–354 (Special Issue on Information and Communication
Technologies in Bio and Earth Sciences).

Singh, M.P., Huhns, M.N., 2006. Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley & Sons, Ltd., Chichester, UK.

Vaughan-Nichols, S., 2002. Web Services: beyond the hype. Computer 35 (2), 18–21.
Vinoski, S., 2008. RPC and REST: dilemma, disruption, and displacement. IEEE

Internet Computing 12, 92–95.
zur Muehlen, M., Nickerson, J.V., Swenson, K.D., 2005. Developing Web Services

choreography standards – the case of REST vs. SOAP. Decision Support Systems
40 (1), 9–29.

http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://m4agriculture.pbworks.com/f/Mobile+Applications+and+m-Agriculture.pdf
http://m4agriculture.pbworks.com/f/Mobile+Applications+and+m-Agriculture.pdf

	RESTful Web Services improve the efficiency of data transfer of a whole-farm simulator accessed by Android smartphones
	1 Introduction
	2 Materials and methods
	2.1 Simugan Web Service
	2.2 The service oriented computing paradigm
	2.2.1 Simple Object Access Protocol
	2.2.2 REpresentational State Transfer

	2.3 Android smartphone experiments

	3 Results
	4 Discussion
	5 Conclusions
	References


