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Abstract

Slot coating is used in the manufacturing of functional films, which rely

on specific particle microstructure to achieve the desired performance. Final

structure on the coated film is strongly dependent on the suspension flow

during the deposition of the coating liquid and on the subsequent drying

process. Fundamental understanding on how particles are distributed in the

coated layer enables optimization of the process and quality of the produced

films.

The complex coating flow leads to shear-induced particle migration and

non-uniform particle distribution. We study slot coating flow of non-colloidal

suspensions by solving the mass and momentum conservation equations cou-

pled with a particle transport equation using the Galerkin/Finite element

method. The results show that particle distribution in the coating bead and

in the coated layer is non-uniform and is strongly dependent on the imposed

flow rate (wet thickness).
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free surface flow, slot coating, particle suspension

1. Introduction

Many coated products, such as anti-reflection, hydrophobic films and flex-

ible electrodes, rely on a designed microstructure in order to achieve the de-

sired functionality. One way of mass producing functional coated films is by

depositing a particle suspension onto a moving substrate and subsequently

drying the liquid to form the final solid film. The final microstructure of

the coated layer is directly affected by the suspension flow during the coat-

ing and drying processes, due to particle migration effects. Cardinal et al.1

have shown how the relative strength of liquid evaporation, particle diffusion

and sedimentation affect the particle distribution on the coated film during

drying. A 1-D particle conservation equation was used to describe the par-

ticle concentration evolution during drying by taking into account for the

aforementioned effects, while cryo-electron microscopy images were used to

validate the predicted drying map. However, the model assumes that the

particle concentration is uniform through the thickness of the film in the

initial stages of drying. This may not be the case when the liquid film is

deposited on the substrate by slot coating process, for example, where high

shear rate gradient are developed in the coating bead.

If the suspended particles are large enough, Brownian motion, van der

Walls and electrical double layer forces between particles can be neglected

and the resulting liquid is a non-colloidal suspension. In this condition,

the suspension viscosity becomes a function of the particle volume fraction

only.2,3, 4, 5 When this suspension is set in non-uniform flow (as those mostly
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encountered in coating processes), particles are transported by convection,

sedimentation/buoyancy and shear rate and viscosity gradient driven diffu-

sion. The last two mechanisms are frequently called shear-induced particle

migration. This behavior was described, for example, in the suspension flows

inside cylindrical tubes6 and in the Coutte flow between concentric cylin-

ders.7 The main observation was that particles migrate from regions with

higher to lower shear rate. Later, Leighton and Acrivos8 developed a rational

explanation for these mechanisms based on the frequency of the inter-particle

collisions and the effective viscosity of the suspension, both being functions

of the non-uniform local particle volume fraction. This phenomena has been

confirmed experimentally in different situations.9,10

Based on the work of Leighton and Acrivos,8 Phillips et al.11 proposed a

convective-diffusion equation that describes the particle concentration vari-

ation in laminar flows. This approach was called diffusive flux model and

depends on two diffusion parameters, which they considered as constants

to be fitted using experimental results. By considering the fluid as Newto-

nian, but with the viscosity being function of the local particle concentration,

Phillips et al.11 solved the particle transport equation coupled with the mo-

mentum conservation for two flow configurations: Poiseuille pressure driven

flow in a circular tube and Couette flow between rotating cylinders. The

diffusive flux model was also successfully used in different analyses.12,13,14

However, the model cannot correctly predict the radial particle migration of

some viscometric flows and different improvements and corrections have been

proposed. For example, Krishnan et al.15 suggested that the curvature of

streamlines also contributes to the radial particle migration. More recently,

3
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Kim et al.16 developed a model to take into account this curvature-induced

particle flux. Tetlow et al.17 also suggested that the diffusion parameters of

the model should depends on the local particle concentration.

Another approach to study particle migration in flows of concentrated

suspensions is the Suspension Balance Model, which was first proposed by

Nott and Brady.18 Its physical concept is that the migration phenomenon

arises in order to balance a non-homogeneous normal stress that exists due

to the presence of the particles. The particle flux is directly proportional

to the divergence of the particle stress tensor (i.e., an additional stress in

the fluid phase stress tensor). They show that in a simple shear flow, the

suspension balance model leads to a diffusion equation of the same form as

the one obtained with the diffusive flux model.

Despite its limitations, the original diffusive flux model11 is relatively sim-

ple to implement in computational codes and has been used to study more

complex flows. For example, Ritz et al.19 used the model to calculate the

particle distribution inside a short-dwell coater, Rao et al.20 to describe

instabilities on bath sedimentation problems and Ahmed and Singh21 im-

plemented the model to calculate the particle distribution downstream a

bifurcation channel. We apply the model to study steady slot coating flow

of particle suspensions.

Particle migration has tremendous impact on rheological measurements

of particle suspensions [22, 23, 24] and on different process flows of slurries

[25, 26]. The effect of particles is also even more pronounced when the flow

has free surfaces, as discussed by Timberlake and Morris27 and Furbank and

Morris28 on the drop formation and pinch-off of pendant/ejected drops. The
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non-uniform particle distribution that leads to viscosity variation within the

flow triggers different flow instabilities.

Despite its fundamental importance in fluid mechanics and industrial ap-

plications, analysis of coating flows of particle suspension that takes into

account particle migration mechanisms is still rare in the literature. One

usual approach is to consider the liquid as a Newtonian or a shear-thinning

fluid using the viscosity (or viscosity curve) evaluated at the average particle

concentration. However, the complex flow in the coating bead may lead to

particle migration and non uniform particle distribution downstream of the

film formation region. An alternative approach is to study particle distribu-

tion in the flow assuming that the flow is not affected by the particles.29

Up to our knowledge, there is no experimental measurements of particle

distribution in the liquid coated film. Theoretical and numerical analyses

are also rare. The only exception for a two-way coupling between flow and

particle transport is the work of Min and Kim30 who studied numerically,

using the finite volume method, the effect of particle migration in two free

surface flows. Using the diffusive flux model,11 they first computed the flow

field and particle distribution in a planar liquid jet ejected from two parallel

plates, obtaining results for different particle sizes, mean particle concentra-

tions and Reynolds numbers. They also solved the flow for a slot coating

configuration, but due to convergence problems in the numerical technique

used, the range of operation parameters explored was limited.

The aim of this work is to study slot coating flow of non-colloidal particle

suspension for flow conditions typically encountered in industrial applica-

tions. The steady-state, two-dimensional momentum, mass conservation and

5
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the particle transport equations for the free boundary problem were solved

in a fully coupled scheme using the Galerkin/Finite element method. The

effect of particle migration on the steady flow states is the first step towards

a fundamental understanding on how the presence of particles suspended in

the coating liquid can affect the operating window of the process, i.e. the

conditions at which the flow becomes transient or three-dimensional. The

steady-state solutions presented here can be used as base state for stability

analysis of the flow.

The paper is organized as follow: section 2 presents the governing equa-

tions and boundary conditions for the fluid flow problem (section 2.1) and

particles transport (section 2.2); the numerical technique is explained in sec-

tions 3.1 and 3.2, while validation results are discussed in section 3.3. Finally,

section 4 presents the new results and section 5 is devoted for the final re-

marks.

2. Mathematical formulation

In slot coating process, the liquid is pumped to a coating die in which

an elongated chamber distributes it across the width of a narrow slot. Ex-

iting the slot, the liquid fills (wholly or partially) the gap H0 between the

adjacent die lips and the substrate translating rapidly past them at a speed

Vs. The liquid in the gap, bounded upstream and downstream by gas-liquid

interfaces, or menisci, forms the coating bead, as shown in Fig. 1. In or-

der to sustain the coating bead at higher substrate speeds and smaller wet

thickness, the gas pressure at the upstream meniscus is made lower than

ambient, i.e. a slight vacuum pvac is applied to the upstream meniscus. The

6
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Figure 1: Sketch of the slot coating head, moving substrate and coated film. The bound-

aries are denoted by number according the imposed boundary conditions.
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upstream meniscus is bounded by the upstream contact line (USCL in Fig.1)

and the dynamic contact line (DCL) where the liquid wets the moving sub-

strate. The downstream meniscus starts at the downstream static contact

line (DSCL in Fig.1). Slot coating belongs to a class of coating methods

known as pre-metered coating : the thickness t of the coated layer is set by

the flow rate fed to the coating die q and the speed of the moving substrate,

and is independent of the other process variables, i.e. t = q/Vs.

2.1. Governing equations for fluid flow

In this work we neglect both the inertial and gravitational effects based

on the fact that the flow dimension is very small, e.g. H0 ≈ 100µm. Thus,

the velocity v = ui + vj and pressure p fields of the two-dimensional and

steady Stokes flow are governed by the continuity and momentum equations

for incompressible liquid:

∇ · v = 0 (1)

∇ ·T = ∇ · [−pI+ τ ] = 0 (2)

The parameter ηs represents the constant dynamic viscosity of the solvent.

Because we are considering non-colloidal suspensions, the viscous stress τ is

taken to be a linear function of the rate-of-strain tensor. The viscosity of the

suspension is only a function of the local particle concentration ϕ and does

not vary with the deformation rate:

τ = η(ϕ)γ̇

γ̇ = ∇v +∇vT

(3)

8
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The relative viscosity of the suspension is defined as ηr(ϕ) = η(ϕ)/ηs.

According to the empirical observation of Krieger,31 the relative viscosity of a

non-colloidal suspension (high Péclet number, Pe≫ 1) is well approximated

by

ηr = (1− ϕ∗)−1.82, (4)

where ϕ∗ = ϕ/ϕm is the relative particle volume fraction, being ϕm the

maximum packing concentration.

The relative viscosity of the suspension ηr approaches infinity as the par-

ticle concentration approaches the maximum packing concentration, which

for rigid spheres is ϕm ∼ 0.68. Although Eq.(4) was originally proposed for

suspensions with 0.01 < ϕ < 0.5, we follow the same approach of Phillips et

al.11 and consider that it is valid for 0.01 < ϕ < 0.68.

The following boundary conditions are applied to the momentum conser-

vation equation; the boundaries are identified by corresponding numbers in

Fig. 1:

1. At the inflow of the feed slot, the flow is fully developed and the velocity

profile given by

v = −6Vst
[
(x/Hs)− (x/Hs)

2] j, (5)

where Vs is the substrate speed, t is the film thickness and Hs the width

of the feed channel.

2. Along the solid surfaces, no-slip and no penetration conditions are ap-

plied

9
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v = 0, along feed channel and slot die walls

v = i, along substrate

(6)

3. Along the outflow plane, the flow is assumed to be fully developed and

the pressure is set to the ambient pressure pamb:

n · ∇v = 0

p = pamb

(7)

In this work, the constant ambient pressure is arbitrary set as pamb = 0.

4. Along the free surfaces, the kinematic condition and force balance are

applied:

n ·T = (σκ− pamb)n (8)

n · v = 0, (9)

where pamb = 0 and pamb = pvac on the downstream and upstream

free surfaces, respectively. In addition, κ = −∇s · n is the interface

curvature, ∇s = (∇−nn) the surface gradient operator, n the outward

unit normal vector, and σ is the surface tension of the liquid.

5. At the dynamic contact line (DCL), the stress singularity is removed by

applying the Navier’s slip condition (see for example32) and a constant

contac angle is set:

(1/β)i · (v − i) = i · (T · n) (10)

nw · nf = cos(θd), (11)

10
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where β is the slip coefficient, nw is the normal vector to the solid wall

directed into the fluid and nf is the outward normal vector to the free

surface

6. The DSCL is fixed at the edge of the die lip; then both x and y-

coordinate are fixed

xdscl = xedge (12)

7. Finally, the USCL is free to move along the die lip and therefore it have

always the same y-coordinate

j · xuscl = 1 (13)

We also set an upstream static contact angle, θs, as in Eq. (11).

2.2. Governing equations for particle transport

In this work we used the model proposed by Phillips et al.11 to describe

particle transport in the suspension flow. The model, in steady state con-

dition, considers that particles are transported by convection and diffusion

mechanisms. Then, the general conservation equation for the particle volume

fraction is

∇ · (ϕv) +∇ · (Nt) = 0, (14)

where Nt is the total particle flux that accounts for Brownian diffusion, sed-

imentation, shear and viscosity gradients induced transport. Under the hy-

pothesis of non-colloidal suspension and neutrally buoyant particles, the first

two mechanisms are neglected. Therefore, we only consider here the fluxes

11
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induced by shear rate and viscosity gradients, which according to Phillips et

al.11 are given by:

Nt = Nϕ +Nη (15)

Nϕ = −kca2(ϕ2∇γ̇ + ϕγ̇∇ϕ) (16)

Nη = −kηγ̇ϕ2

(
a2

ηr

)
dηr
dϕ

∇ϕ. (17)

kc and kη are constants of order unity, which must be determined by

experiments, a is the particle radius and γ̇ is the deformation rate or simply

shear rate.33 It is defined as

γ̇ =

√
1

2
tr(γ̇2) = (18)

=

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂u

∂y
+
∂v

∂x

)2
]1/2

(19)

The final transport equation is obtained after replacing Eqs. (15) to (17)

in Eq. (14):

v · ∇ϕ = ∇ · (D̄∇ϕ) + kca
2∇ · (ϕ2∇γ̇), (20)

where

D̄ = kca
2ϕγ̇ + kηγ̇ϕ

2a
2

η

dη

dϕ
(21)

The boundary conditions applied to solve Eq. (20) are:
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1. At the feed slot, we consider a constant concentration profile with ϕ =

ϕ̄, where ϕ̄ the average bulk concentration of the suspension.

2. The solid walls are impermeable and then the particle flux is set to

zero: n ·Nt = 0.

3. At the outflow plane, we impose a fully developed flow condition: n ·

Nt = 0.

4. Finally, because in this work we do not consider adsorption/desorption

at interfaces, the particle flux is also set to zero along the free surfaces.

In the finite element method, the velocity field is usually written as a

linear combination of continuous piece-wise polynomials. Therefore, along

element boundaries, the velocity v is continuous, but the velocity gradient∇v

is not. Therefore, the weighted residual of the particle transport equation,

which includes the integral of the gradient of deformation rate ∇γ̇ cannot

be evaluated. A common approach to avoid this problem is to represent the

velocity gradient as a separate independent field which is defined also as a

linear combination of continuous piece-wise polynomials. Thus, an additional

variable G = ∇v that is continuous between the elements is introduced and

it is called interpolated velocity gradient. This is the same approach used in

the solution of viscoelastic flows using finite element method (see Szadi et

al.34).

The approximate solution satisfies the continuity equation only in an

integral sense, tr(G) = ∇ · v = 0 is not satisfied in every point of the

flow domain. Pasquali and Scriven35 suggested that the interpolated velocity

gradient field G can be defined such that the incompressibility constrain is

automatically enforced, i.e. tr(G) ≡ 0. The proposed definition is:

13
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G−∇v +
∇ · v
tr(I)

I = 0 (22)

Note that tr(G) = tr(∇v)−∇ · v = 0.

In the next section we present the numerical method used to discretize

and solve the free boundary problem defined by Eqs. (1), (2), (20) and (22).

The governing equations are made dimensionless by using Vs, H0, H0/Vs

and Vsηs/H0 as scales for velocity, length, time and stress, respectively.

3. Numerical Solution

3.1. Formulation of the free boundary problem

In coating flows, the domain Ω (with boundaries Γ) is unknown a priori

due to the presence of the free surfaces. Thus, to solve this free bound-

ary problem by standard techniques, the set of differential equations and

boundary conditions have to be transformed to an equivalent set defined in

a known reference domain Ω (with boundaries Γ). This can be done by us-

ing a mapping x = x(ξ) between the two domains. The unknown physical

domain is parameterized by the position vector x and the reference domain,

by the vector ξ = (ξ, ζ). The technique is described in detail in.36 The main

idea is to define an inverse mapping governed by a pair of elliptic differential

equations that, when solved with appropriate boundary conditions, gives x,

the coordinates of the computational nodes in the spatial domain. Thus, the

coordinates ξ and ζ of the reference domain satisfy

∇ · (D · ∇ξ) = 0, (23)

14
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where ∇ ≡ ∂/∂x denotes differentiation in physical space, and D is the

diffusivity-like adjustable tensor that serves to control the gradients in coor-

dinate potentials, and thereby the spacing between curves of constant ξ and

constant ζ. With this technique, free boundaries are implicitly defined in the

reference domain as boundaries where special boundary conditions are used.

For example, the position of the free surfaces is calculated by imposing the

kinematic condition, e.g. Eq.(9). The solid walls and synthetic inlet and out-

let boundary planes are specified as functions of the coordinates and along

them stretching functions are used to distribute conveniently the constant

coordinate curves. Dynamic and static contact angles are imposed by re-

placing one of the elliptic mesh generation equation on the contact line node

by Eq. (11); the other equation is replaced by the correspondig displacement

restriction (see for example Eqs. (13) and (12)). The discrete versions of the

mapping Eq. (23) are generally referred to as mesh generation equations.

3.2. Discretization by the finite element method

The weighted residual equations are obtained after multiplying the gov-

erning Eqs. (1), (2), (20), (22) and (23) by appropriate weighting functions

associated with each degree of freedom ψc
i , ψ

m
i , ψ

ϕ
i , ψ

G
i and ψx

i , respectively,

integrating over the unknown flow domain Ω (bounded by Γ), applying the di-

vergence theorem to the diffusion terms (those with divergence) and mapping

the integrals onto the known reference domain Ω (bounded by Γ). Details of

this process are well known and were presented by Romero et al.37 Here, this

procedure is shown in detail only for the particle transport equation. After

multiplying Eq. (20) by ψϕ
i , integrate it over the spatial domain Ω, applying

the divergence theorem to the appropriate term and mapping the integral to

15
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the reference domain, the weigthed residual becomes:

Rϕ
i ≡

∫
Ω̄

[
(v · ∇ϕ)ψϕ

i + (D̄∇ϕ · ∇ψϕ
i ) + kca

2ϕ2(∇γ̇ · ∇ψϕ
i )
]
JdΩ̄

−
∫
Γ̄

n ·
[
(D̄∇ϕ) + (kca

2ϕ2∇γ̇)ψϕ
i

]
(dΓ/dΓ̄)dΓ̄ = 0, (24)

J = det(J) = dΩ/dΩ̄ is the determinant of the Jacobian mapping and n

is the outward unit normal vector to the boundary Γ. Thus, the last inte-

gral represents the diffusive particle flux on the boundaries of the flow do-

main. With the imposed boundary conditions, it is zero everywere to enforce

the zero flux condition on solid surfaces (impermeability), free surfaces (no

adsorption/desorption) and in the cross section of the film thickness (fully

developed concentration profile).

Each independent variable is approximated with a linear combination

of a finite number of basis functions, Thus, v ≈
∑

i v̄iφ
m
i , x ≈

∑
i x̄iφ

x
i ,

ϕ ≈
∑

i ϕ̄iφ
ϕ
i , G ≈

∑
i Ḡiφ

G
i and p ≈

∑
i p̄iφ

c
i . The quantities with overbar

represent the coefficients of the expansions, i.e. the unknown of the dis-

crete problem. The basis functions used to expand the independent vari-

ables are: Lagrangian bi-quadratic polynomials for velocity φm
i , position

φx
i and concentration φϕ

i , Lagrangian bi-linear polynomials for the interpo-

lated velocity gradient φG
i and linear discontinuous polynomials for pres-

sure φc
i . The Galerkin method is applied to the equations of momem-

tum, continuity, mesh generation and interpolated velocity gradient, i.e.

ψm
i = φm

i , ψ
c
i = φc

i , ψ
x
i = φx

i , ψ
G
i = φG

i . Streamline Petrov-Galerkin is

applied to the particle transport equation, i.e. ψϕ
i = φϕ

i + hv · ∇φϕ
i . After

replacing the interpolated variables in the corresponding weigthed residuals,
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the system of partial differential equations reduces to a simultaneous alge-

braic non-linear equations system for the coefficients of the basis functions

of all fields.

A mesh with 1, 312 quadrilateral elements was used in all the results

reported here. Increasing the number of elements by 50% in each direction

did not significantly change the concentration and velocity profiles under the

downstream die lip and coated film.

3.3. Solution of the non-linear system and validation

The system of equations was solved simultaneously for all variables using

Newton’s method. The entries of the Jacobian matrix J were evaluated

numerically using a central finite difference scheme.37 In each iteration the

linearized equation system was factorized into unit lower L and upper U

triangular matrices by a frontal solver. In order to assure the convergence of

the Newton loop within 6 to 8 iterations, at each successive set of operating

conditions (parameters), the initial guess was generated by a pseudo-arc-

length continuation method.38 The tolerance on the L2-norm of the residual

vector and on the last Newton update of the solution was set to 10−6.

To validate the model and the implementation, predictions were compared

to the analytical solution of the fully developed, pressure driven particle

suspension flow between parallel plates. As shown by Phillips et al.,11 an

analytical form for the velocity and concentration profiles can be obtained

for the particular case of kc/kη = 0.65. The concentration profile is:

ϕ =
1

1 + (1−ϕw)y
ϕw

, (25)
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where ϕw is the dimensionless particle concentration at the channel wall and

y is the vertical coordinate in units of the channel half width H. On the

symmetry line (y = 0), ϕ = 1, because particles migrate towards the zero-

shear rate region until the maximum packing concentration is reached. The

velocity profile is then obtained by numerical integration (using trapezoidal

rule) of the following expression:

u(y) = u∗(y)/umax = 1− dp

dz

H2

2ηsumax

∫ y

0

y

(1− ϕ)−1.82
dy, (26)

where ϕ is given by Eq. (25).

The conditions of the problem used in the validation were: L/H = 10

and ϕ̄ = 0.59. A parabolic velocity profile and a uniform concentration dis-

tribution were imposed in the inflow. In the outflow plane, we assumed a

fully developed flow. Figure 2 shows the particle concentration field; as ex-

pected, the concentration near the wall, where the shear rate is high, is low

and near the center line is high; that is, particles migrate from the high shear

region towards the low shear region. Figure 3 depicts the particle concentra-

tion along both the centerline and channel wall. The results show that the

channel length was long enough to reach the fully developed profiles at the

exit plane. The particle distribution became fully developed (independent

of x) at x ≈ 6H. This entrance length is smaller than the one estimated

by the scaling analysis presented by Nott and Brady.18 With the set of pa-

rameters used in this validation case, the estimated entrance length should

be Le ≈ 40H. We are not sure the reason for this difference. One possible

explanation is that the scaling arguments used to estimate the entry length

considers a shear-induced diffusion coefficient D ≈ ϕ ˙γa2, this corresponds
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Figure 2: Particle concentration field in the supension inside a rectangular channel. On

the left, a uniform concentration ϕ̄ = 0.59 and a velocity profile given by Eq. (26) are

imposed.

to the second term of eq.16. However, the total particle flux includes a sec-

ond term, which accelerates the particle transport toward the center of the

channel and should reduce the entrance length.

The computed velocity and concentration profiles at the outflow plane

were compared to the fully-developed analytical solution in Figure 4. The

agreement between the numerical prediction and exact solution is very good,

showing a maximum error equal to 3.4% at the center line. This discrepancy

is associated with the singularity at the symmetry line as explained below.

The diffusive flux model predicts particle migration towards regions where

the deformation rate is low, that is, the symmetry line in this case. Actually,

the simulations predicts values as high as ϕ = 1, i.e. the maximum packing

concentration. As ϕ → 1 the viscosity approaches infinity (see Eq. (4)),

the Jacobian matrix becomes singular and the Newton’s method fails. The
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Figure 3: Particle concentration along the x -coordinate on the center line (CL) and bottom

wall (BW) for the rectangular channel case shown in Figure 2.
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Figure 4: Comparison of the numerical results with the exact solution at the exit of the

rectangular channel: a) velocity profile and b) concentration profile. In both cases, the

continuous lines correspond with exact solution of the Eqs. (25) and (26).
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singularity was avoided by using a strategy based in the concept of the non-

local stress developed by Nott and Brady18 and Miller and Morris.39 At the

particle scale, the continum hypothesis is not valid and the deformation rate is

not correctly represented by γ̇. As discused by Miller and Morris,39 different

approaches can be implemented to model this non-local stress but the main

idea is that the shear rate at particle level is higher than the continuous

representation and never goes exactly to zero. A small non-local shear rate

value γ̇NL, which is a function of the particle size, is added to the local shear

rate:

γ̇NL = asUloc/l, (27)

where as = (a/l)2, l is the channel width and Uloc is the local fluid velocity

(see Miller & Morris [41]). Thus, when Eq. (27) is added to the local de-

formation rate (Eq. (19)), the non-zero shear rate avoids the concentration

reaching the maximum packing value.

4. Results

The flow under the downstream die lip is almost rectilinear and is well

approximated by a superposition of Couette (substrate drag) and Poiseuille

(pressure driven) flows. The pressure gradient is directly related to the im-

posed flow rate (film thickness).40,41,42,43 For Newtonian flow, at a film thick-

ness t = t∗/H = 1/2, the pressure gradient under the downstream die lip

vanishes, the velocity profile is linear and the shear rate gradient is zero.

At lower film thickness, an adverse pressure gradient occurs to counter act

the drag from the substrate. At t = 1/3, the shear rate at the die surface
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vanishes. At even lower flow rate, flow reversal occurs near the die surface

and a recirculation appears. Since particle migration is driven by shear rate

gradient, the final particle distribution in the coated layer should be strongly

affected by the imposed film thickness.

In this work, the flow topology and particle distribution are analyzed at

three different values of the film thickness, e.g. t = 0.5, t = 0.37 and t = 0.14.

The flow of the particle suspension is compared to the equivalent case at

which particle migration is not taken into account and the viscosity of the

liquid is constant throughout the flow (equal the viscosity of the suspension

at the average bulk particle concentration).

Table 1 shows the values of the dimensional parameters used in this study.

The corresponding capillary number is Ca = 0.1. The values of the coeffi-

cients of the diffusive flux model (kc and kη) were in the same order of the

experimental values determined by Phillips et al.11

4.1. Flow state at t/H0 = 0.5

As was mentioned before, the pressure gradient under the die lip vanishes

for Newtonian flow at t/H0 = 0.5, and the flow is well approximated by a

pure Couette flow. This imply that the shear rate is almost constant in this

region. Figure 5-a shows the particle concentration field for this condition. In

the feed slot, particles migrate towards the symmetry plane, from the high

shear region near the wall towards the low shear region in the symmetry

plane. At the exit of the feed slot, the concentration at the center of the

channel is close to the maximum packing concentration.

Detail of the particle concentration field in the upstream part of the

coating bead is presented in Figure 5-b. The particle concentration near
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Figure 5: a) Particle concentration field and selected streamtraces in the domain, for the

parameters listed in Table 1. b) Zoom on the upstream slot coating region, showing the

region of high particle concentration near the upstream static contact line. c) Zoom of the

downstream slot coating region.
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Vs 0.1 [m/s]

Pvac -3.7 [kPa]

σ 0.06 [N/s]

ηs 0.06 [Pa s]

a 4 [µm]

Hs 10−4 [m]

H0 10−4 [m]

ϕ̄ 0.59

kc 0.816

kη 1.22

Table 1: Values of the parameters used in the simulation with t = 0.5

the die lip is low, because particles migrate from this high shear rate zone

close to the die surface towards a low shear rate region near a layer where

the deformation rate almost vanishes (y ∼ 0.7).

The correct description of the effect of vacuum pressure on the upstream

meniscus position needs to take into account that the viscosity of the liquid

attached to the die lip is lower than the viscosity at the average particle con-

centration. Figure 6 presents the pressure along the substrate in the upstream

bead for the flow of a particle suspension and the equivalent Newtonian flow

that does not take particle migration into account. In the later, the liquid

viscosity was set at the value of the average concentration, ϕ̄ = 0.59, and

was constant throughout the flow; e.g. ηr(ϕ̄) = 5.3. The lower viscosity of

the liquid attached to the substrate and die lip reduces the necessary ad-
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Figure 6: Pressure on the moving substrate in the upstream region, for the conditions of

Table 1 (Suspension) and the same parameters but without particle migration (Newto-

nian).

verse pressure gradient to counteract the drag by the substrate. Therefore,

for a fixed vacuum pressure, the meniscus is located further away from the

feed slot. Although not explored here, the lower and upper vacuum pressure

operability limits in slot coating window (see Carvalho and Keshghi41) are

modified when particle transport is taken into consideration in the model.

Figure 5 shows that for these conditions, the high particle concentration

near the center of the feed slot is convected through the downstream coating

bead with weak particle diffusion, leading to high particle concentration in

a layer located at y ∼ 0.4. For t = 0.5, the velocity profile under the

downstream die lip is close to a linear profile (Couette flow), as show in

Figure 7-a. The shear rate is almost constant and particle migration is only

driven by viscosity gradient, that forces particle to diffuse from high viscosity

(high concentration) regions to lower viscosity (low concentration) regions.
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Figure 7: Velocity (a) and concentration (b) profiles at x ∼ 4 for the case with t =

0.5 (Figure 5). The theoretical profile of a Coutte flow is also included for comparison

(continuous line in frame (a)).

However, at the conditions analyzed, this effect is weak and the concentration

profile at x ∼ 4 (middle of downstream lip) shows a layer of higher particle

concentration (ϕ ∼ 0.65) at y ∼ 0.4.

The concentration field near the downstream free surface is shown in

Figure 5-c. Close to the static contact line, the deformation rate is high

leading to a region of low particle concentration (ϕ ∼ 0.4). The layer of high

particle concentration remains in the final film, as shown in Figure 8. The

concentration at the substrate and at the free surface (ϕ ≈ 0.56) are lower

than the average particle concentration ϕ̄ = 0.59 and there is a layer of higher

particle concentration (ϕ ≈ 0.61) located approximately in the middle of the

coated layer.

4.2. Flow state at t/H0 ∼ 1/3

As discussed before, at t/H0 = 1/3 and constant viscosity, the adverse

pressure gradient is such that the deformation rate vanishes at the down-
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Figure 8: Concentration profile along the cross section of the coated film (x = 17).

stream slot die wall. According to the diffusive flux model, particles will

migrate towards this region. The non-uniform shear rate flow completely

changes the particle concentration field in the downstream coating bead and

on the final coated film, when compared to the case at t/H0 = 0.5.

In this section, the flow field at t/H0 = 0.37 is presented. At this condi-

tion, the zero shear rate is not located exactly at the wall, but very close it.

The flow (represented by streamtraces) and particle concentration field are

presented in Figure 9-a. The upstream flow and particle distribution pattern

(Figure 9-b) are similar to that presented in Figure 5-b (at t/H0 = 1/2). By

contrast, the downstream behavior presented in Figure 9-c is quite different.

A high particle concentration region is formed close to the dip lip surface.

The velocity and concentration profile across the coating gap at x ∼ 4 is

shown in Figure 10. The low shear rate close to the die wall and corre-

sponding high particle concentration is clearly observed. The high particle

concentration layer is convected to the top of the coated film. The concen-
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tration profile across the thickness of the coated layer is shown in Figure 11.

Now, the particle concentration on the free surface (ϕ ∼ 0.62) is higher than

the average concentration, ϕ̄ = 0.59. This can have a tremendous effect on

the drying process and particle structure formation.

4.3. Flow state at t/H0 < 1/3

At film thickness lower than 1/3 of the coating gap, i.e. t/H0 < 1/3,

the adverse pressure gradient under the downstream die lip is strong enough

that a recirculation is formed. This session presents results at very thin films,

t = 0.14H0, with kc = 0.34 and kη = 0.51. The coefficients of the diffusive

flux model were changed because it was not possible to obtain converged

solution for the values of Table 1. We infer that the convergence problems

were associated to the high concentration gradients associated to particle

accumulated inside the recirculation, which are very steep to be capture by

our mesh refinement.

The flow and particle concentration field are shown in Fig. 12. The recir-

culation under the die lip has a strong effect on the particle distribution in the

coating bead, because a region of high particle concentration is formed inside

the recirculation. The backflow creates a layer of maximum negative velocity

and vanishing shear rate towards which particles migrate. This high particle

concentration inside a vortex may promote particle aggregation which is us-

sually undesired. Because of the large recirculation, all the liquid comming

from the feed slot flows back to the upstream bead before being dragged by

the substrate. The high particle concentration layer at the center of the feed

is re-distributed in this process and, due to particle migration from the sub-

strate, a layer with higher concentration is created close the flow separating
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Figure 9: As in Figure 5 but for t = 0.37.
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Figure 10: Velocity (a) and concentration (b) profiles at x ∼ 4 for the case with t =

0.37 (Figure 9). The theoretical profile of a Coutte flow is also included for comparison

(continuous line in frame (a)).
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Figure 11: Concentration profile along the cross section of the coated film (x = 17), for

t = 0.37.
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streamline that terminates at the meniscus stagnation point. This explains

the shape of the profile across the coated film as presented in Fig.13. The

particle distribution is similar to the one obtained at t = 0.37 with the high

concentration at the top of the film (ϕ ∼ 0.62) and low (ϕ ∼ 0.54) at the

substrate.

5. Final Remarks

Slot coating flow of non-colloidal particle suspensions was studied to de-

termine the effect of operating conditions on the particle distribution in the

coating bead and deposited liquid layer. The flow was described by the

mass and momentum conservation equations coupled with a particle trans-

port equation based on the diffusive flux model proposed by Phillips et al.11

The viscosity was considered a function of the local particle concentration

and independent of the local shear rate. The problem was discretized using

the finite element method and the unknown domain and free surface was

mapped with an elliptic mesh generation technique. The resulting set of

algebraic nonlinear equations was solved using the Newtons method.

The results show that the particle distribution in the coating bead is non-

uniform. The complex flow field leads to shear induced particle transport.

Since the deformation rate field is strongly dependent on the imposed flow

rate (wet thickness), the particle distribution in the flow and consequently in

the coated layer drastically changes as the film thickness varies. When the

film thickness is 1/2 of the coating gap, the shear under the downstream die

lip is almost constant and the high particle concentration region formed in the

center of the feed slot is convected, leading to a high particle concentration
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Figure 12: As in Figure 5 but for t = 0.14.
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Figure 13: Concentration profile along the cross section of the coated film (x = 17), for

t = 0.14.

layer in the middle of the coated film. At a film thickness close to 1/3 of the

coating gap, particles are transported towards the zero-shear region close to

the die lip, leading to high particle concentration in the die surface and on the

surface of the coated layer. The high concentration in the die lip may have a

strong effect on particle agglomeration and streak formation that ultimately

leads to coating defects. At even lower flow rates, particles accumulate inside

the flow recirculation, which also may lead to undesirable agglomeration and

coating defects.

Although experimental results on particle distribution in the liquid layer

deposited using slot coating is not available, it is clear that is has a strong

effect on the flow and drying processes, and microstructure formation. The

effect of particles in the coating liquid on the operability limits of the process

has been reported.44

The results presented here show that process conditions (wet thickness)
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can be used to obtain the desired particle distribution. The two-dimensional,

steady-state flows can be used as base state for stability analysis, to determine

the conditions at which the flow ceases to be two-dimensional and steady,

which are usually associated with process limits.41

A natural extension of the model is to consider particles that are not

neutrally buoyant and the surface tension as a function of local particle con-

centration.45 The present results shown high concentration gradients at the

downstream interface that may generate strong Marangoni stresses if the sur-

face tension varies locally with the particle concentration. This tangential

stresses could have a deep impact on the flow field,46 the interface shape and,

consequently on the operability window of the process.
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Abstract

Slot coating is used in the manufacturing of functional films, which rely

on specific particle microstructure to achieve the desired performance. Final

structure on the coated film is strongly dependent on the suspension flow

during the deposition of the coating liquid and on the subsequent drying

process. Fundamental understanding on how particles are distributed in the

coated layer enables optimization of the process and quality of the produced

films.

The complex coating flow leads to shear-induced particle migration and

non-uniform particle distribution. We study slot coating flow of non-colloidal

suspensions by solving the mass and momentum conservation equations cou-

pled with a particle transport equation using the Galerkin/Finite element

method. The results show that particle distribution in the coating bead and

in the coated layer is non-uniform and is strongly dependent on the imposed

flow rate (wet thickness).
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free surface flow, slot coating, particle suspension

1. Introduction

Many coated products, such as anti-reflection, hydrophobic films and flex-

ible electrodes, rely on a designed microstructure in order to achieve the de-

sired functionality. One way of mass producing functional coated films is by

depositing a particle suspension onto a moving substrate and subsequently

drying the liquid to form the final solid film. The final microstructure of

the coated layer is directly affected by the suspension flow during the coat-

ing and drying processes, due to particle migration effects. Cardinal et al.1

have shown how the relative strength of liquid evaporation, particle diffusion

and sedimentation affect the particle distribution on the coated film during

drying. A 1-D particle conservation equation was used to describe the par-

ticle concentration evolution during drying by taking into account for the

aforementioned effects, while cryo-electron microscopy images were used to

validate the predicted drying map. However, the model assumes that the

particle concentration is uniform through the thickness of the film in the

initial stages of drying. This may not be the case when the liquid film is

deposited on the substrate by slot coating process, for example, where high

shear rate gradient are developed in the coating bead.

If the suspended particles are large enough, Brownian motion, van der

Walls and electrical double layer forces between particles can be neglected

and the resulting liquid is a non-colloidal suspension. In this condition,

the suspension viscosity becomes a function of the particle volume fraction

only.2,3, 4, 5 When this suspension is set in non-uniform flow (as those mostly

2
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encountered in coating processes), particles are transported by convection,

sedimentation/buoyancy and shear rate and viscosity gradient driven diffu-

sion. The last two mechanisms are frequently called shear-induced particle

migration. This behavior was described, for example, in the suspension flows

inside cylindrical tubes6 and in the Coutte flow between concentric cylin-

ders.7 The main observation was that particles migrate from regions with

higher to lower shear rate. Later, Leighton and Acrivos8 developed a rational

explanation for these mechanisms based on the frequency of the inter-particle

collisions and the effective viscosity of the suspension, both being functions

of the non-uniform local particle volume fraction. This phenomena has been

confirmed experimentally in different situations.9,10

Based on the work of Leighton and Acrivos,8 Phillips et al.11 proposed a

convective-diffusion equation that describes the particle concentration vari-

ation in laminar flows. This approach was called diffusive flux model and

depends on two diffusion parameters, which they considered as constants

to be fitted using experimental results. By considering the fluid as Newto-

nian, but with the viscosity being function of the local particle concentration,

Phillips et al.11 solved the particle transport equation coupled with the mo-

mentum conservation for two flow configurations: Poiseuille pressure driven

flow in a circular tube and Couette flow between rotating cylinders. The

diffusive flux model was also successfully used in different analyses.12,13,14

However, the model cannot correctly predict the radial particle migration of

some viscometric flows and different improvements and corrections have been

proposed. For example, Krishnan et al.15 suggested that the curvature of

streamlines also contributes to the radial particle migration. More recently,

3
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Kim et al.16 developed a model to take into account this curvature-induced

particle flux. Tetlow et al.17 also suggested that the diffusion parameters of

the model should depends on the local particle concentration.

Another approach to study particle migration in flows of concentrated

suspensions is the Suspension Balance Model, which was first proposed by

Nott and Brady.18 Its physical concept is that the migration phenomenon

arises in order to balance a non-homogeneous normal stress that exists due

to the presence of the particles. The particle flux is directly proportional

to the divergence of the particle stress tensor (i.e., an additional stress in

the fluid phase stress tensor). They show that in a simple shear flow, the

suspension balance model leads to a diffusion equation of the same form as

the one obtained with the diffusive flux model.

Despite its limitations, the original diffusive flux model11 is relatively sim-

ple to implement in computational codes and has been used to study more

complex flows. For example, Ritz et al.19 used the model to calculate the

particle distribution inside a short-dwell coater, Rao et al.20 to describe

instabilities on bath sedimentation problems and Ahmed and Singh21 im-

plemented the model to calculate the particle distribution downstream a

bifurcation channel. We apply the model to study steady slot coating flow

of particle suspensions.

Particle migration has tremendous impact on rheological measurements

of particle suspensions [22, 23, 24] and on different process flows of slurries

[25, 26]. The effect of particles is also even more pronounced when the flow

has free surfaces, as discussed by Timberlake and Morris27 and Furbank and

Morris28 on the drop formation and pinch-off of pendant/ejected drops. The

4
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non-uniform particle distribution that leads to viscosity variation within the

flow triggers different flow instabilities.

Despite its fundamental importance in fluid mechanics and industrial ap-

plications, analysis of coating flows of particle suspension that takes into

account particle migration mechanisms is still rare in the literature. One

usual approach is to consider the liquid as a Newtonian or a shear-thinning

fluid using the viscosity (or viscosity curve) evaluated at the average particle

concentration. However, the complex flow in the coating bead may lead to

particle migration and non uniform particle distribution downstream of the

film formation region. An alternative approach is to study particle distribu-

tion in the flow assuming that the flow is not affected by the particles.29

Up to our knowledge, there is no experimental measurements of particle

distribution in the liquid coated film. Theoretical and numerical analyses

are also rare. The only exception for a two-way coupling between flow and

particle transport is the work of Min and Kim30 who studied numerically,

using the finite volume method, the effect of particle migration in two free

surface flows. Using the diffusive flux model,11 they first computed the flow

field and particle distribution in a planar liquid jet ejected from two parallel

plates, obtaining results for different particle sizes, mean particle concentra-

tions and Reynolds numbers. They also solved the flow for a slot coating

configuration, but due to convergence problems in the numerical technique

used, the range of operation parameters explored was limited.

The aim of this work is to study slot coating flow of non-colloidal particle

suspension for flow conditions typically encountered in industrial applica-

tions. The steady-state, two-dimensional momentum, mass conservation and

5
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the particle transport equations for the free boundary problem were solved

in a fully coupled scheme using the Galerkin/Finite element method. The

effect of particle migration on the steady flow states is the first step towards

a fundamental understanding on how the presence of particles suspended in

the coating liquid can affect the operating window of the process, i.e. the

conditions at which the flow becomes transient or three-dimensional. The

steady-state solutions presented here can be used as base state for stability

analysis of the flow.

The paper is organized as follow: section 2 presents the governing equa-

tions and boundary conditions for the fluid flow problem (section 2.1) and

particles transport (section 2.2); the numerical technique is explained in sec-

tions 3.1 and 3.2, while validation results are discussed in section 3.3. Finally,

section 4 presents the new results and section 5 is devoted for the final re-

marks.

2. Mathematical formulation

In slot coating process, the liquid is pumped to a coating die in which

an elongated chamber distributes it across the width of a narrow slot. Ex-

iting the slot, the liquid fills (wholly or partially) the gap H0 between the

adjacent die lips and the substrate translating rapidly past them at a speed

Vs. The liquid in the gap, bounded upstream and downstream by gas-liquid

interfaces, or menisci, forms the coating bead, as shown in Fig. 1. In or-

der to sustain the coating bead at higher substrate speeds and smaller wet

thickness, the gas pressure at the upstream meniscus is made lower than

ambient, i.e. a slight vacuum pvac is applied to the upstream meniscus. The

6
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Figure 1: Sketch of the slot coating head, moving substrate and coated film. The bound-

aries are denoted by number according the imposed boundary conditions.
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upstream meniscus is bounded by the upstream contact line (USCL in Fig.1)

and the dynamic contact line (DCL) where the liquid wets the moving sub-

strate. The downstream meniscus starts at the downstream static contact

line (DSCL in Fig.1). Slot coating belongs to a class of coating methods

known as pre-metered coating : the thickness t of the coated layer is set by

the flow rate fed to the coating die q and the speed of the moving substrate,

and is independent of the other process variables, i.e. t = q/Vs.

2.1. Governing equations for fluid flow

In this work we neglect both the inertial and gravitational effects based

on the fact that the flow dimension is very small, e.g. H0 ≈ 100µm. Thus,

the velocity v = ui + vj and pressure p fields of the two-dimensional and

steady Stokes flow are governed by the continuity and momentum equations

for incompressible liquid:

∇ · v = 0 (1)

∇ ·T = ∇ · [−pI + τ ] = 0 (2)

The parameter ηs represents the constant dynamic viscosity of the solvent.

Because we are considering non-colloidal suspensions, the viscous stress τ is

taken to be a linear function of the rate-of-strain tensor. The viscosity of the

suspension is only a function of the local particle concentration φ and does

not vary with the deformation rate:

τ = η(φ)γ̇

γ̇ = ∇v +∇vT
(3)
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The relative viscosity of the suspension is defined as ηr(φ) = η(φ)/ηs.

According to the empirical observation of Krieger,31 the relative viscosity of a

non-colloidal suspension (high Péclet number, Pe� 1) is well approximated

by

ηr = (1− φ∗)−1.82, (4)

where φ∗ = φ/φm is the relative particle volume fraction, being φm the

maximum packing concentration.

The relative viscosity of the suspension ηr approaches infinity as the par-

ticle concentration approaches the maximum packing concentration, which

for rigid spheres is φm ∼ 0.68. Although Eq.(4) was originally proposed for

suspensions with 0.01 < φ < 0.5, we follow the same approach of Phillips et

al.11 and consider that it is valid for 0.01 < φ < 0.68.

The following boundary conditions are applied to the momentum conser-

vation equation; the boundaries are identified by corresponding numbers in

Fig. 1:

1. At the inflow of the feed slot, the flow is fully developed and the velocity

profile given by

v = −6Vst
[
(x/Hs)− (x/Hs)

2] j, (5)

where Vs is the substrate speed, t is the film thickness and Hs the width

of the feed channel.

2. Along the solid surfaces, no-slip and no penetration conditions are ap-

plied

9
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v = 0, along feed channel and slot die walls

v = i, along substrate

(6)

3. Along the outflow plane, the flow is assumed to be fully developed and

the pressure is set to the ambient pressure pamb:

n · ∇v = 0

p = pamb

(7)

In this work, the constant ambient pressure is arbitrary set as pamb = 0.

4. Along the free surfaces, the kinematic condition and force balance are

applied:

n ·T = (σκ− pamb)n (8)

n · v = 0, (9)

where pamb = 0 and pamb = pvac on the downstream and upstream

free surfaces, respectively. In addition, κ = −∇s · n is the interface

curvature, ∇s = (∇−nn) the surface gradient operator, n the outward

unit normal vector, and σ is the surface tension of the liquid.

5. At the dynamic contact line (DCL), the stress singularity is removed by

applying the Navier’s slip condition (see for example32) and a constant

contac angle is set:

(1/β)i · (v − i) = i · (T · n) (10)

nw · nf = cos(θd), (11)
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where β is the slip coefficient, nw is the normal vector to the solid wall

directed into the fluid and nf is the outward normal vector to the free

surface

6. The DSCL is fixed at the edge of the die lip; then both x and y-

coordinate are fixed

xdscl = xedge (12)

7. Finally, the USCL is free to move along the die lip and therefore it have

always the same y-coordinate

j · xuscl = 1 (13)

We also set an upstream static contact angle, θs, as in Eq. (11).

2.2. Governing equations for particle transport

In this work we used the model proposed by Phillips et al.11 to describe

particle transport in the suspension flow. The model, in steady state con-

dition, considers that particles are transported by convection and diffusion

mechanisms. Then, the general conservation equation for the particle volume

fraction is

∇ · (φv) +∇ · (Nt) = 0, (14)

where Nt is the total particle flux that accounts for Brownian diffusion, sed-

imentation, shear and viscosity gradients induced transport. Under the hy-

pothesis of non-colloidal suspension and neutrally buoyant particles, the first

two mechanisms are neglected. Therefore, we only consider here the fluxes
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induced by shear rate and viscosity gradients, which according to Phillips et

al.11 are given by:

Nt = Nφ + Nη (15)

Nφ = −kca2(φ2∇γ̇ + φγ̇∇φ) (16)

Nη = −kηγ̇φ2

(
a2

ηr

)
dηr
dφ
∇φ. (17)

kc and kη are constants of order unity, which must be determined by

experiments, a is the particle radius and γ̇ is the deformation rate or simply

shear rate.33 It is defined as

γ̇ =

√
1

2
tr(γ̇2) = (18)

=

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂u

∂y
+
∂v

∂x

)2
]1/2

(19)

The final transport equation is obtained after replacing Eqs. (15) to (17)

in Eq. (14):

v · ∇φ = ∇ · (D̄∇φ) + kca
2∇ · (φ2∇γ̇), (20)

where

D̄ = kca
2φγ̇ + kηγ̇φ

2a
2

η

dη

dφ
(21)

The boundary conditions applied to solve Eq. (20) are:
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1. At the feed slot, we consider a constant concentration profile with φ =

φ̄, where φ̄ the average bulk concentration of the suspension.

2. The solid walls are impermeable and then the particle flux is set to

zero: n ·Nt = 0.

3. At the outflow plane, we impose a fully developed flow condition: n ·

Nt = 0.

4. Finally, because in this work we do not consider adsorption/desorption

at interfaces, the particle flux is also set to zero along the free surfaces.

In the finite element method, the velocity field is usually written as a

linear combination of continuous piece-wise polynomials. Therefore, along

element boundaries, the velocity v is continuous, but the velocity gradient∇v

is not. Therefore, the weighted residual of the particle transport equation,

which includes the integral of the gradient of deformation rate ∇γ̇ cannot

be evaluated. A common approach to avoid this problem is to represent the

velocity gradient as a separate independent field which is defined also as a

linear combination of continuous piece-wise polynomials. Thus, an additional

variable G = ∇v that is continuous between the elements is introduced and

it is called interpolated velocity gradient. This is the same approach used in

the solution of viscoelastic flows using finite element method (see Szadi et

al.34).

The approximate solution satisfies the continuity equation only in an

integral sense, tr(G) = ∇ · v = 0 is not satisfied in every point of the

flow domain. Pasquali and Scriven35 suggested that the interpolated velocity

gradient field G can be defined such that the incompressibility constrain is

automatically enforced, i.e. tr(G) ≡ 0. The proposed definition is:
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G−∇v +
∇ · v
tr(I)

I = 0 (22)

Note that tr(G) = tr(∇v)−∇ · v = 0.

In the next section we present the numerical method used to discretize

and solve the free boundary problem defined by Eqs. (1), (2), (20) and (22).

The governing equations are made dimensionless by using Vs, H0, H0/Vs

and Vsηs/H0 as scales for velocity, length, time and stress, respectively.

3. Numerical Solution

3.1. Formulation of the free boundary problem

In coating flows, the domain Ω (with boundaries Γ) is unknown a priori

due to the presence of the free surfaces. Thus, to solve this free bound-

ary problem by standard techniques, the set of differential equations and

boundary conditions have to be transformed to an equivalent set defined in

a known reference domain Ω (with boundaries Γ). This can be done by us-

ing a mapping x = x(ξ) between the two domains. The unknown physical

domain is parameterized by the position vector x and the reference domain,

by the vector ξ = (ξ, ζ). The technique is described in detail in.36 The main

idea is to define an inverse mapping governed by a pair of elliptic differential

equations that, when solved with appropriate boundary conditions, gives x,

the coordinates of the computational nodes in the spatial domain. Thus, the

coordinates ξ and ζ of the reference domain satisfy

∇ · (D · ∇ξ) = 0, (23)
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where ∇ ≡ ∂/∂x denotes differentiation in physical space, and D is the

diffusivity-like adjustable tensor that serves to control the gradients in coor-

dinate potentials, and thereby the spacing between curves of constant ξ and

constant ζ. With this technique, free boundaries are implicitly defined in the

reference domain as boundaries where special boundary conditions are used.

For example, the position of the free surfaces is calculated by imposing the

kinematic condition, e.g. Eq.(9). The solid walls and synthetic inlet and out-

let boundary planes are specified as functions of the coordinates and along

them stretching functions are used to distribute conveniently the constant

coordinate curves. Dynamic and static contact angles are imposed by re-

placing one of the elliptic mesh generation equation on the contact line node

by Eq. (11); the other equation is replaced by the correspondig displacement

restriction (see for example Eqs. (13) and (12)). The discrete versions of the

mapping Eq. (23) are generally referred to as mesh generation equations.

3.2. Discretization by the finite element method

The weighted residual equations are obtained after multiplying the gov-

erning Eqs. (1), (2), (20), (22) and (23) by appropriate weighting functions

associated with each degree of freedom ψci , ψ
m
i , ψφi , ψGi and ψxi , respectively,

integrating over the unknown flow domain Ω (bounded by Γ), applying the di-

vergence theorem to the diffusion terms (those with divergence) and mapping

the integrals onto the known reference domain Ω (bounded by Γ). Details of

this process are well known and were presented by Romero et al.37 Here, this

procedure is shown in detail only for the particle transport equation. After

multiplying Eq. (20) by ψφi , integrate it over the spatial domain Ω, applying

the divergence theorem to the appropriate term and mapping the integral to
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the reference domain, the weigthed residual becomes:

Rφ
i ≡

∫
Ω̄

[
(v · ∇φ)ψφi + (D̄∇φ · ∇ψφi ) + kca

2φ2(∇γ̇ · ∇ψφi )
]
JdΩ̄

−
∫

Γ̄

n ·
[
(D̄∇φ) + (kca

2φ2∇γ̇)ψφi

]
(dΓ/dΓ̄)dΓ̄ = 0, (24)

J = det(J) = dΩ/dΩ̄ is the determinant of the Jacobian mapping and n

is the outward unit normal vector to the boundary Γ. Thus, the last inte-

gral represents the diffusive particle flux on the boundaries of the flow do-

main. With the imposed boundary conditions, it is zero everywere to enforce

the zero flux condition on solid surfaces (impermeability), free surfaces (no

adsorption/desorption) and in the cross section of the film thickness (fully

developed concentration profile).

Each independent variable is approximated with a linear combination

of a finite number of basis functions, Thus, v ≈
∑

i v̄iϕ
m
i , x ≈

∑
i x̄iϕ

x
i ,

φ ≈
∑

i φ̄iϕ
φ
i , G ≈

∑
i Ḡiϕ

G
i and p ≈

∑
i p̄iϕ

c
i . The quantities with overbar

represent the coefficients of the expansions, i.e. the unknown of the dis-

crete problem. The basis functions used to expand the independent vari-

ables are: Lagrangian bi-quadratic polynomials for velocity ϕmi , position

ϕx
i and concentration ϕφi , Lagrangian bi-linear polynomials for the interpo-

lated velocity gradient ϕGi and linear discontinuous polynomials for pres-

sure ϕci . The Galerkin method is applied to the equations of momem-

tum, continuity, mesh generation and interpolated velocity gradient, i.e.

ψmi = ϕmi , ψ
c
i = ϕci , ψ

x
i = ϕx

i , ψ
G
i = ϕG

i . Streamline Petrov-Galerkin is

applied to the particle transport equation, i.e. ψφi = ϕφi + hv · ∇ϕφi . After

replacing the interpolated variables in the corresponding weigthed residuals,
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the system of partial differential equations reduces to a simultaneous alge-

braic non-linear equations system for the coefficients of the basis functions

of all fields.

A mesh with 1, 312 quadrilateral elements was used in all the results

reported here. Increasing the number of elements by 50% in each direction

did not significantly change the concentration and velocity profiles under the

downstream die lip and coated film.

3.3. Solution of the non-linear system and validation

The system of equations was solved simultaneously for all variables using

Newton’s method. The entries of the Jacobian matrix J were evaluated

numerically using a central finite difference scheme.37 In each iteration the

linearized equation system was factorized into unit lower L and upper U

triangular matrices by a frontal solver. In order to assure the convergence of

the Newton loop within 6 to 8 iterations, at each successive set of operating

conditions (parameters), the initial guess was generated by a pseudo-arc-

length continuation method.38 The tolerance on the L2-norm of the residual

vector and on the last Newton update of the solution was set to 10−6.

To validate the model and the implementation, predictions were compared

to the analytical solution of the fully developed, pressure driven particle

suspension flow between parallel plates. As shown by Phillips et al.,11 an

analytical form for the velocity and concentration profiles can be obtained

for the particular case of kc/kη = 0.65. The concentration profile is:

φ =
1

1 + (1−φw)y
φw

, (25)
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where φw is the dimensionless particle concentration at the channel wall and

y is the vertical coordinate in units of the channel half width H. On the

symmetry line (y = 0), φ = 1, because particles migrate towards the zero-

shear rate region until the maximum packing concentration is reached. The

velocity profile is then obtained by numerical integration (using trapezoidal

rule) of the following expression:

u(y) = u∗(y)/umax = 1− dp

dz

H2

2ηsumax

∫ y

0

y

(1− φ)−1.82
dy, (26)

where φ is given by Eq. (25).

The conditions of the problem used in the validation were: L/H = 10

and φ̄ = 0.59. A parabolic velocity profile and a uniform concentration dis-

tribution were imposed in the inflow. In the outflow plane, we assumed a

fully developed flow. Figure 2 shows the particle concentration field; as ex-

pected, the concentration near the wall, where the shear rate is high, is low

and near the center line is high; that is, particles migrate from the high shear

region towards the low shear region. Figure 3 depicts the particle concentra-

tion along both the centerline and channel wall. The results show that the

channel length was long enough to reach the fully developed profiles at the

exit plane. The particle distribution became fully developed (independent

of x) at x ≈ 6H. This entrance length is smaller than the one estimated

by the scaling analysis presented by Nott and Brady.18 With the set of pa-

rameters used in this validation case, the estimated entrance length should

be Le ≈ 40H. We are not sure the reason for this difference. One possible

explanation is that the scaling arguments used to estimate the entry length

considers a shear-induced diffusion coefficient D ≈ φ ˙γa2, this corresponds

18
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Figure 2: Particle concentration field in the supension inside a rectangular channel. On

the left, a uniform concentration φ̄ = 0.59 and a velocity profile given by Eq. (26) are

imposed.

to the second term of eq.16. However, the total particle flux includes a sec-

ond term, which accelerates the particle transport toward the center of the

channel and should reduce the entrance length.

The computed velocity and concentration profiles at the outflow plane

were compared to the fully-developed analytical solution in Figure 4. The

agreement between the numerical prediction and exact solution is very good,

showing a maximum error equal to 3.4% at the center line. This discrepancy

is associated with the singularity at the symmetry line as explained below.

The diffusive flux model predicts particle migration towards regions where

the deformation rate is low, that is, the symmetry line in this case. Actually,

the simulations predicts values as high as φ = 1, i.e. the maximum packing

concentration. As φ → 1 the viscosity approaches infinity (see Eq. (4)),

the Jacobian matrix becomes singular and the Newton’s method fails. The
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Figure 3: Particle concentration along the x -coordinate on the center line (CL) and bottom

wall (BW) for the rectangular channel case shown in Figure 2.
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Figure 4: Comparison of the numerical results with the exact solution at the exit of the

rectangular channel: a) velocity profile and b) concentration profile. In both cases, the

continuous lines correspond with exact solution of the Eqs. (25) and (26).
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singularity was avoided by using a strategy based in the concept of the non-

local stress developed by Nott and Brady18 and Miller and Morris.39 At the

particle scale, the continum hypothesis is not valid and the deformation rate is

not correctly represented by γ̇. As discused by Miller and Morris,39 different

approaches can be implemented to model this non-local stress but the main

idea is that the shear rate at particle level is higher than the continuous

representation and never goes exactly to zero. A small non-local shear rate

value γ̇NL, which is a function of the particle size, is added to the local shear

rate:

γ̇NL = asUloc/l, (27)

where as = (a/l)2, l is the channel width and Uloc is the local fluid velocity

(see Miller & Morris [41]). Thus, when Eq. (27) is added to the local de-

formation rate (Eq. (19)), the non-zero shear rate avoids the concentration

reaching the maximum packing value.

4. Results

The flow under the downstream die lip is almost rectilinear and is well

approximated by a superposition of Couette (substrate drag) and Poiseuille

(pressure driven) flows. The pressure gradient is directly related to the im-

posed flow rate (film thickness).40,41,42,43 For Newtonian flow, at a film thick-

ness t = t∗/H = 1/2, the pressure gradient under the downstream die lip

vanishes, the velocity profile is linear and the shear rate gradient is zero.

At lower film thickness, an adverse pressure gradient occurs to counter act

the drag from the substrate. At t = 1/3, the shear rate at the die surface
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vanishes. At even lower flow rate, flow reversal occurs near the die surface

and a recirculation appears. Since particle migration is driven by shear rate

gradient, the final particle distribution in the coated layer should be strongly

affected by the imposed film thickness.

In this work, the flow topology and particle distribution are analyzed at

three different values of the film thickness, e.g. t = 0.5, t = 0.37 and t = 0.14.

The flow of the particle suspension is compared to the equivalent case at

which particle migration is not taken into account and the viscosity of the

liquid is constant throughout the flow (equal the viscosity of the suspension

at the average bulk particle concentration).

Table 1 shows the values of the dimensional parameters used in this study.

The corresponding capillary number is Ca = 0.1. The values of the coeffi-

cients of the diffusive flux model (kc and kη) were in the same order of the

experimental values determined by Phillips et al.11

4.1. Flow state at t/H0 = 0.5

As was mentioned before, the pressure gradient under the die lip vanishes

for Newtonian flow at t/H0 = 0.5, and the flow is well approximated by a

pure Couette flow. This imply that the shear rate is almost constant in this

region. Figure 5-a shows the particle concentration field for this condition. In

the feed slot, particles migrate towards the symmetry plane, from the high

shear region near the wall towards the low shear region in the symmetry

plane. At the exit of the feed slot, the concentration at the center of the

channel is close to the maximum packing concentration.

Detail of the particle concentration field in the upstream part of the

coating bead is presented in Figure 5-b. The particle concentration near
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Figure 5: a) Particle concentration field and selected streamtraces in the domain, for the

parameters listed in Table 1. b) Zoom on the upstream slot coating region, showing the

region of high particle concentration near the upstream static contact line. c) Zoom of the

downstream slot coating region.
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Vs 0.1 [m/s]

Pvac -3.7 [kPa]

σ 0.06 [N/s]

ηs 0.06 [Pa s]

a 4 [µm]

Hs 10−4 [m]

H0 10−4 [m]

φ̄ 0.59

kc 0.816

kη 1.22

Table 1: Values of the parameters used in the simulation with t = 0.5

the die lip is low, because particles migrate from this high shear rate zone

close to the die surface towards a low shear rate region near a layer where

the deformation rate almost vanishes (y ∼ 0.7).

The correct description of the effect of vacuum pressure on the upstream

meniscus position needs to take into account that the viscosity of the liquid

attached to the die lip is lower than the viscosity at the average particle con-

centration. Figure 6 presents the pressure along the substrate in the upstream

bead for the flow of a particle suspension and the equivalent Newtonian flow

that does not take particle migration into account. In the later, the liquid

viscosity was set at the value of the average concentration, φ̄ = 0.59, and

was constant throughout the flow; e.g. ηr(φ̄) = 5.3. The lower viscosity of

the liquid attached to the substrate and die lip reduces the necessary ad-
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Figure 6: Pressure on the moving substrate in the upstream region, for the conditions of

Table 1 (Suspension) and the same parameters but without particle migration (Newto-

nian).

verse pressure gradient to counteract the drag by the substrate. Therefore,

for a fixed vacuum pressure, the meniscus is located further away from the

feed slot. Although not explored here, the lower and upper vacuum pressure

operability limits in slot coating window (see Carvalho and Keshghi41) are

modified when particle transport is taken into consideration in the model.

Figure 5 shows that for these conditions, the high particle concentration

near the center of the feed slot is convected through the downstream coating

bead with weak particle diffusion, leading to high particle concentration in

a layer located at y ∼ 0.4. For t = 0.5, the velocity profile under the

downstream die lip is close to a linear profile (Couette flow), as show in

Figure 7-a. The shear rate is almost constant and particle migration is only

driven by viscosity gradient, that forces particle to diffuse from high viscosity

(high concentration) regions to lower viscosity (low concentration) regions.
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Figure 7: Velocity (a) and concentration (b) profiles at x ∼ 4 for the case with t =

0.5 (Figure 5). The theoretical profile of a Coutte flow is also included for comparison

(continuous line in frame (a)).

However, at the conditions analyzed, this effect is weak and the concentration

profile at x ∼ 4 (middle of downstream lip) shows a layer of higher particle

concentration (φ ∼ 0.65) at y ∼ 0.4.

The concentration field near the downstream free surface is shown in

Figure 5-c. Close to the static contact line, the deformation rate is high

leading to a region of low particle concentration (φ ∼ 0.4). The layer of high

particle concentration remains in the final film, as shown in Figure 8. The

concentration at the substrate and at the free surface (φ ≈ 0.56) are lower

than the average particle concentration φ̄ = 0.59 and there is a layer of higher

particle concentration (φ ≈ 0.61) located approximately in the middle of the

coated layer.

4.2. Flow state at t/H0 ∼ 1/3

As discussed before, at t/H0 = 1/3 and constant viscosity, the adverse

pressure gradient is such that the deformation rate vanishes at the down-
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Figure 8: Concentration profile along the cross section of the coated film (x = 17).

stream slot die wall. According to the diffusive flux model, particles will

migrate towards this region. The non-uniform shear rate flow completely

changes the particle concentration field in the downstream coating bead and

on the final coated film, when compared to the case at t/H0 = 0.5.

In this section, the flow field at t/H0 = 0.37 is presented. At this condi-

tion, the zero shear rate is not located exactly at the wall, but very close it.

The flow (represented by streamtraces) and particle concentration field are

presented in Figure 9-a. The upstream flow and particle distribution pattern

(Figure 9-b) are similar to that presented in Figure 5-b (at t/H0 = 1/2). By

contrast, the downstream behavior presented in Figure 9-c is quite different.

A high particle concentration region is formed close to the dip lip surface.

The velocity and concentration profile across the coating gap at x ∼ 4 is

shown in Figure 10. The low shear rate close to the die wall and corre-

sponding high particle concentration is clearly observed. The high particle

concentration layer is convected to the top of the coated film. The concen-
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tration profile across the thickness of the coated layer is shown in Figure 11.

Now, the particle concentration on the free surface (φ ∼ 0.62) is higher than

the average concentration, φ̄ = 0.59. This can have a tremendous effect on

the drying process and particle structure formation.

4.3. Flow state at t/H0 < 1/3

At film thickness lower than 1/3 of the coating gap, i.e. t/H0 < 1/3,

the adverse pressure gradient under the downstream die lip is strong enough

that a recirculation is formed. This session presents results at very thin films,

t = 0.14H0, with kc = 0.34 and kη = 0.51. The coefficients of the diffusive

flux model were changed because it was not possible to obtain converged

solution for the values of Table 1. We infer that the convergence problems

were associated to the high concentration gradients associated to particle

accumulated inside the recirculation, which are very steep to be capture by

our mesh refinement.

The flow and particle concentration field are shown in Fig. 12. The recir-

culation under the die lip has a strong effect on the particle distribution in the

coating bead, because a region of high particle concentration is formed inside

the recirculation. The backflow creates a layer of maximum negative velocity

and vanishing shear rate towards which particles migrate. This high particle

concentration inside a vortex may promote particle aggregation which is us-

sually undesired. Because of the large recirculation, all the liquid comming

from the feed slot flows back to the upstream bead before being dragged by

the substrate. The high particle concentration layer at the center of the feed

is re-distributed in this process and, due to particle migration from the sub-

strate, a layer with higher concentration is created close the flow separating
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Figure 9: As in Figure 5 but for t = 0.37.
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Figure 10: Velocity (a) and concentration (b) profiles at x ∼ 4 for the case with t =

0.37 (Figure 9). The theoretical profile of a Coutte flow is also included for comparison

(continuous line in frame (a)).
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Figure 11: Concentration profile along the cross section of the coated film (x = 17), for

t = 0.37.
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streamline that terminates at the meniscus stagnation point. This explains

the shape of the profile across the coated film as presented in Fig.13. The

particle distribution is similar to the one obtained at t = 0.37 with the high

concentration at the top of the film (φ ∼ 0.62) and low (φ ∼ 0.54) at the

substrate.

5. Final Remarks

Slot coating flow of non-colloidal particle suspensions was studied to de-

termine the effect of operating conditions on the particle distribution in the

coating bead and deposited liquid layer. The flow was described by the

mass and momentum conservation equations coupled with a particle trans-

port equation based on the diffusive flux model proposed by Phillips et al.11

The viscosity was considered a function of the local particle concentration

and independent of the local shear rate. The problem was discretized using

the finite element method and the unknown domain and free surface was

mapped with an elliptic mesh generation technique. The resulting set of

algebraic nonlinear equations was solved using the Newtons method.

The results show that the particle distribution in the coating bead is non-

uniform. The complex flow field leads to shear induced particle transport.

Since the deformation rate field is strongly dependent on the imposed flow

rate (wet thickness), the particle distribution in the flow and consequently in

the coated layer drastically changes as the film thickness varies. When the

film thickness is 1/2 of the coating gap, the shear under the downstream die

lip is almost constant and the high particle concentration region formed in the

center of the feed slot is convected, leading to a high particle concentration
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Figure 12: As in Figure 5 but for t = 0.14.
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Figure 13: Concentration profile along the cross section of the coated film (x = 17), for

t = 0.14.

layer in the middle of the coated film. At a film thickness close to 1/3 of the

coating gap, particles are transported towards the zero-shear region close to

the die lip, leading to high particle concentration in the die surface and on the

surface of the coated layer. The high concentration in the die lip may have a

strong effect on particle agglomeration and streak formation that ultimately

leads to coating defects. At even lower flow rates, particles accumulate inside

the flow recirculation, which also may lead to undesirable agglomeration and

coating defects.

Although experimental results on particle distribution in the liquid layer

deposited using slot coating is not available, it is clear that is has a strong

effect on the flow and drying processes, and microstructure formation. The

effect of particles in the coating liquid on the operability limits of the process

has been reported.44

The results presented here show that process conditions (wet thickness)
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can be used to obtain the desired particle distribution. The two-dimensional,

steady-state flows can be used as base state for stability analysis, to determine

the conditions at which the flow ceases to be two-dimensional and steady,

which are usually associated with process limits.41

A natural extension of the model is to consider particles that are not

neutrally buoyant and the surface tension as a function of local particle con-

centration.45 The present results shown high concentration gradients at the

downstream interface that may generate strong Marangoni stresses if the sur-

face tension varies locally with the particle concentration. This tangential

stresses could have a deep impact on the flow field,46 the interface shape and,

consequently on the operability window of the process.

Acknowledgments

The authors would like to thank to the following institutions for finan-
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