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Abstract: This laboratory provides students with the opportunity to reinforce their knowledge of the numerous 
parameters involved in electrophilic aromatic substitution reactions. These concepts are investigated using a 
benchtop GC-MS. Students obtain hands-on experience with the coupling of gas-chromatographic analysis and 
mass-spectral analysis. Each student determines one data point by reacting a pair of compounds with bromine 
and iron (III) chloride. Individual results are then pooled into composite class data, affording students more 
available information for analysis than is typical in an organic chemistry laboratory. 

1. Introduction 

Most textbooks on physical chemistry offer a chapter about 
molecular interactions and the analysis of the different 
contributions: charge-dipole, dipole-dipole, and so forth. In 
order to develop them in the simplest possible way they resort 
to particular geometries, and rather oversimplified charge 
distributions such as, for example, the one-dimensional 
arrangements of three charges to simulate the charge-dipole 
interaction or four charges to obtain the dipole-dipole one [1]. 
Even the particular and rather limited interaction between two 
parallel dipoles is regarded to be too complicated to be 
explicitly treated [1]. The expressions derived from such 
oversimplified settings are of dubious utility and they may at 
most be useful to show the relative order of magnitude of each 
interaction type with respect to the distance between the 
centers of the charge distributions [1]. Note, for example, that 
the average potential energy calculated with the restriction of 
parallel dipoles does not lead to the correct coefficient of the 
Keesom interaction [1]. 

On the other hand, the formal, rigorous and systematic 
multipole expansion yields all those contributions to the 
molecular interaction in a quite general way and even reveals 
the necessity of well known concepts like the dipole moment, 
quadrupole moment, etc [2]. Unfortunately, the standard 
derivation of the multipole expansion [2] is rather too 
complicated for an undergraduate course on physical 
chemistry. 

In view of what has just been said, it would be most useful 
to derive the multipole expansion, which leads to general 
expressions for the molecular interactions, in a sufficiently 
simple way that does not require too complicated mathematics. 
In this paper we explore such possibility. In Section 2 we 
obtain the potential produced by an arbitrary charge 
distribution at a point sufficiently far from its center. In 
Section 3 we use the results of Section 2 to obtain the different 
terms that contribute to the interaction between two widely 
separated arbitrary charge distributions, and in Section 4 we 
discuss the results and draw conclusions. 

2. Potential Due to a Charge Distribution 

In what follows we consider a distribution of charges iq  

located at positions ir  from its center O . We are interested in 

the potential of that charge distribution at a given point P  
located at R  from the origin O . The Coulomb potential at P  
is given by 

 
0

( )
4

i

ii

q
V

R
R  (1) 

where 0  is the vacuum permittivity, i iR  R  is the distance 

from the charge iq  to the point P  and i i R R r  is the 

vector from iq  to P  (see Figure 1). 

We are interested in the case that the point P  is at such 
great distance from the center O  of the charge distribution that 

i iR r R r  for all i . 

For convenience we write i i R R r  and then set 1   

at the end of the calculation. Note that 
2 2 2 22i i iR R r    R r , and if we expand 
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in a Taylor series about 0   we obtain 
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for 1  . We appreciate that the  -power series is equivalent 
to a 1 / R  expansion, so that the larger the value of R  the 
greater the convergence rate of the series. 

If we multiply equation (3) by iq  and sum over all values of 

i  in the charge distribution, the first term in the right-hand 
side gives us 
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Figure 1. Contribution of charge iq  to the Coulomb potential at point 

P . 
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where q  is the net charge of the distribution. For the 

numerator of the second term we have 

 i i i i
i i

q q   R r R r  (5) 

where we see that it is convenient to define the vector 

 i i
i

qμ r  (6) 

that we call the dipole moment of the charge distribution. Note 
that the dipole moment appears in a natural way when we carry 
out the multipole expansion. 

The third term in the right-hand side of equation (3) gives 
rise to the quadrupole moment of the charge distribution. A 
detailed analysis of such term is beyond the scope of this paper 
that we want to keep as simple as possible. Note, however, that 
we can derive an expression for the quadrupole just in the 
same way as we already did for the first two terms. In fact, we 
have all the necessary ingredients at hand. 

If we restrict ourselves to just the first two terms we have 
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If 0q   the first term dominates at large distances from the 

center of the charge distribution and the potential at the point 
P  is mainly due to a point charge located at O . However, if 

0q   the potential at the point P  is provided by the dipole 

moment of the charge distribution which results to be the 
dominant contribution. If the charge distribution is such that 
both the net charge and the dipole moment vanish then the 
dominant contribution is given by the quadrupole moment. 

In order to appreciate the actual dependence of the different 
contributions on the inverse of the distance at the point P  
more clearly we define the unit vector / Rn R . Thus, 
equation (7) becomes 
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3. Interaction Between two Charge Distributions 

In this section we consider the interaction between a charge 
distribution about an origin AO  and another one about the 

origin BO . We assume that there is a set of charges ,A iq  

located at ,A ir  from AO  and another set ,B jq  at ,B jr  from 

BO . Let R  be the vector from AO  to BO  and ijR  the vector 

from ,A iq  to ,B jq . It follows from these definitions that 

, ,ij B j A i  R R r r  (see Figure 2). 

Thus, the interaction between both charge distributions is 
given by 
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If we write ij  R R u , where , ,A i B j u r r , we can apply 

exactly the same procedure followed in the preceding section. 
The Taylor expansion of 1 / ijR  about 0   calculated at 

1   gives us 
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If we multiply equation (10) by , ,A i B jq q  and sum over all i  

and j  the first term in the right-hand side gives us 
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where Aq  and Bq  are the net charges of the distributions A  

and B , respectively. The numerator of the second term leads 
to  

  , , , ,A i B j A i B i B A A B
i j

q q q q      R r r R μ R μ  (12) 

Analogously, the third term in the right-hand side of 

  2 2 2 2 2
, , , ,2A i B j A i B jR u R r r   r r  (13) 

gives us 

   2 A B  R μ R μ  (14) 

and the third term in the right-hand side of 

  2 2 2 2 2
, , , ,2A i B j A i B jR u R r r   r r  (15) 

becomes 
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Figure 2. Coulomb interaction between charges ,A iq  and ,B jq . 

 22 A BR μ μ  (16) 

Thus, the truncated series for the interaction potential results to 
be 
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The first term in the right-hand side of this equation is the 
interaction between a point charge Aq  located at AO  and a 

point charge Bq  at BO . The second term is the interaction 

between a dipole at AO  and a charge at BO  and a charge at 

AO  and a dipole at BO . The third term is the interaction 

between two dipoles. For simplicity we omit the remaining 
terms that involve other multipoles. If, for example, both 
charge distributions are neutral, then the leading term is the 
dipole-dipole interaction.  

We may rewrite the expression (17) in terms of the unit 
vector n  defined above as 
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Note that the dipole-dipole interaction now looks like the one 
commonly obtained by means of the multipole expansion [2]. 

If we use the dipole-dipole interaction given by either 
equation (17) or (18) to calculate the average potential energy 
of two rotating molecules we obtain the correct form of the 
Keesom interaction that the approximate expression for two 
parallel dipoles fails to provide [1]. 

4. Conclusions 

We have tried to show that the derivation of the general 
multipole expansion for the potential of an arbitrary charge 
distribution, and for the interaction between two of them is not 
too difficult for an undergraduate course on physical 
chemistry. The only required mathematics is the Taylor 
expansion of a simple function and a few vector properties 
which students at such level are supposed to be acquaintance 
with. Many textbooks on physical chemistry already have 
recourse to the Taylor expansion in order to obtain the 
necessary expressions for the interactions [1]. However, their 
results are commonly of too restricted validity because they 
resort to particular geometries and oversimplified charge 
distributions [1]. Here, on the other hand, we have derived 
general expressions without specifying any explicit locations 
of the point charges. 

Another interesting feature of the multipole expansion is that 
the concepts of dipole moment, quadrupole moment, and, in 
general, multipole moments appear in a natural and 
straightforward way. Note, for example, how our derivation of 
the multipole expansion for the potential of a charge 
distribution suggests the convenience of defining the quantity 
that we know as dipole moment. We could have also derived a 
general expression for the quadrupole from the third term in 
the right-hand side of equation (10). 
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