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Abstract

We consider associative algebras Λ over a field provided with a direct
sum decomposition of a two-sided ideal M and a sub-algebra A – examples
are provided by trivial extensions or triangular type matrix algebras. In this
relative and split setting we describe a long exact sequence computing the
Hochschild cohomology of Λ. We study the connecting homomorphism using
the cup-product and we infer several results, in particular the first Hochschild
cohomology group of a trivial extension never vanishes.
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1 Introduction

In this paper we consider split algebras Λ = A⊕M where A is a subalgebra of Λ and M is
a two–sided ideal. Our main purpose is to compute the Hochschild cohomology H∗(Λ,Λ)
using the cohomology theory of A and M .

Our motivations are three-fold. First, decompositions providing split algebras arise in
various examples. Note for instance that trivial extensions and triangular matrix algebras
(see below) are split algebras, their cohomology has been investigated recently by several
authors [3, 8, 12]. Second it is known that degree one Hochschild cohomology provides
insight to representation theory through universal covers, and its vanishing is related to
the notion of simply connected algebras, [17]. D. Happel shows in [10] that a finite
representation type algebra over an algebraically closed field of characteristic zero is simply
connected if and only if the first Hochschild cohomology H1 space of its Auslander algebra
is zero. Moreover R. Buchweitz and S. Liu provided a proof of the same statement assuming
only that the field is algebraically closed (Oberwolfach 2000). It has been suspected that
for a finite dimensional algebra over an algebraically closed field, the vanishing of the
first Hochschild cohomology space implies that its ordinary quiver has no oriented cycles.
This was proved wrong and a family of counterexamples can be found in [4]. It is also
conjectured that a tilted algebra is simply connected if and only if its first Hochschild
cohomology space vanishes. This has been proved for tame tilted algebras, see [2]. In
another direction, degree two cohomology concerns the deformation theory of algebras,
see [7]. Finally split algebras are interesting to study in relation to Happel’s question [9]:
if the Hochschild cohomology vector spaces of a finite dimensional algebra vanish after
some degree, is the algebra of finite homological dimension? The present paper is a first
step for considering this question in a relative and split framework.

We describe now the contents of each section of the article.
In section 2 we obtain a long exact sequence involving H∗(Λ,Λ). If M is a projective

left or right A-module the other terms of this sequence are direct sums of vector spaces
Extq

A−A(M⊗
p
A ,X) for p + q = ∗ or p + q = ∗ + 1 depending on whether X = M or

X = A. We study in detail the connecting homomorphism of this long exact sequence in
order to obtain results on the dimensions of the Hochschild cohomology vector spaces of
Λ.

More precisely we obtain for any Λ–bimodule X a double complex whose total co-
homology is the Hochschild cohomology of Λ with coefficients in X. The first quadrant
spectral sequence involved converges, the terms at the first level are unknown but can
probably be approximated through new spectral sequences. Nevertheless, if M is projec-
tive as a left or right A–module, we show that the cohomology of the p–th column Cp(X)
is Ext∗A−A(M⊗Ap,X).

In section 3 we do not assume that M is projective on one side. When M is a square
zero ideal and the bimodule X verifies MX = XM = 0 then the horizontal differentials
of the double complex are 0. Consequently the Hochschild cohomology H∗(Λ, X) is the
direct sum of the cohomologies of the columns, namely

Hn(Λ,X) =
⊕

p+q=n

Hq(Cp(X)).

Of course the Λ–bimodule Λ does not verify the above hypothesis. Nevertheless the
bimodules on both sides of the sequence 0 → M → Λ → Λ/M → 0 do, and we consider
the corresponding long exact sequence in Hochschild cohomology. An interesting result
we obtain is that the connecting homomorphism

δ : Hn(Λ,Λ/M) → Hn+1(Λ,M)
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is bigraded of bidegree (1, 0), that is δ = ⊕p+q=nδ
p,q, where

δp,q : Hq(Cp(Λ/M)) → Hq(Cp+1(M)).

Moreover in section 4 we provide a precise description of δp,q involving only two terms,
using the cup product of a cocycle with the identity endomorphism of M . This description
enables us to determine whether δp,q annihilates or not in some interesting cases.

In section 5 we consider a special case of split algebras: trivial extensions TA. They
are of the form A ⊕DA where DA is the dual A–bimodule of A endowed with the zero
multiplicative structure. We show that its first Hochschild cohomology is a direct sum of
four vector spaces (see Theorem 5.5). One of the factors is the center of A, in particular
H1(TA,TA) never vanishes. More generally we show that Hn(A,A) ⊕ Hn(A,A) is a
direct summand of Hn(TA,TA). This result is a consequence of the fact that for these
algebras the component δ0,q of the connecting homomorphism is zero.

As a direct consequence of our computations we show that H1(TA,TA) = k ⊕
H1(A,A) for a one-way algebra A, see Definition 5.10. This generalizes previous results
obtained in [15, 16].

Finally we specialize to triangular matrix algebras and one–point extensions the results
we have obtained for general split algebras. In this way we recover computations performed
in [6, 8, 9, 12].

2 Split algebras and the double complex

Let k be a field. As stated in the introduction a split algebra Λ is a k–algebra with a
subalgebra A and a two–sided ideal M such that Λ = A⊕M . In other words Λ consists of
the following data: a k–algebra A and a multiplicative A–bimodule M with a product, i.e.
an associative A–bimodule map M ⊗AM →M , m⊗m′ 7→ m.m′. The algebra structure
in A⊕M is given by

(a+m)(a′ +m′) = aa′ + am′ +ma′ +m.m′.

Let X be a Λ–bimodule. As usual, the Hochschild cohomology vector spaces of Λ with
coefficients in X are the cohomology groups of the following cochain complex, (see for
instance [1, 5, 14, 18])

0 −→ X
d

−→ Homk(Λ, X)
d

−→ · · ·
d

−→ Homk(Λ⊗n,X)
d

−→ · · ·

where for n ≥ 1

df(x1 ⊗ . . .⊗ xn+1) = x1f(x2 ⊗ . . .⊗ xn+1)

+

n
∑

i=1

(−1)if(x1 ⊗ . . .⊗ xixi+1 ⊗ . . .⊗ xn+1)

+ (−1)n+1f(x1 ⊗ . . .⊗ xn)xn+1

and for x ∈ X and λ ∈ Λ
(dx)(λ) = λx− xλ.

Since Λ = A ⊕M , we have a decomposition of Λ⊗n as a direct sum of vector spaces
in terms of A and M : let Mp,q be the sub–vector space spanned by (p + q)–tensors
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x1 ⊗ . . . ⊗ xp+q such that exactly p of the xi’s belong to M while the other xi’s belong
to A. Clearly

Λ⊗n =
⊕

p+q=n

Mp,q.

Moreover the Hochschild complex above organizes in a double complex whose (p, q)– spot
is Homk(Mp,q,X). Indeed, the image of d restricted to Homk(Mp,q,X) is contained in
Homk(Mp+1,q,X)⊕Homk(Mp,q+1,X). The horizontal and vertical components of d are
denoted dh and dv respectively. The cohomology of the total complex is H∗(Λ,X).

PROPOSITION 2.1 The vertical diffentials dv of the above double complex depend nei-
ther on the product of M nor on the actions of M on X.

Proof. Let f ∈ Homk(Mp,q,X), in other words f : Λ⊗(p+q) → X vanishes on
(p + q)–tensors which have not exactly p components of M and q components of A.
We evaluate dvf on a tensor (x1⊗ . . .⊗xp+q+1) ∈Mp,q+1. We shall see that the terms
where the product of M or the action of M on X appear are zero. If x1 ∈ M then
x1f(x2 ⊗ . . .⊗ xp+q+1) = 0 since (x2 ⊗ . . .⊗ xp+q+1) /∈Mp,q , regardless the action of
M on X. Similarly f(x1 ⊗ . . .⊗xixi+1 ⊗ . . .⊗xp+q+1) = 0 if xi and xi+1 belong to M
since the tensor belongs to Mp−1,q+1 regardless the value of xixi+1. The behaviour of
the last term of the coboundary formula is analogous to the first one. �

In order to determine the vertical cohomology, we first note that the cohomology of
the 0–th column is the Hochschild cohomology H∗(A,X) = Ext∗A−A(A,X), where X
is considered as an A–bimodule by restriction of scalars. From now on we simplify the
notations omitting the tensor product sign for tensor products over the ground field k;
tensor signs between vectors are replaced by commas.

The following result is announced in [6], but the proof provided there is incomplete.

THEOREM 2.2 The cohomology of the column p = 1 is Ext∗A−A(M,X).

Proof. We will first provide a free resolution of M as an A–bimodule. Consider the
bar resolution of M as a left A–module (see [18, 8.6.12]),

· · · → AAM → AM → 0

and the Hochschild resolution of A as an A–bimodule

· · · → AAA→ AA→ 0.

Tensoring them over A provides the complex

· · · → AMAA⊕ AAMA→ AMA→ 0.

The cycles in each degree of the Hochschild resolution are projective left A–modules
since the resolution splits as a sequence of left A–modules. The Künneth formula
ensures that the last complex has zero homology in positive degrees and M⊗AA = M
in degree zero. Next we apply the functor HomA−A(−,X) and we use the identification
HomA−A(AZA,X) = Homk(Z,X) in order to verify that the coboundaries provide the
first column of the double complex. �
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Remark 2.3 A direct computation shows that HomA−A(M⊗Ap,X) is the zero degree
cohomology of the p–th column. In order to generalize this result to the other vertical
cohomology groups for p ≥ 2 we need to assume additional hypothesis on M as follows.

THEOREM 2.4 Let A be a k–algebra, M be an A–bimodule which is right or left pro-
jective and X be an A⊕M–bimodule. The cohomology of the p–th column in degree q
is Extq

A−A(M⊗Ap,X).

The proof of the above theorem is given at the end of this section, as a consequence
of the next result:

PROPOSITION 2.5 Let C, B and A be k–algebras, CNB be a C − B–bimodule and

BMA be aB−A–bimodule. The homology of the following complex is equal to TorB
∗ (N,M)

· · ·
b′

−→ CCNMA ⊕ CNBMA⊕ CNMAA
b′

−→ CNMA −→ 0,

where the term in degree n is a free C − A–bimodule of the form CZA and

Z =
⊕

i+j+k=n; i,j,k≥0

CkNBjMAi.

Note that the boundary formula is provided by the standard resolution of an algebra
as a bimodule:

b′(c, x1, . . . , xn, a) = (cx1, . . . , xn, a)

+

n−1
∑

i=1

(−1)i(c, x1, . . . , xixi+1, . . . , xn, a)

+ (−1)n(c, x1, . . . , xna).

By assumption products of type nm are zero when n ∈ N and m ∈ M ; the bimodule
action gives products in case of elements of the form bm, nb, cn, etc. Each summand of
the formula must have an element of C and an element of A on each side, otherwise its
value is 0.

Remark 2.6 Before proving Proposition 2.5 we note that for a C − A–bimodule X, the
functor HomC−A(−,X) applied to the above complex provides the second column C2(X)
in case A = B = C and N = M , since by virtue of Proposition 2.1 we can assume that
the product of M and the actions of M on X are trivial.

Proof. (Proposition 2.5) We consider the bar resolution of M as a left B–module

· · · −→ BBM −→ BM −→ 0

and we apply the functor N ⊗B −

· · · −→ N ⊗B BBM −→ N ⊗B BM −→ 0,

obtaining in this way the standard complex which is used to compute TorB
∗ (N,M)

· · · −→ NBM −→ NM −→ 0. (1)
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Next we use the Hochschild resolution of C as a C–bimodule

· · · −→ CCC −→ CC −→ 0.

Its homology is non–zero only in degree zero, with value C. Tensoring the above
resolution with (1) over C gives

· · · −→ CNBM ⊕CCNM −→ CNM −→ 0.

We assert that the homology of this complex is still TorB
∗ (N,M). Indeed we can use

again the Künneth formula since the set of cycles of the bar resolution of C (which
splits as a sequence of right C–modules) is a projective right module, and the homology
is zero except in degree zero with value C. Hence the homology of the above complex
is the tensor product of the homologies, that is C ⊗C TorB

∗ (N,M) = TorB
∗ (N,M).

Finally we consider the Hochschild resolution of A and we tensor it over A with the
above complex. As before, the resulting homology is TorB

∗ (N,M)⊗AA = TorB
∗ (N,M).

A non difficult computation shows that the resulting boundaries coincide with those
described in the statement. �

PROPOSITION 2.7 Let A,B,C,D be k–algebras and DUC , CNB , BMA be bimodules.
Assume TorB

∗ (N,M) = 0 in positive degrees. Then TorC
∗ (U,N ⊗B M) is the homology

of the following complex:

· · · −→ DDUNMA ⊕DUCNMA ⊕DUNBMA ⊕DUNMAA −→ DUNMA −→ 0

with n–th term DZA where

Z =
⊕

i+j+k+l=n

DlUCkNBjMAi.

Proof. By hypothesis the complex of the preceding proposition has homology only
in degree zero, with value N ⊗B M . Since the modules are C–free on the left, this
complex is a resolution of the left C–module N ⊗B M . Applying the functor U ⊗C −
provides a complex whose homology is TorC

∗ (U,N ⊗B M).
We consider as in the previous proposition a resolution of the algebra D as a D–

bimodule. The Künneth formula shows that tensoring this resolution over D with the
complex obtained above provides a new complex whose homology is TorC

∗ (U,N ⊗B

M). �

Remark 2.8 If TorC
∗ (U,N ⊗B M) is zero in positive degrees, the complex of Proposition

2.7 becomes a projective resolution of the D−A–bimodule U ⊗C N ⊗B M . Applying the
functor HomD−A(−,D XA) to this projective resolution gives a cochain complex whose
homology is Ext∗D−A(U ⊗C N ⊗B M,X).

Proof. (Theorem 2.4) Since M is right or left projective, then TorA
∗ (M,M) is zero in

positive degrees. The complex of Proposition 2.5, in the case N = M , A = B = C,
is a projective resolution of the A–bimodule M ⊗A M . We have already noticed that
applying the functor HomA−A(−,X) to this resolution yields precisely the second
column of the double complex and, consequently, its cohomology is Ext∗A−A(M ⊗A

M,X).
The same procedure applies to Proposition 2.7, and we obtain that the third col-

umn has cohomology Ext∗A−A(M⊗A3,X). By induction the end of the proof is now
obvious. �
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3 The connecting homomorphism

We return to the double complex which we use to compute the Hochschild cohomology of
an arbitrary split algebra Λ = A⊕M with coefficients in a Λ–bimodule X. The filtration
of the total complex arising from the columns provides a first quadrant spectral sequence,
hence converging to H∗(Λ,X) (see for instance [13, 18]). In the preceding section we
have computed the first level vector spaces E∗,∗

1 , assuming M is A–projective on one
side. However the differential at the first level appears hard to compute even with these
hypothesis on M .

We focus on a special case of interest for specific computations that we will perform
in the next section.

THEOREM 3.1 Let A be a k-algebra, M be an A-bimodule, Λ = A ⊕M be the corre-
sponding split algebra with M2 = 0, and let X be a Λ–bimodule verifying MX = XM = 0
(in other words X is an A–bimodule with actions trivially extended to Λ). Then the hori-
zontal coboundaries of the double complex are zero. As a consequence

Hn(Λ,X) =
⊕

p+q=n

Hq(Cp(X)),

where Cp(X) denotes the p-th column.

Proof. Let ϕ : Mp,q → X be a cochain, in other words ϕ : Λ⊗(p+q) → X is a cochain
that vanishes on each component Mp′,q′ 6= Mp,q of Λ⊗(p+q).

By definition dhϕ = dϕ |Mp+1,q therefore

dhϕ(x1, . . . , xp+q+1) = x1ϕ(x2, . . . , xp+q+1)

+

p+q
∑

i=1

(−1)iϕ(x1, . . . , xixi+1, . . . , xp+q+1)

+ (−1)p+q+1ϕ(x1, . . . , xp+q)xp+q+1.

The first term is zero, indeed if x1 ∈ M we have MX = 0, while if x1 ∈ A then
(x2, . . . , xp+q+1) ∈Mp+1,q−1 and ϕ is zero when evaluated on it. The last term is zero
for the same reasons. Each middle term vanishes since either both xi and xi+1 belong
to M (hence xixi+1 = 0) or (x1, . . . , xixi+1, . . . , xp+q+1) ∈Mp+1,q−1. �

The above decomposition and the results of the previous section yield the following:

COROLLARY 3.2 Let A be a k–algebra and M be an A–bimodule projective on one
side. Let Λ be the split algebra A ⊕M with M2 = 0, and let X be a Λ–bimodule such
that MX = XM = 0. Then

Hn(Λ,X) =
⊕

p+q=n

Extq
A−A(M⊗Ap,X),

where M⊗A0 = A.

We now consider for a split algebra Λ = A ⊕ M the following exact sequence of
Λ–bimodules

0 −→M −→ Λ
π

−→ Λ/M = A −→ 0.
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Note that M is a Λ–bimodule since M is a two–sided ideal of Λ. Of course Λ/M is in fact
A considered as a Λ–bimodule with zero actions of M on both sides. This exact sequence
of coefficients provides a long exact sequence in Hochschild cohomology

0 → H0(Λ,M) → H0(Λ,Λ)
π0

→ H0(Λ, A)
δ0

→

H1(Λ,M) → H1(Λ,Λ)
π1

→ H1(Λ, A)
δ1

→

. . .

Hn(Λ,M) → Hn(Λ,Λ)
πn

→ Hn(Λ, A)
δn

→

. . .

Our next purpose is to describe the connecting homomorphism δn in order to combine
this information with knowledge onH∗(Λ, A) andH∗(Λ,M). This will provide information
on H∗(Λ,Λ) which is our main purpose. We begin by studying δ0.

PROPOSITION 3.3 Let A be a k-algebra, M be an A-bimodule and let Λ = A⊕M be
the corresponding split algebra. The above connecting homomorphism δ0 vanishes if and
only if the center AA of A has symmetric action on M (i.e. am = ma for every a ∈ AA

and m ∈M).

Proof. The center ΛΛ of Λ = A⊕M is as follows:

ΛΛ = [AA ∩AM ] ⊕ [MM ∩MA],

where AM are the elements of A acting symmetrically on M , while MM is the cen-
ter of the multiplicative bimodule M and MA = H0(A,M) = {m ∈ M | am =
ma for every a ∈ A}.

In the long exact sequence above

0 −→MΛ −→ ΛΛ π0

−→ AΛ = AA δ0

−→ H1(Λ,M) −→ . . .

we have Imπ0 = AA ∩ AM . Hence Ker δ0 = AA ∩ AM so δ0 = 0 if and only if
AA ∩AM = AA which is equivalent to AA ⊂ AM . �

Example 3.4 Let f be an automorphism of A and let M = fA be the A–bimodule A with
left action twisted by f . Then δ0 = 0 if and only if f is the identity on central elements
of A. Indeed, let Fixf be the subalgebra of elements fixed by f . For M = fA we have
AM = AA ∩ Fixf .

Example 3.5 In case Λ is the trivial extension TA of A we have M = DA and the center
of A acts symmetrically on M . Consequently δ0 = 0.

We next prove that each connecting homomorphism has bidegree (1, 0).

PROPOSITION 3.6 Let Λ = A ⊕M be a split algebra with M2 = 0. The connecting
homomorphism

δn : Hn(Λ,Λ/M) → Hn+1(Λ,M)

has bidegree (1, 0) with respect to the decomposition provided in Theorem 3.1.
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Proof. We denote by Hq(Cp(X)) the cohomology of the p–th column in degree q,
where X is a Λ–bimodule. Since we proved that the horizontal differentials are zero
when MX = XM = 0, we have for such an X

Hn(Λ,X) =
⊕

p+q=n

Hq(Cp(X)).

Both M and Λ/M verify the above assumption on X. Then

δn :
⊕

p+q=n

Hq(Cp(Λ/M)) →

(

⊕

p+q=n

Hq(Cp+1(M))

)

⊕Hn+1(C0(M)).

We assert that the image of δn |Hq(Cp(Λ/M)) is contained in Hq(Cp+1(M)), hence
δn =

⊕

p+q=n δ
p,q where

δp,q : Hq(Cp(Λ/M)) → Hq(Cp+1(M)).

In order to prove the assertion let ϕ : Mp,q → A be a cocycle of the Hochschild complex
of Λ/M . We use the given inclusion Λ/M ⊂ Λ = A ⊕M to obtain ϕ : Mp,q → Λ,
taking into account that A inside Λ has a non trivial action of M on it. The image of
the coboundary of ϕ in the Hochschild complex of Λ is contained in M and provides a
well defined element in Hp+q+1(Λ,M) by general arguments. Considering the double
complex for Λ, we have two components dϕ = dvϕ + dhϕ. In fact δϕ = dϕ. Now
we will prove that dϕ has zero values on every component of Λ⊗n+1 except maybe on
Mp+1,q. In order to prove that dvϕ = 0, let (x1, . . . , xp+q+1) ∈Mp,q+1, then

dvϕ(x1, . . . , xp+q+1) = x1ϕ(x2, . . . , xp+q+1)

+

p+q
∑

i=1

(−1)iϕ(x1, . . . , xixi+1, . . . , xp+q+1)

+ (−1)p+q+1ϕ(x1, . . . , xp+q)xp+q+1.

We observe that the middle terms remain unchanged for ϕ or ϕ, namely

p+q
∑

i=1

(−1)iϕ(x1, . . . , xixi+1, . . . , xp+q+1) =

p+q
∑

i=1

(−1)iϕ(x1, . . . , xixi+1, . . . , xp+q+1).

Concerning the first and the last terms we first assume that both x1 and xp+q+1

belong to A, then all the terms of the sum are in A and coincide with the terms of
dvϕ. Since ϕ : Mp,q → A is a cocycle, we obtain that the value of the above expression
is zero.

If x1 ∈ M and xp+q+1 ∈ A then (x2, . . . , xp+q+1) ∈ Mp−1,q+1, hence ϕ is zero
on it. The last term remains in A, and all the terms of dvϕ evaluated on the tensor
(x1, . . . , xp+q+1) coincide with the terms of dvϕ (the first one vanishes in both cases).
Since ϕ is a cocycle, we infer that dvϕ(x1, . . . , xp+q+1) = 0 also in this case. The
remaining cases x1, xp+q+1 ∈ M , or x1 ∈ A, xp+q+1 ∈ M can be studied in an
analogous way.

We conclude that δϕ = dhϕ ∈ Hom(Mp+1,q ,M). �
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4 Operations

We introduce operations in the double complex HomA−A(M∗,∗,X) of the previous sections
in order to describe the (p, q)–component δp,q of the connecting homomorphism

δp,q : Hq(Cp(Λ/M)) → Hq(Cp+1(M)).

Recall that the following is an operation on Hochschild cohomology of bimodules over a
k–algebra A (see [5, 7]). Let X and Y be Λ–bimodules, f : Λ⊗n → X and g : Λ⊗m → Y
be Hochschild cochains. The cup product (see [7]) f ⌣ g is defined as the composition

Λ⊗n+m ∼= Λ⊗n ⊗ Λ⊗m f⊗g
−→ X ⊗ Y −→ X ⊗Λ Y.

One has d(f ⌣ g) = df ⌣ g + (−1)nf ⌣ dg , so the product is well defined in
cohomology:

Hn(Λ,X) ⊗Hm(Λ, Y ) → Hn+m(Λ, X ⊗Λ Y ).

In case Λ = A ⊕M is a split algebra this operation goes clearly through the double
complex, that is, if f : Mp,q → X and g : Mp′,q′ → Y are cochains, then

f ⌣ g : Mp,q ⊗Mp′,q′ → X ⊗Λ Y

is the product cochain. Note that Mp,q ⊗ Mp′,q′ is naturally a direct summand of
Mp+p′,q+q′ , the value of f ⌣ g on the complement is zero.

THEOREM 4.1 Let Λ = A⊕M be a split algebra with M2 = 0, and let

0 →M → Λ → Λ/M → 0

be the corresponding short exact sequence. The (p, q)–component δp,q of the connecting
homomorphism δ in the long exact Hochschild cohomology sequence of Λ is given by

δp,qϕ = 1M ⌣ ϕ + (−1)p+q+1ϕ ⌣ 1M .

Remark 4.2 In the statement of this theorem, ϕ : Mp,q → Λ/M is an arbitrary cocycle
and 1M : M → M is the identity morphism which is indeed a 1–cocycle; it belongs to the
(1, 0)–spot of the double complex and corresponds to the projection A⊕M → M in the
usual Hochschild complex of M . Note that if M 6= 0 this projection is a non–zero element
in H1(Λ,M).

Note also that we have Λ/M ⊗Λ M = Λ/M ⊗A M = A ⊗A M = M as well as
M ⊗Λ Λ/M = M .

Proof. We lift the cocycle ϕ to ϕ : Mp,q → Λ as in the previous section. Since
δp,qϕ = dhϕ, we consider (x1, . . . , xp+q+1) ∈ Mp+1,q. In the coboundary formula the
middle terms are all zero. If xi and xi+1 belong to M then xixi+1 = 0 since M2 = 0.
Otherwise xi or xi+1, or both of them lie in A, hence (x1, . . . , xixi+1, . . . , xp+q+1)
belongs to Mp+1,q−1 and ϕ is zero evaluated on this tensor. We have proved that

δp,qϕ(x1, . . . , xp+q+1) = x1ϕ(x2, . . . , xp+q+1)

+ (−1)p+q+1ϕ(x1, . . . , xp+q)xp+q+1,

which corresponds to the formula involving the cup product with the identity endo-
morphism of M . �

10



Example 4.3 We describe the connecting homomorphism component

δp,0 : HomA−A(M⊗Ap, A) → HomA−A(M⊗Ap+1,M).

Let ϕ ∈ HomA−A(M⊗Ap, A) be a cocycle, then

(δp,0ϕ)(m1, . . . ,mp+1) = m1ϕ(m2, . . . ,mp+1) + (−1)p+1ϕ(m1, . . . ,mp)mp+1.

For p = 0 we have

δ0,0 : HomA−A(A,A) → HomA−A(M,M).

Recall thatA⊗AM andM⊗AA are identified with M . Then δ0,0ϕ(m) = mϕ(1)−ϕ(1)m.
Since the center AA is identified with HomA−A(A,A), then Ker δ0,0 = AA∩AM , in other
words the kernel of δ0 is the set of central elements of A which act symmetrically on M ,
as in Proposition 3.3. Note also that δ0 = δ0,0.

5 Trivial extensions

DEFINITION 5.1 The trivial extension TA of an algebra A is the split algebra obtained by
using the A–bimodule DA = Homk(A,k) endowed with the zero multiplicative structure.

We recall that for trivial extensions the connecting homomorphism δ0 of the long exact
cohomology sequence is zero, see Example 3.5. Our next purpose is to compute the first
Hochschild cohomology vector space of a trivial extension. For this we study the first
connecting homomorphism δ1. Since δ0 = 0 the long exact cohomology sequence for TA
gives the following exact sequence

0 → H1(TA,DA) → H1(TA,TA) → H1(TA,A)
δ1

→

H2(TA,DA) → H2(TA,TA) → H2(TA,A)
δ2

→
. . .

Using Theorem 3.1 for X = TA/DA = A or X = DA we have

Hn(TA,X) =
⊕

p+q=n

Hq(Cp(X)).

Moreover δn = ⊕p+q=nδ
p,q where

δp,q : Hq(Cp(A)) −→ Hq(Cp+1(DA))

Remark 5.2 The following facts hold without any projectivity hypothesis on the A–
bimodule DA

1. H∗(C0(X)) = H∗(A,X),

2. H∗(C1(X)) = Ext∗A−A(DA,X) (cf. Theorem 2.2),

3. H0(Cp(X)) = HomA−A(DA⊗Ap,X) (cf. Remark 2.3).

Using them we get that for n = 1

δ1 : HomA−A(DA,A) ⊕ H1(A,A)







δ1,0 0

0 δ0,1

0 0







-

HomA−A (DA⊗A DA,DA) ⊕ Ext1A−A(DA,DA) ⊕ H2(A,DA)

11



PROPOSITION 5.3 The connecting morphisms δ0,1 and δ1,0 verify:

i) δ0,1 = 0

ii) Under appropriate identifications δ1,0ϕ = ϕ+ ϕ∗

Remark 5.4 The first item of this proposition will be generalized in Proposition 5.9.

Proof.

i) Let ϕ be a vertical cocycle at the (0, 1)–spot of the double complex of A, namely
ϕ : A→ A is a usual derivation of the algebra A. We know that δ0,1ϕ = 1DA ⌣
ϕ + ϕ ⌣ 1DA (see Theorem 4.1):

δ0,1ϕ : (DA)A ⊕ A(DA) −→ DA
(f, a) + (b, g) 7→ fϕ(a) + ϕ(b)g.

We assert that δ0,1ϕ is actually a vertical coboundary in the double complex of
DA, namely δ0,1ϕ = dvϕ

∗. Indeed

(dvϕ
∗) (f, a) = −ϕ∗(fa) + ϕ∗(f)a.

For every x ∈ A we have

− (ϕ∗(fa)) (x) + (ϕ∗(f)a) (x) =
−(fa) (ϕ(x)) + ϕ∗(f)(ax) =
−f (aϕ(x)) + f(ϕ(ax)) =
f (−aϕ(x) + ϕ(ax)) = f(ϕ(a)x).

The last equality holds since ϕ is a derivation. Finally we obtain

(dvϕ
∗) (f, a) = fϕ(a).

Similarly we prove that (dvϕ
∗) (b, g) equals ϕ(b)g.

ii) Let ϕ ∈ HomA−A(DA,A) or by adjointness let β : DA ⊗A−A DA → k be
a bilinear form, given by β(f, g) = g (ϕ(f)). We know that δ1,0ϕ = 1DA ⌣
ϕ + ϕ ⌣ 1DA, more precisely (δ1,0ϕ)(f, g) = fϕ(g) + ϕ(f)g. Now each ψ ∈
HomA−A(DA⊗A DA,DA) is also identified with a bilinear form β : DA⊗A−A

DA → k, namely β(f, g) = ψ(f, g)(1). Through this identification, we have that
δ1,0β = β + βt, where βt(f, g) = β(g, f). Indeed

(δ1,0ϕ)(f, g)(1) = (fϕ(g)) (1) + (ϕ(f)g) (1) = f(ϕ(g)) + g(ϕ(f)).

�

We consider the set of skew–symmetric bilinear forms β over DA such that β(fa, g) =
β(f, ag) and we denote this set AltA(DA). In the proof of the next Theorem we will show
that AltA(DA) = Kerδ1,0. This vector space coincides with E(DA) as considered by M.
Saorin in [16].

We use a star symbol in order to denote the dual of a vector space, while the notation
D is kept for the dual of a vector space endowed with a bimodule structure.

THEOREM 5.5 Let TA be the trivial extension of a finite–dimensional algebra A. Then

H1(TA,TA) = AA ⊕ H1(A,A)∗ ⊕ H1(A,A) ⊕ AltA(DA).
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Before proving this result we note that since the center of a k-algebra is not zero we
get the following result.

COROLLARY 5.6 Let TA be the trivial extension of a finite–dimensional algebra A.
Then the first Hochschild cohomology group of TA do not vanish.

Proof. Theorem 5.5. From the long exact sequence and the description of δ1, we have

H1(TA,TA) = H1(TA,DA) ⊕ Kerδ1.

We have that Kerδ1 = H1(A,A) ⊕ Kerδ1,0 and

Kerδ1,0 = {ϕ ∈ HomA−A(DA,A) | ϕ+ ϕ∗ = 0} .

Using adjointness we have

HomA−A(DA,A) = (DA⊗A−A DA)∗ .

So we have proved the following

Kerδ1,0 = AltA(DA).

From Remark 5.2

H1(TA,DA) = HomA−A(DA,DA) ⊕ Ext1A−A(A,DA).

Actually
HomA−A(DA,DA) = HomA−A(A,A) = AA.

Finally
H1(A,DA) = H1(A,A)∗

since for a finite dimensional algebra A and a finite dimensional A–bimodule N the
following fact holds: Hn(A,N)∗ = Hn(A,DN) (see for instance [5]). Note also that
N and DDN are bimodules which are canonically isomorphic by the evaluation map.
�

THEOREM 5.7 Let A be an arbitrary algebra (not necessarily finite–dimensional). Then

H1(TA,TA) = AA ⊕ H1(A, TA) ⊕ AltA(DA).

Proof. In the proof of the above theorem note that H1(A,A) ⊕ H1(A,DA) =
H1(A,TA). �

THEOREM 5.8 LetA be a finite dimensional k–algebra. Then the vector spaceHn(A,A)⊕
Hn(A,A) is a direct summand of Hn(TA,TA).

In order to prove this theorem, we provide the following result generalizing Proposition
5.3. Recall that δ0,q : Hq(A,A) → Extq

A−A(DA,DA) is a component of the connecting

homomorphism δq : Hq(TA,A) → Hq+1(TA,DA).

PROPOSITION 5.9 We have δ0,q = 0 for all q ≥ 1.

13



Proof. Let φ ∈ Hom(A⊗q, A) be a Hochschild cocycle at the (0, q)–spot of the double
complex. Next we provide φ′ ∈ Hom((DA)1,q−1,DA) such that dvφ

′ = δ0,qφ, by the
following formula

φ′(a1, . . . , an, f, b1, . . . , bm)(x) = ǫ(n, q)f (φ(b1, . . . , bm, x, a1, . . . , an))

where n+m+ 1 = q and

ǫ(n, q) =

{

−1 if n is odd
(−1)q+1 if n is even.

Observe that δ0,q(φ) ∈ Hom((DA)1,q−1,DA) and δ0,q(φ) = 1 ⌣ φ + (−1)q+1φ ⌣ 1.
So the following three cases arise:

(δ0,qφ)(f, b1, . . . , bq)(x) = f (φ(b1, . . . , bq)x)

(δ0,qφ)(a1, . . . , ai, f, b1, . . . , bj)(x) = 0 for i 6= 0, j 6= 0, i+ j = q

(δ0,qφ)(a1, . . . , aq , f)(x) = (−1)q+1f (xφ(a1, . . . , aq)) .

The verification that dvφ
′ = δ0,qφ is left to the reader. �

Proof. (Theorem 5.8) By the previous result Hq(A,A) is contained in the image of
the morphism Hq(TA,TA) → Hq(TA,A). Concerning the homology factor note, as we
remarked before, that Hq(C0(DA)) = Hq(A,DA). We know from Proposition 3.6 that
Hq(A,DA) ∩ Im δq−1 = 0 therefore Hq(A,A) = Hq(A,DA) ⊂ Hq(TA,TA). �

We generalize now a result obtained in [15, 16]. In [15] it is shown that for a triangular
schurian algebra A we have H1(TA,TA) = k ⊕ H1(A,A). Actually the same equality
holds for triangular algebras, or for 2-nilpotent algebras whose quiver do not contain ori-
ented cycles of length ≤ 2, see [16].

Our next purpose is to use our previous computations on H1 of a trivial extension
in order to show that this result holds for one-way algebras, a family of algebras that we
define below and which include the algebras considered above. Note that the proof in [16]
of the above equality under the mentioned hypothesis also works for one-way algebras.

DEFINITION 5.10 A one-way algebra is a finite dimensional algebra endowed with a
complete set S of orthogonal idempotents such that

1. For e 6= f in S, if eAf 6= 0 then fAe = 0.

2. For all e ∈ S, we have dimk(eAe) = 1.

3. S has more than one element ( ie. A is not k) and A is an indecomposable algebra
( ie. the graph with set of vertices S and an edge between e and f in case eAf or
fAe is not zero is a connected graph).

THEOREM 5.11 Let A be a finite dimensional one-way algebra, and let TA be its trivial
extension. Then

H1(TA,TA) = k ⊕ H1(A,A) .

In order to prove this formula we use Theorem 5.5, and two results as follows.
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LEMMA 5.12 Let A be a one-way algebra. Then

HomA−A(DA,A) = 0.

Proof. Take ϕ ∈ HomA−A(DA,A) and e, f ∈ S distinct. Since ϕ(D(eAf)) ⊂ fAe,
the form ϕ has to vanish on D(eAf). Now ϕ(D(eAe)) ⊂ eAe so Imϕ ⊂ ⊕e∈SeAe. But
since the algebra is indecomposable and different from k there exist f 6= e such that
eAf 6= 0. Hence there is no non–zero two-sided ideal contained in the vector space
⊕e∈SeAe. �

LEMMA 5.13 LetA be a one-way algebra for a system S of idempotents. ThenH1(A,A) =
0.

Proof. Let E = ×e∈Ske be the subalgebra of A generated by S. Note that A ⊗E A
is a projective A-bimodule since

A⊗E A =
⊕

e∈S

Ae⊗ eA

and each summand is a projective A-bimodule using the fact that

A⊗ A =
⊕

e,f∈S

Ae⊗ fA.

Note also that the decomposition

A⊗E A⊗E A =
⊕

e,f∈S

Af ⊗ fAe⊗ eA

shows that this bimodule is projective as an A-bimodule.
Consider now the projective resolution of A as an A-bimodule

. . .→ A⊗E A⊗E A→ A⊗E A→ A→ 0

where the boundary formula is provided by the standard Hochschild resolution of A as
an A–bimodule. The homotopy contraction showing the exactness is defined as usual,
by inserting 1 at the beginning of each tensor.

Applying the functor −⊗Ae A one gets, after decomposing in terms of the orthog-
onal idempotents

. . .→
⊕

e,f,g∈S

eAf ⊗ fAg ⊗ gAe→
⊕

e,f∈S

eAf ⊗ fAe→
⊕

e∈S

eAe→ 0.

But
⊕

e,f∈S eAf ⊗ fAe =
⊕

e∈S eAe ⊗ eAe, since eAf 6= 0 implies fAe = 0 if
f 6= e. Also, if e is any primitive idempotent, eAe is isomorphic to k. The boundary
map, using this isomorphism, is null on

⊕

e∈S eAe⊗ eAe.
As before, the following term

⊕

e,f,g∈S eAf ⊗ fAg ⊗ gAe of the complex may be
written as:

(

⊕

e∈S

eAe⊗ eAe⊗ eAe

)

⊕





⊕

e6=f∈S

eAf ⊗ fAe⊗ eAe



⊕
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



⊕

e6=f∈S

eAe⊗ eAf ⊗ fAe



 ⊕





⊕

e6=f 6=g∈S

eAf ⊗ fAg ⊗ gAe



 .

The second and third summands are zero, and the restriction of the boundary map
to the first one, composed with the isomorphism eAe ∼= k is the identity. So, already
restricted to this first summand, the boundary map is surjective. Then H1(A,A) = 0.
�

Proof. (Theorem 5.11) We recall the decomposition of Theorem 5.5:

H1(TA,TA) = AA ⊕ H1(A,A)∗ ⊕ H1(A,A) ⊕ AltA(DA).

The hypothesis on A implies that the center AA of A is the field k. From Lemma 5.12 we
get AltA(DA) = 0, since AltA(DA) ⊂ HomA−A(DA,A). The previous theorem shows
that H1(A,A) = 0. �

The aim of the last part of this section is to show that the connecting homomorphisms
of the long exact sequence on Hochschild cohomology are not all zero in general.

We consider split algebras with M = A and M2 = 0. These algebras are isomorphic
to A[x]/ < x2 >≃ A ⊗ k[ǫ], where k[ǫ] = k[x]/ < x2 > is the algebra of dual numbers.
We denote them by A[ǫ]. Recall that an algebra A is symmetric if A is isomorphic to
DA as an A–bimodule. In this case the trivial extension TA of A coincides with the split
algebra A[ǫ].

It is well known (see for instance [5], [18, Prop. 9.4.1]) that if A and B are k–algebras
(one of them finite dimensional) we have

Hn(A⊗B,A⊗B) =
⊕

p+q=n

Hp(A,A) ⊗Hq(B,B).

It is also well known that if k is of characteristic different from 2 then

dimkH
∗(k[ǫ], k[ǫ]) =

{

2 if ∗ = 0
1 if ∗ > 0.

If char k = 2 then dimkH
n(k[ǫ], k[ǫ]) = 2 for all n. For a k–algebra A we infer that in

characteristic different from 2

Hn(A[ǫ], A[ǫ]) = Hn(A) ⊕

(

n
⊕

i=0

Hi(A)

)

,

while in characteristic 2

Hn(A[ǫ], A[ǫ]) =
n
⊕

i=0

(

Hi(A) ⊕Hi(A)
)

.

Let Λ = A ⊕M be a split algebra with M2 = 0. Assume that all the connecting
homomorphisms are zero. Then

Hn(Λ,Λ) =

(

⊕

p+q=n

Hq(Cp(M))

)

⊕

(

⊕

p+q=n

Hq(Cp(A))

)

.
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In case M is projective on one side and all connecting homomorphisms are zero, we get

Hn(Λ,Λ) =

(

⊕

p+q=n

Extq
A−A(M⊗Ap,M)

)

⊕

(

⊕

p+q=n

Extq
A−A(M⊗Ap, A)

)

.

In case M = A, and still assuming that all connecting homomorphisms are zero, we get

Hn(A[ǫ], A[ǫ]) =

n
⊕

i=0

(

Hi(A) ⊕Hi(A)
)

which holds only in characteristic two. Hence the connecting homomorphisms are not zero
in general.

Remark 5.14 For trivial extensions one can describe the component

δp,0 : HomA−A(DA⊗Ap, A) → HomA−A(DA⊗Ap+1,DA)

of the connecting homomorphism as follows, generalizing the second item of Proposition
5.3. The cyclic group of order p+ 1 acts on HomA−A(DA⊗Ap+1,DA) via

(tϕ)(f1 ⊗ · · · ⊗ fp+1) = ϕ(f2 ⊗ · · · fp+1 ⊗ f1).

Identifying by adjunction the source with the target of δp,0 we obtain

δp,0ϕ = tϕ+ (−1)p+1ϕ.

6 Triangular matrix algebras and one–point extensions

Recall that a triangular matrix algebra

(

A 0
M B

)

consists of two algebras A and B

and a B −A bimodule M , the product is obtained by matrix multiplication. Note that in
case B is the ground field k such algebras are called one–point extensions of A. Our next
purpose is to specialize to these algebras the results we have obtained for split algebras in
order to recover results of C. Cibils, S. Michelena and M.I. Platzeck in [6, 12], and by D.
Happel for one–point extensions [9], see also [3, 8].

Remark 6.1 Triangular matrix algebras are split algebras with zero bimodule product.

Indeed consider the algebra A × B and the trivially extended A × B–bimodule M with

structure given by (a, b)m = bm and m(a, b) = ma. The split algebra (A × B) ⊕ M

with M2 = 0 is exactly the algebra

(

A 0
M B

)

.

Let T =

(

A 0
M B

)

be a triangular matrix algebra. Consider the exact sequence of

T–bimodules
0 →M → T → A×B → 0

and the corresponding long exact sequence in Hochschild cohomology
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0 → H0(T,M) → H0(T, T ) → H0(T,A×B)
δ0

→
H1(T,M) → · · ·

· · · → Hn−1(T, A×B)
δn−1

→

Hn(T,M) → Hn(T, T ) → Hn(T,A×B)
δn

→
Hn+1(T,M) → · · ·

We will use a suitable version of Corollary 3.2 in order to describe Hn(T,M) and
Hn(T,A × B). The following fact will enable us to perform a Tor computation for
recovering Cibils and Michelena-Platzec Theorem.

LEMMA 6.2 If M is projective as a left B–module, the trivially extended A×B–bimodule
M is a projective left A×B–module.

Proof. Note that B is projective as a left A×B–module, consequently the same holds
for a direct summand of a free B–module. �

The next result simplifies considerably this description.

LEMMA 6.3 Let M be a B − A–bimodule trivially extended to an A × B–bimodule.
Then for p ≥ 2 we have

M
⊗

p

(A×B) = 0.

Proof. For m ∈M and n ∈M we have

m⊗ n = m(1, 0) ⊗ n = m⊗ (1, 0)n = m⊗ 0 = 0.

�

THEOREM 6.4 (see [6, 12]) Let A and B be k–algebras, M be a B −A–bimodule and

let T =
(

A 0
M B

)

= (A×B)⊕M be the triangular matrix algebra or equivalently

the corresponding split algebra. Then there is a long exact sequence in Hochschild
cohomology

0 → 0 → H0(T, T ) → H0(A,A) ⊕H0(B,B)
δ0,0

→
HomB−A(M,M) → · · ·

· · · → Hn−1(A,A) ⊕Hn−1(B,B)
δn−1,0

→

Extn−1
B−A(M,M) → Hn(T, T ) → Hn(A,A) ⊕Hn(B,B)

δn,0

→
Extn

B−A(M,M) → · · ·

Proof. Theorem 3.1 provides the following decompositions

Hn(T, A×B) =
⊕

p+q=n

Hq(Cp(A×B))

Hn+1(T,M) = Hn+1(A×B,M) ⊕
⊕

p+q=n+1

Hq(Cp+1(M))

and Proposition 3.6 shows that the connecting homomorphism δn is bigraded of bide-
gree (1, 0), that is, δn =

⊕

p+q=n δ
p,q .
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In Section 2 we have proved that the cohomology in degree q of the column Cp(X)

for a T -bimodule X is Extq
(A×B)−(A×B)

(

M
⊗

p

(A×B) ,X
)

whenever the A×B bimodule

M is projective on one side. It is clear from the proofs of Section 2 that this condi-
tion can be relaxed, namely it is enough to require the vanishing of the Tor vector
spaces between tensor powers of the bimodule and the bimodule itself – we thank
Manuel Saorin for stressing this fact. In our situation the Lemma above shows that

Tor∗A×B

(

M
⊗

p

(A×B) ,M
)

= 0 for p ≥ 2. In order to show that Tor∗A×B (M,M) = 0,

consider a projective resolution of M as a left B-module and extend the action to A×B
letting A act by zero. As in Lemma 6.3 tensoring the above projective resolution by
M over A×B provides a zero complex.

These consideration show that that the cohomology of the columns can be replaced
by Ext vector spaces between tensor powers of M . Much of them vanish using again
the Lemma above, finally we obtain the following for the connecting homomorphism:

Hn+1(A×B,M)
⊕

Hn(A×B,A×B)
δn,0

→ Extn
(A×B)−(A×B)(M,M)

⊕ ⊕

Extn−1
(A×B)−(A×B)(M,A×B)

δn−1,0

→ 0

In fact
Extn−1

(A×B)−(A×B)(M,A×B) = 0 and

Hn+1(A×B,M) = 0.

In order to prove this last assertion, let e = (1, 0) and f = (0, 1) be the idempotents of
the algebra A×B. Note that an A×B–bimodule Y is the direct sum of four bimodules
which can be presented at the vertices of a square:

eY f fY f

eY e fY e.

For instance eY f is an A−B–bimodule and eY e is an A–bimodule. We have that

Ext∗(A×B)−(A×B)(Y,Z) = Ext∗A−B(eY f, eZf) ⊕ Ext∗B−B(fY f, fZf) ⊕

Ext∗A−A(eY e, eZe) ⊕ Ext∗B−A(fY e, fZe).

Since the three components eMf , fMf and eMe are zero, we obtain

Extn−1
(A×B)−(A×B)(M,A×B) = Extn−1

(A×B)−(A×B)(M,f(A×B)e),

note that f(A×B)e = 0. Similarly we obtain

Hn+1(A×B,M) = 0 since Hn+1(A×B,M) = Extn+1
(A×B)−(A×B)(A×B,M).

Moreover the same type of arguments shows that

Hn(A×B,A×B) = Hn(A,A) ⊕Hn(B,B) and

Extn
(A×B)−(A×B)(M,M) = Extn

B−A(M,M).

�
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Remark 6.5 The same result can be derived from the spectral sequence arising from the
double complex. Indeed only the first two columns are non–zero at the first level, and the
vector spaces have to be decomposed as we did above.

Remark 6.6 If B = k and M is any right A–module, we obtain Happel’s long exact
sequence [9]:

0 → 0 → H0(T, T ) → H0(A,A) ⊕ k →
EndA M → H1(T, T ) → H1(A,A) →

Ext1A(M,M) → H2(T, T ) → H2(A,A) →
Ext2A(M,M) → · · ·

PROPOSITION 6.7 The connecting homomorphism of the cohomology long exact se-
quence for a triangular matrix algebra is given by

δnf = 1M ⌣ f for f ∈ Hn(A,A) and

δng = (−1)n+1g ⌣ 1M for g ∈ Hn(B,B).

The proof follows from the general description of δp,q given in Theorem 4.1.
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