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Abstract Fukasiewicz implication algebras are the {—, 1}-subreducts of MV-
algebras. They are the algebraic counterpart of Super-Lukasiewicz Implicational
Logics investigated in Komori (Nogoya Math J 72:127-133, 1978). In this paper
we give a description of free Lukasiewicz implication algebras in the context of
McNaughton functions. More precisely, we show that the |X|-free Lukasiewicz
implication algebra is isomorphic to | J,x[xg) for a certain congruence 6 over the
| X|-free MV -algebra. As corollary we describe the free algebras in all subvarieties of
Lukasiewicz implication algebras.
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1 Introduction and preliminaries

Lukasiewicz implication algebras are the algebraic counterpart of the implicational
fragment of Super-Lukasiewicz Logic [9,10]. In fact they are the class of all {—, 1}-
subreducts of the M V-algebras (M V -algebras are term-wise equivalent to Wajsberg
algebras and bounded commutative BCK-algebras [5,8,11]). They are also called
C-algebras in [9, 10] and Lukasiewicz residuation algebras by Berman and Blok in [2].
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A Lukasiewicz implication algebra is an algebra A = (A, —, 1) of type (2, 0) that
satisfies the equations:

1) 1 —->x~x,

2) x=>y)=>((y—=>2) > @&x—=>2)=1,
#B) x—=>y)—=>y=y—>x) —>x,

) x=>y)=>0G—->x)xy—>ax

We will denote by £ the variety of all Lukasiewicz implication algebras. The following
properties are satisfied in £:

@5 x—>x~=1,

16) x > 1~1,

d7) ifx > y=y—>x=1,thenx ~y,
) x—> (y—>x)~1,

M) x> @—-o>20~ry—> (x = 2).

If A € £ then the relation ¢ < b if and only if @ — b = 1 is a partial order on
A, called the natural order of A, with 1 as its greatest element. The join operation
x V y is given by the term (x — y) — y and if ¢ € A, then the polynomial
px,y,¢c):=((x = c)V(y > c)) > cissuchthat p(a, b,c) =a A b = inf{a, b}
for a, b > c. The lattice operation satisfies the following properties:

#10) xvy)—=zx x> — 2,
1) z—>GVvy)R@E—>x)V(EVy),

and if fora, b € A, a A b exists then for any ¢ € A,

#12) (anb) > c~(@—c)V(b— o),
#13) ¢ — (anb)=(c— a) A(c = D).

For properties and definitions of M V -algebras see [6]. An MV -algebra (term equi-
valent to Wajsberg algebra [6, Theorem 4.2.5] and [8]) is an algebra A = (A, &, —, 0),
of type (2, 1, 0) that satisfies the equations:

MVD) xe(y®)~(xdy) Dz,

MV2) xdy~ydx,

MV3) xd0~x,

(MV4) ——x =~ x,

MV5) x @ -0~ -0,

MV6) —(—x@y) Dy~ —-(-y®dx) D
We will denote by MV, the variety of all MV -algebras. For A € MV we can

define the terms

MVT7) 1:=-0,

MVB) x > y:=—xy,

MV9) x Oy :=—(—x & —y).

It is known that if A € MYV, the reduct A~ = (A, —, 1) of A is a Lukasiewicz
implication algebra. For basic concepts and properties of universal algebra we refer
the reader to [4].
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Lukasiewicz implication algebras (and M V-algebras) are congruence 1-regular.
For each congruence relation 6 on an algebra A € £ (or MYV), 1/0 is an implicative
filter, i.e., contains 1 and if a,a — b € 1/0, then b € 1/6 (modus ponens); in
particular, 1/6 is upwardly-closed in the natural order. Conversely, for any implicative
filter F of A the relation

0 ={(a,b) € A>:a— b,b—>acF)

is a congruence on A such that F = 1/6F. In fact, the correspondence 6 +— 1/6
gives an order isomorphism from the family of all congruence relations on A onto the
family of all implicative filters of A, ordered by inclusion. Since any implicative filter
F contains 1 and is closed by —, then it is the universe of a subalgebra F of A. The
bounded distributive lattice of the congruence relations on A is algebraic.

The subdirectly irreducible algebras in £ are linearly ordered relative to the natural
order, or £-chains (commutative B C K -chains). Finite £-chains are the {—, 1}-reducts
£, of the finite MV-chains £,,. The algebra £, has as universe the set of rationals
b, ={0,1, 2 . =1 1} andforeacha,b € L,,a - b = min(l, 1 —a + b).

T ERTE

Another important £-chain is the {—, 1}-reduct of the Chang’s algebra C, [5, p. 474]:
C, ={0.y):y e NJU{(L, —=y) : y e N}, >, (1,0)),
where N is the set of non-negative integers and

(1,0 if z > x,
(x,y) = (z,u) = { (1, min(0, u — y)) ifz = x,
(1 —x+z,u—7y) otherwise.

The setL,” = {(1, —y) : y € N} is the unique maximal (proper) implicative filter
of C.7 with CJ /6~ = £. Its associated subalgebra £ is not finitely generated,
and any infinite subalgebra of £ is isomorphic to a copy of it. Moreover, every
non-trivial finite subalgebra of £ is isomorphic to £,”, for some n > 0. In addition,
C_ and all £, are two-generated and every subalgebra of £ finitely generated is
isomorphic to £, for some n > 0. In particular, £, is a subalgebra of £, for all
n < m, and every infinite £-chain contains a copy of £, for all n > 0 [10].

The lattice of all subvarieties of £ was described in [10], and it is a w + 1-chain:
VE))CVEDC...VE,))C...VE,)=V(C,)) =L,

where V (A) denotes the variety generated by an algebra A. Observe that V (£;") is
the trivial variety and V(£77) is the variety of all implication algebras. In order to
describe equationally the varieties V (£,”), let us write x —9%y:=yandforn >0,
x ="y :=x — (x =" y). For any k € w, we consider the equation

Ek . x—)ky?tﬁx—>k+1 v,

then we have:
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Theorem 1 V (£,7) is the variety of implication Lukasiewicz algebras satisfying the
equation g.

Let [0,1]” = {[0,1],—,1) the {—, 1}-reduct of the MV-algebra [0,1] =
([0, 1], ®, —, 0, 1), where a®b = min{l, x+y}and —a = 1 —a, foralla, b € [0, 1].
For each k, £, is a subalgebra of [0, 1], therefore £ = V ([0, 1]7).

2 Free algebras in £

The goal of this section is to provide a description of the free algebras in £. For this
purpose, we would first need to refer briefly to the free algebras in M) and some of
their properties.

A McNaughton function over the n-cube [1,6,11,13] is a continuous function f :
[0, 11" — [0, 1] for which the following holds: there exist finitely many affine linear
polynomials fi, ..., fx, each f; of the form f; = a?xo—f—ailxl +-- ~—+—ai"—1xn_1 +a{',
with a?, R alf’ integers, such that, for each v € [0, 1]", there exists i € {1, ..., k}
with f(v) = f;(v).

If k is an infinite cardinal, a McNaughton function over the k -cube, is a continuous
function f : [0, 1] — [0, 1] which depends on finitely many variables x;,, ..., x;,
and such that f(x;,, ..., x;,) is a McNaughton function over the n-cube. It is well
known [6] that the free MV -algebra over x-generators F, (M) is the algebra of all
McNaughton functions over the k -cube, and the generators are the projection functions
x; ¢ [0,1] — [0, 1]. We can limit ourselves to the case of « finite. This is not
restrictive, since every element of F, (M) is generated by finitely many projections,
and is therefore essentially an element of F,(MYV), for an appropriate choice of
indices. Then in what follows, we will consider k = n.

Foraset G C [0, 1]", let

Fe={f e F,(MV): f(v) =1forallv € G}.
Clearly Fg is an implicative filter of F, (M)’). We denote [1]
Fy,(MV) | G =F,(MV)/Fg,

and | f|g the congruence class of f in the quotient F,,(MV)/Fg. Observe that two
elements f1, f» € F,(MYV) have the property | f1|lg = | f2|¢ if and only if f1(G) =
£(G).

A rational point of the n-cube is a point v € [0, 1]” such that x; (v) is a rational
number for every i € {1,...,n}. If v is a rational point then there exists a uniquely
determined sequence {a; : 0 < i < n} of positive integers such that:

° a0>0,

o x;(v) = Z—(‘) forevery 0 <i <n,
e the greatest common divisor of the a;s is 1.
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The numbers a;s are named homogeneous coordinates of v, and a is the denomi-
nator of v, den(v). Observe that if v is a rational point,

Fn(MV) f {v} = Lden(v)y

and the homomorphism k, : F,,(MV) — E£genv), is the extension of the function
defined ky,(x;) = x;(v) = 3—8 on the projections x;, for 1 < i < n, and has kernel
Fyy. Moreover the application v — F{y), between rational points over [0, 1]" and
maximal filters of F, (MYV), such that the quotient is isomorphic to £, for some s, is
a bijection.

For a given class IC of {—, 1}-algebras, we say that two terms s, ¢ are C-equivalent
if the equation s ~ ¢ holds in K. Since the class £ is a variety of BC K -algebras,
it follows from [3, Fact 0] that any {—, 1}-term s(x, ..., x,) is £-equivalent to a
{—, 1}-term

S, x) =851 (52— (.= (s, = xi)...),

where x; € {x1,...,x,}and s;, | < i < r, are terms in the variables x, ..., x, in
which 1 does not appear. Thus, for any {—, 1}-term s there is a variable x, which
appears in s, such that the equation x — s & 1 holds in £. Therefore, for every
subvariety V of £, every element of F, (V) is greater than or equal to some generator.
Hence:

Lemma 2 If V is a subvariety of £, then F,(V) = J,cx[x), where X is the set of
generators of F,,(V) and [x) ={y € F,(V) : x <y}

Remark 3 As £ = V([0,1]7), is afact, from standard Universal Algebra, that F,, (£)
is a subalgebra of the £-algebra whose elements are the functions from ([0, 1]7)"
to [0, 1], under pointwise operations. For i € {1, ..., n}, the ith free generator of
F,(£) is the ith projection x; : ([0,1]7)" — [0, 1] . By the previous lemma, if
f e Fy(£) thereisi € {1,...,n}suchthat x; < f. As £ is the class of all {—, 1}-
subreducts of all MV-algebras, F,(£), is a subreduct of F,(M)), moreover is
isomorphic to the implication subalgebra of F, (M) generated by x1, ..., x,. Then
we can consider F,(£) € F,(MV). Moreover F, (£) C |J!_,[x;) with [x;) = {f €
F,(MV): x < f).

For the n-cube [0, 1]*, we have exactly 2n, (n — 1)-faces (faces of dimension n — 1),
they are fori € {1, ...,n}:

C) =11, ..., v) €10, 1" : v; = O},
and

Cl={(v1,...,v0) €[0,11" : v; = 1},
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i.e., the faces CIQ are the (n — 1)-faces that contain the origin 0 = (0, ..., 0), and the
faces Cl.1 are the (n — 1)-faces that contain the vertex 1 = (1, ..., 1).
Now we are ready to prove the main theorem of the paper.

Theorem 4 Let F,(£) be the free Lukasiewicz implication algebra over n generators.

Fori € {1,...,n}, let O = U?:] CIQ and |xi|o be the congruence class of the
projections x; in F,(MV) | O. Then

Fo0) = (Jllxilo),
i=1

where [|xi|0) = {|flo € Fa(MV) | O :|xilo = |flo}.

For the proof of this theorem we reproduce the construction of the elements in the
free MV -algebra given in [1, Theorem 3.1] and [12].

(1) Foreach vertex v = (vy, ..., v,) of the n-cube, let 1, € F,,(MY)) be defined as
follows:

X1 V... VX, ifv =0,
hy =1—x1 V...V —x,, ifv=1,
Vixi = xj:v; =1, andv; =0} otherwise.

Let So = {h, : v a vertex of the n-cube}.

(2) Given a finite subset S of F,(MYV), a starring of S consists in choosing two
elements & # k in S, and in forming the new set

S = S\{h, k) U{h vk h — k k— h}.

(3) Forevery f € F,(MYV), there exists a finite sequence of starrings S, ..., S,
leading from Sy to the set S; having the property that

f=kiO...0kn,

for some ky, ..., k, € 5.

For f € F,(MYV), we say that f is {— }-term if there exists a term containing
only — corresponding to f (if 1 appears it can be replaced by x — x), i.e., f is
the interpretation of a {—}-term #7(yy, ..., y,) in F,(MYV), when we replace the
variables yi, ..., y, by the free generators xp, ..., x,.

Proof of the Theorem 4 First observe that
[x1 Ao A xplo = 10]o.
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This is immediate from the fact that x; (CIQ ) =0, then (x; A...AX,)(v) = 0 for every
v € 0. Thus for f € F,(MYV), by (113),

I=flo =1flo = 10lo = \(flo = Ixilo).

i=1
Let f1, f» € F,(MV)and g = fi ® f>. Then g = —=(f1 — —f2) and therefore,

n

glo =1=(fi>=lo=N\[|A—= | Nr=>x)]| —lxilo

i=1 j=1 0

=

= A\ VUh = (= xplo = Ixilo).
1j=1

1

Thus, as V is an {—}-term (in the sense thatx Vy = (x — y) = y), |f1 O f2lo
is equivalent to an infimum of {— }-terms.
For this simple observation we have that

X1 V... Vx,lo, isa {—}-term ifv=0,
lhylo = {|—x1 V...V =x,]l0 = |10, isa {—}-term ifv=1,

|\/{x,~ —xj:v =1, andv; = 0}|0, is a {—}-term otherwise.

By the construction of the starrings given in (2), the elements of a starring S of Sp
are in the same congruence class of a {— }-term. Since | f1 ® f2|o is equivalent to an
infimum of {— }-terms, by item (3), every f € F,(MY)) is in the same class of an
infimum of {— }-terms. Then for every f € F,(MYV)

!
Iflo= N\~ @1.....x)lo.

i=1

where f;7(x1, ..., x,) are {— }-terms.
Suppose that |x;|o0 < |f|o, then

1
[flo = Ixilo V|flo = (( N\ G m,xn)lo) - |xi|0) — |xilo
i=1
1
=(Vm?m“wmmrﬂmm)eum,
i=1

thus | f|o is a {—}-term and |J;_,[|xi|o) is an implication algebra generated by

[ Xlo = {lx1lo, ..., |xnlo}. Then U:l=1[|xi|0) is a homomorphic image of F,(£).
Let f1, 2 € Fp(£), fi # f2. Since £ = V({£4}s>1), there is s > 1 and an

epimorphism k : F, (£) — £, such that k( f;) # k(f>). Observe that k is determined
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by the image of the generators k(x;) and, as k is onto, there is an ig € {1, ..., n} such
that £, = [k(x;,)). Hence, there exists iy € {1, ..., n} such that k(x;)) = 0.

On the other hand, if X = {xy, ..., x,}, we have that X C F,(£) C F,(MYV).
Then k can be extended to an onto homomorphism k,, : F,(MV) — £, (s = den(v))
suchthatk, [ F,(£) = k.Hence x;,(v) = ky(x;,) = k(x;,) = 0and thereforev € O.

Since v € O and f1(v) = ky(f1) = k(f1) # k(f2) = ku(f2) = f2(v). we have
|filo # | f2l0, and the theorem is proved. O

As example we give a representation for F»(£). Consider the M V-algebra,
M) = F{(MYV) x Fi(MYV).
Let (f1, f2) € M, we say that the pair (f1, f2) is compatible if f1(0) = f2(0). Let
M 5 be the MV -subalgebra of M, of compatible pairs. Let x; = (x, 0) and x; = (0, x)

where x is the free generator of F{(MYV). Fori = 1,2 1let [x;) = {(f1, f2) € M5 :
xi < (f1, f2)}. By the previous theorem we have that

F>(£) = [x1) U [x2).
Let MV be the variety of k-potent MV-algebras, i.e., the variety of M)V -algebras

generated by the algebras £ with s < k (the subvariety that satisfies €¢). In [13], the
free algebra F,(MYV}) is described. More precisely

Fy(MVy) = [[(F2(MV) | {v} : v rational point, den(v) < k}.

As immediate consequence of this and Theorem 4 we have:

Corollary 5 Let £, = V(&) be the k-potent subvariety of £. Then
n
Fu.(£o) = (Jllxilo),
i=1

Where [xi)o = {Iflo € Fn(MVy) | O : |xilo < |flo}, with x; the generators of
Fn(MVk)

This is a new representation of F,,(£y) different of that given in [2].
Examples:

e Forallk>1,
Fi(£) = F1(£) = F1(MVY) [ {0} =2,

where 2 is the two-element implication algebra.
o F,(£1) = J,ex[x), with X the set of free generators of F,(8) and B the variety
of Boolean algebras.
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o Fy(£) is described in [7]. If g1 = (0,1,0,1,0), and go = (0,0, 1,0, J) are
elements in Fo(M)V,) [ O = L? x £2, then
F>(£) = [g1) Ulg).
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