Free Łukasiewicz implication algebras

José Patricio Díaz Varela

Received: 6 December 2006 / Revised: 8 March 2007 © Springer-Verlag 2008

Abstract Łukasiewicz implication algebras are the $\{\rightarrow, 1\}$ -subreducts of MV-algebras. They are the algebraic counterpart of Super-Łukasiewicz Implicational Logics investigated in Komori (Nogoya Math J 72:127–133, 1978). In this paper we give a description of free Łukasiewicz implication algebras in the context of McNaughton functions. More precisely, we show that the |X|-free Łukasiewicz implication algebra is isomorphic to $\bigcup_{x \in X} [x_{\theta})$ for a certain congruence θ over the |X|-free MV-algebra. As corollary we describe the free algebras in all subvarieties of Łukasiewicz implication algebras.

Keywords Łukasiewicz implication algebras · Free algebras · MV-algebras · Wajsberg algebras · McNaughton functions

Mathematics Subject Classification (2000) 06F99 · 08A30 · 08B20

1 Introduction and preliminaries

Łukasiewicz implication algebras are the algebraic counterpart of the implicational fragment of Super-Łukasiewicz Logic [9,10]. In fact they are the class of all $\{\rightarrow, 1\}$ -subreducts of the MV-algebras (MV-algebras are term-wise equivalent to Wajsberg algebras and bounded commutative BCK-algebras [5,8,11]). They are also called C-algebras in [9,10] and Łukasiewicz residuation algebras by Berman and Blok in [2].

The support of Universidad Nacional del Sur and CONICET is gratefully acknowledged.

Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina e-mail: usdiavar@criba.edu.ar

J. P. Díaz Varela (⊠)

A *Łukasiewicz implication algebra* is an algebra $A = \langle A, \rightarrow, 1 \rangle$ of type $\langle 2, 0 \rangle$ that satisfies the equations:

- (11) $1 \rightarrow x \approx x$,
- ($\{2\}$) $(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) \approx 1$,
- (13) $(x \to y) \to y \approx (y \to x) \to x$,
- (14) $(x \to y) \to (y \to x) \approx y \to x$.

We will denote by \mathcal{L} the variety of all Łukasiewicz implication algebras. The following properties are satisfied in \mathcal{L} :

- (15) $x \rightarrow x \approx 1$.
- (16) $x \to 1 \approx 1$,
- (17) if $x \to y \approx y \to x \approx 1$, then $x \approx y$,
- (18) $x \to (y \to x) \approx 1$,
- (19) $x \to (y \to z) \approx y \to (x \to z)$.

If $A \in \mathcal{L}$ then the relation $a \leq b$ if and only if $a \to b = 1$ is a partial order on A, called the *natural order of* A, with 1 as its greatest element. The join operation $x \vee y$ is given by the term $(x \to y) \to y$ and if $c \in A$, then the polynomial $p(x, y, c) := ((x \to c) \vee (y \to c)) \to c$ is such that $p(a, b, c) = a \wedge b = \inf\{a, b\}$ for $a, b \geq c$. The lattice operation satisfies the following properties:

- (110) $(x \vee y) \rightarrow z \approx (x \rightarrow z) \wedge (y \rightarrow z)$,
- (111) $z \to (x \lor y) \approx (z \to x) \lor (z \lor y)$,

and if for $a, b \in A$, $a \wedge b$ exists then for any $c \in A$,

- (112) $(a \wedge b) \rightarrow c \approx (a \rightarrow c) \vee (b \rightarrow c)$,
- (113) $c \to (a \land b) \approx (c \to a) \land (c \to b)$.

For properties and definitions of MV-algebras see [6]. An MV-algebra (term equivalent to Wajsberg algebra [6, Theorem 4.2.5] and [8]) is an algebra $A = \langle A, \oplus, \neg, 0 \rangle$, of type $\langle 2, 1, 0 \rangle$ that satisfies the equations:

- (MV1) $x \oplus (y \oplus z) \approx (x \oplus y) \oplus z$,
- (MV2) $x \oplus y \approx y \oplus x$,
- (MV3) $x \oplus 0 \approx x$,
- (MV4) $\neg \neg x \approx x$.
- (MV5) $x \oplus \neg 0 \approx \neg 0$,
- (MV6) $\neg(\neg x \oplus y) \oplus y \approx \neg(\neg y \oplus x) \oplus x$.

We will denote by \mathcal{MV} , the variety of all MV-algebras. For $A \in \mathcal{MV}$ we can define the terms

- (MV7) 1 := $\neg 0$,
- (MV8) $x \to y := \neg x \oplus y$,
- (MV9) $x \odot y := \neg(\neg x \oplus \neg y)$.

It is known that if $A \in \mathcal{MV}$, the reduct $A^{\rightarrow} = \langle A, \rightarrow, 1 \rangle$ of A is a Łukasiewicz implication algebra. For basic concepts and properties of universal algebra we refer the reader to [4].

Łukasiewicz implication algebras (and MV-algebras) are congruence 1-regular. For each congruence relation θ on an algebra $A \in \mathcal{L}$ (or \mathcal{MV}), $1/\theta$ is an implicative filter, i.e., contains 1 and if $a, a \to b \in 1/\theta$, then $b \in 1/\theta$ (modus ponens); in particular, $1/\theta$ is upwardly-closed in the natural order. Conversely, for any implicative filter F of A the relation

$$\theta_F = \{ \langle a, b \rangle \in A^2 : a \to b, b \to a \in F \}$$

is a congruence on A such that $F = 1/\theta_F$. In fact, the correspondence $\theta \mapsto 1/\theta$ gives an order isomorphism from the family of all congruence relations on A onto the family of all implicative filters of A, ordered by inclusion. Since any implicative filter F contains 1 and is closed by \rightarrow , then it is the universe of a subalgebra F of A. The bounded distributive lattice of the congruence relations on A is algebraic.

The subdirectly irreducible algebras in \mathcal{L} are linearly ordered relative to the natural order, or \mathcal{L} -chains (commutative BCK-chains). Finite \mathcal{L} -chains are the $\{\to, 1\}$ -reducts \boldsymbol{L}_n^{\to} of the finite \mathcal{MV} -chains \boldsymbol{L}_n . The algebra \boldsymbol{L}_n^{\to} has as universe the set of rationals $\boldsymbol{L}_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$, and for each $a, b \in \boldsymbol{L}_n$, $a \to b = \min(1, 1-a+b)$. Another important \mathcal{L} -chain is the $\{\to, 1\}$ -reduct of the Chang's algebra \boldsymbol{C}_{ω} [5, p. 474]:

$$\boldsymbol{C}_{\omega}^{\rightarrow} = \langle \{(0,y): y \in \mathbb{N}\} \cup \{(1,-y): y \in \mathbb{N}\}, \rightarrow, (1,0) \rangle,$$

where \mathbb{N} is the set of non-negative integers and

$$(x, y) \to (z, u) = \begin{cases} (1, 0) & \text{if } z > x, \\ (1, \min(0, u - y)) & \text{if } z = x, \\ (1 - x + z, u - y) & \text{otherwise.} \end{cases}$$

The set $\mathbf{L}_{\omega}^{\rightarrow} = \{(1, -y) : y \in \mathbb{N}\}$ is the unique maximal (proper) implicative filter of $\mathbf{C}_{\omega}^{\rightarrow}$ with $\mathbf{C}_{\omega}^{\rightarrow}/\theta_{\mathbf{L}_{\omega}^{\rightarrow}} \cong \mathbf{L}_{1}^{\rightarrow}$. Its associated subalgebra $\mathbf{L}_{\omega}^{\rightarrow}$ is not finitely generated, and any infinite subalgebra of $\mathbf{L}_{\omega}^{\rightarrow}$ is isomorphic to a copy of it. Moreover, every non-trivial finite subalgebra of $\mathbf{L}_{\omega}^{\rightarrow}$ is isomorphic to $\mathbf{L}_{n}^{\rightarrow}$, for some n>0. In addition, $\mathbf{C}_{\omega}^{\rightarrow}$ and all $\mathbf{L}_{n}^{\rightarrow}$ are two-generated and every subalgebra of $\mathbf{L}_{\omega}^{\rightarrow}$ finitely generated is isomorphic to $\mathbf{L}_{n}^{\rightarrow}$, for some n>0. In particular, $\mathbf{L}_{n}^{\rightarrow}$ is a subalgebra of $\mathbf{L}_{m}^{\rightarrow}$ for all $n\leq m$, and every infinite \mathcal{L} -chain contains a copy of $\mathbf{L}_{n}^{\rightarrow}$ for all $n\geq 0$ [10].

The lattice of all subvarieties of \mathcal{L} was described in [10], and it is a $\omega + 1$ -chain:

$$V(\mathbf{L}_0^{\rightarrow}) \subsetneq V(\mathbf{L}_1^{\rightarrow}) \subsetneq \dots V(\mathbf{L}_n^{\rightarrow}) \subsetneq \dots V(\mathbf{L}_{\omega}^{\rightarrow}) = V(\mathbf{C}_{\omega}^{\rightarrow}) = \mathcal{L},$$

where V(A) denotes the variety generated by an algebra A. Observe that $V(\boldsymbol{\ell}_0^{\rightarrow})$ is the trivial variety and $V(\boldsymbol{\ell}_1^{\rightarrow})$ is the variety of all implication algebras. In order to describe equationally the varieties $V(\boldsymbol{\ell}_n^{\rightarrow})$, let us write $x \rightarrow^0 y := y$ and for $n \geq 0$, $x \rightarrow^{n+1} y := x \rightarrow (x \rightarrow^n y)$. For any $k \in \omega$, we consider the equation

$$\varepsilon_k: x \to^k y \approx x \to^{k+1} y$$
,

then we have:

Theorem 1 $V(\mathbf{L}_k^{\rightarrow})$ is the variety of implication Łukasiewicz algebras satisfying the equation ε_k .

Let $[\mathbf{0}, \mathbf{1}]^{\rightarrow} = \langle [0, 1], \rightarrow, 1 \rangle$ the $\{\rightarrow, 1\}$ -reduct of the MV-algebra $[\mathbf{0}, \mathbf{1}] = \langle [0, 1], \oplus, \neg, 0, 1 \rangle$, where $a \oplus b = min\{1, x + y\}$ and $\neg a = 1 - a$, for all $a, b \in [0, 1]$. For each $k, \boldsymbol{L}_{k}^{\rightarrow}$ is a subalgebra of $[\mathbf{0}, \mathbf{1}]^{\rightarrow}$, therefore $\mathcal{L} = V([\mathbf{0}, \mathbf{1}]^{\rightarrow})$.

2 Free algebras in \mathcal{L}

The goal of this section is to provide a description of the free algebras in \mathcal{L} . For this purpose, we would first need to refer briefly to the free algebras in \mathcal{MV} and some of their properties.

A McNaughton function over the n-cube [1,6,11,13] is a continuous function $f: [0,1]^n \to [0,1]$ for which the following holds: there exist finitely many affine linear polynomials f_1, \ldots, f_k , each f_i of the form $f_i = a_i^0 x_0 + a_i^1 x_1 + \cdots + a_i^{n-1} x_{n-1} + a_i^n$, with a_i^0, \ldots, a_i^n integers, such that, for each $v \in [0,1]^n$, there exists $i \in \{1, \ldots, k\}$ with $f(v) = f_i(v)$.

If κ is an infinite cardinal, a *McNaughton function over the* κ -cube, is a continuous function $f:[0,1]^{\kappa} \to [0,1]$ which depends on finitely many variables x_{i_1},\ldots,x_{i_n} and such that $f(x_{i_1},\ldots,x_{i_n})$ is a McNaughton function over the *n*-cube. It is well known [6] that the free MV-algebra over κ -generators $F_{\kappa}(\mathcal{MV})$ is the algebra of all McNaughton functions over the κ -cube, and the generators are the projection functions $x_i:[0,1]^{\kappa} \to [0,1]$. We can limit ourselves to the case of κ finite. This is not restrictive, since every element of $F_{\kappa}(\mathcal{MV})$ is generated by finitely many projections, and is therefore essentially an element of $F_{n}(\mathcal{MV})$, for an appropriate choice of indices. Then in what follows, we will consider $\kappa = n$.

For a set $G \subseteq [0, 1]^n$, let

$$F_G = \{ f \in \mathbf{F}_n(\mathcal{MV}) : f(v) = 1 \text{ for all } v \in G \}.$$

Clearly F_G is an implicative filter of $F_n(\mathcal{MV})$. We denote [1]

$$F_n(\mathcal{MV}) \upharpoonright G = F_n(\mathcal{MV})/F_G$$

and $|f|_G$ the congruence class of f in the quotient $F_n(\mathcal{MV})/F_G$. Observe that two elements $f_1, f_2 \in F_n(\mathcal{MV})$ have the property $|f_1|_G = |f_2|_G$ if and only if $f_1(G) = f_2(G)$.

A rational point of the *n*-cube is a point $v \in [0, 1]^n$ such that $x_i(v)$ is a rational number for every $i \in \{1, ..., n\}$. If v is a rational point then there exists a uniquely determined sequence $\{a_i : 0 \le i \le n\}$ of positive integers such that:

- $a_0 > 0$,
- $x_i(v) = \frac{a_i}{a_0}$ for every $0 \le i \le n$,
- the greatest common divisor of the a_i 's is 1.

The numbers a'_i s are named homogeneous coordinates of v, and a_0 is the denominator of v, den(v). Observe that if v is a rational point,

$$F_n(\mathcal{MV}) \upharpoonright \{v\} \cong \mathbf{L}_{den(v)},$$

and the homomorphism $k_v: F_n(\mathcal{MV}) \to L_{den(v)}$, is the extension of the function defined $k_v(x_i) = x_i(v) = \frac{a_i}{a_0}$ on the projections x_i , for $1 \le i \le n$, and has kernel $F_{\{v\}}$. Moreover the application $v \to F_{\{v\}}$, between rational points over $[0, 1]^n$ and maximal filters of $F_n(\mathcal{MV})$, such that the quotient is isomorphic to L_s for some s, is a bijection.

For a given class \mathcal{K} of $\{\rightarrow, 1\}$ -algebras, we say that two terms s, t are \mathcal{K} -equivalent if the equation $s \approx t$ holds in \mathcal{K} . Since the class \mathcal{L} is a variety of BCK-algebras, it follows from [3, Fact 0] that any $\{\rightarrow, 1\}$ -term $s(x_1, \ldots, x_n)$ is \mathcal{L} -equivalent to a $\{\rightarrow, 1\}$ -term

$$s'(x_1, ..., x_n) = s_1 \to (s_2 \to (... \to (s_r \to x_i)...)),$$

where $x_i \in \{x_1, \ldots, x_n\}$ and $s_i, 1 \le i \le r$, are terms in the variables x_1, \ldots, x_n in which 1 does not appear. Thus, for any $\{\rightarrow, 1\}$ -term s there is a variable x, which appears in s, such that the equation $x \to s \approx 1$ holds in \mathcal{L} . Therefore, for every subvariety V of \mathcal{L} , every element of $F_n(V)$ is greater than or equal to some generator. Hence:

Lemma 2 If V is a subvariety of \mathcal{L} , then $F_n(V) = \bigcup_{x \in X} [x)$, where X is the set of generators of $F_n(V)$ and $[x) = \{y \in F_n(V) : x \leq y\}$.

Remark 3 As $\mathcal{L} = V([\mathbf{0}, \mathbf{1}]^{\rightarrow})$, is a fact, from standard Universal Algebra, that $F_n(\mathcal{L})$ is a subalgebra of the \mathcal{L} -algebra whose elements are the functions from $([\mathbf{0}, \mathbf{1}]^{\rightarrow})^n$ to $[\mathbf{0}, \mathbf{1}]^{\rightarrow}$, under pointwise operations. For $i \in \{1, \ldots, n\}$, the ith free generator of $F_n(\mathcal{L})$ is the ith projection $x_i : ([\mathbf{0}, \mathbf{1}]^{\rightarrow})^n \rightarrow [\mathbf{0}, \mathbf{1}]^{\rightarrow}$. By the previous lemma, if $f \in F_n(\mathcal{L})$ there is $i \in \{1, \ldots, n\}$ such that $x_i \leq f$. As \mathcal{L} is the class of all $\{\rightarrow, 1\}$ -subreducts of all \mathcal{MV} -algebras, $F_n(\mathcal{L})$, is a subreduct of $F_n(\mathcal{MV})$, moreover is isomorphic to the implication subalgebra of $F_n(\mathcal{MV})$ generated by x_1, \ldots, x_n . Then we can consider $F_n(\mathcal{L}) \subseteq F_n(\mathcal{MV})$. Moreover $F_n(\mathcal{L}) \subseteq \bigcup_{i=1}^n [x_i]$ with $[x_i] = \{f \in F_n(\mathcal{MV}) : x_i \leq f\}$.

For the *n*-cube $[0, 1]^n$, we have exactly 2n, (n-1)-faces (faces of dimension n-1), they are for $i \in \{1, ..., n\}$:

$$C_i^0 = \{(v_1, \dots, v_n) \in [0, 1]^n : v_i = 0\},\$$

and

$$C_i^1 = \{(v_1, \dots, v_n) \in [0, 1]^n : v_i = 1\},\$$

i.e., the faces C_i^0 are the (n-1)-faces that contain the origin $\mathbf{0} = (0, \dots, 0)$, and the faces C_i^1 are the (n-1)-faces that contain the vertex $\mathbf{1} = (1, \dots, 1)$. Now we are ready to prove the main theorem of the paper.

Theorem 4 Let $F_n(\mathcal{L})$ be the free Łukasiewicz implication algebra over n generators. For $i \in \{1, ..., n\}$, let $O = \bigcup_{i=1}^n C_i^0$ and $|x_i|_O$ be the congruence class of the projections x_i in $F_n(\mathcal{MV}) \upharpoonright O$. Then

$$F_n(\mathcal{L}) \cong \bigcup_{i=1}^n [|x_i|_O),$$

where $[|x_i|_O] = \{|f|_O \in F_n(\mathcal{MV}) \mid O : |x_i|_O \le |f|_O\}.$

For the proof of this theorem we reproduce the construction of the elements in the free MV-algebra given in [1, Theorem 3.1] and [12].

(1) For each vertex $v = (v_1, \dots, v_n)$ of the *n*-cube, let $h_v \in F_n(\mathcal{MV})$ be defined as follows:

$$h_v = \begin{cases} x_1 \vee \ldots \vee x_n, & \text{if } v = \mathbf{0}, \\ \neg x_1 \vee \ldots \vee \neg x_n, & \text{if } v = \mathbf{1}, \\ \bigvee \{x_i \rightarrow x_j : v_i = 1, \text{ and } v_j = 0\} & \text{otherwise.} \end{cases}$$

Let $S_0 = \{h_v : v \text{ a vertex of the } n\text{-cube}\}.$

(2) Given a finite subset S of $F_n(\mathcal{MV})$, a starring of S consists in choosing two elements $h \neq k$ in S, and in forming the new set

$$S' = (S \setminus \{h, k\}) \cup \{h \lor k, h \to k, k \to h\}.$$

(3) For every $f \in F_n(\mathcal{MV})$, there exists a finite sequence of starrings S_0, \ldots, S_l , leading from S_0 to the set S_l having the property that

$$f = k_1 \odot \ldots \odot k_m$$
.

for some $k_1, \ldots, k_m \in S_l$.

For $f \in F_n(\mathcal{MV})$, we say that f is $\{\rightarrow\}$ -term if there exists a term containing only \rightarrow corresponding to f (if 1 appears it can be replaced by $x \rightarrow x$), i.e., f is the interpretation of a $\{\rightarrow\}$ -term $t_f(y_1, \ldots, y_n)$ in $F_n(\mathcal{MV})$, when we replace the variables y_1, \ldots, y_n by the free generators x_1, \ldots, x_n .

Proof of the Theorem 4 First observe that

$$|x_1 \wedge \ldots \wedge x_n|_Q = |0|_Q$$
.

This is immediate from the fact that $x_i(C_i^0) = 0$, then $(x_1 \wedge ... \wedge x_n)(v) = 0$ for every $v \in O$. Thus for $f \in F_n(\mathcal{MV})$, by (113),

$$|\neg f|_O = |f|_O \to |0|_O = \bigwedge_{i=1}^n (|f|_O \to |x_i|_O).$$

Let $f_1, f_2 \in F_n(\mathcal{MV})$ and $g = f_1 \odot f_2$. Then $g = \neg(f_1 \rightarrow \neg f_2)$ and therefore,

$$|g|_{O} = |\neg(f_{1} \to \neg f_{2})|_{O} = \bigwedge_{i=1}^{n} \left(\left| f_{1} \to \left(\bigwedge_{j=1}^{n} (f_{2} \to x_{j}) \right) \right|_{O} \to |x_{i}|_{O} \right)$$

$$= \bigwedge_{i=1}^{n} \bigvee_{j=1}^{n} (|f_{1} \to (f_{2} \to x_{j})|_{O} \to |x_{i}|_{O}).$$

Thus, as \vee is an $\{\rightarrow\}$ -term (in the sense that $x \vee y = (x \rightarrow y) \rightarrow y$), $|f_1 \odot f_2|_O$ is equivalent to an infimum of $\{\rightarrow\}$ -terms.

For this simple observation we have that

$$|h_v|_O = \begin{cases} |x_1 \vee \ldots \vee x_n|_O, \text{ is a } \{\rightarrow\}\text{-term} & \text{if } v = \mathbf{0}, \\ |\neg x_1 \vee \ldots \vee \neg x_n|_O = |1|_O, \text{ is a } \{\rightarrow\}\text{-term} & \text{if } v = \mathbf{1}, \\ |\bigvee \{x_i \rightarrow x_j : v_i = 1, \text{ and } v_j = 0\}|_O, \text{ is a } \{\rightarrow\}\text{-term} & \text{otherwise.} \end{cases}$$

By the construction of the starrings given in (2), the elements of a starring S of S_0 are in the same congruence class of a $\{\rightarrow\}$ -term. Since $|f_1 \odot f_2|_O$ is equivalent to an infimum of $\{\rightarrow\}$ -terms, by item (3), every $f \in F_n(\mathcal{MV})$ is in the same class of an infimum of $\{\rightarrow\}$ -terms. Then for every $f \in F_n(\mathcal{MV})$

$$|f|_{O} = \bigwedge_{i=1}^{l} |f_{i}^{\rightarrow}(x_{1}, \dots, x_{n})|_{O},$$

where $f_i^{\rightarrow}(x_1, \dots, x_n)$ are $\{\rightarrow\}$ -terms. Suppose that $|x_i|_O \leq |f|_O$, then

$$|f|_{O} = |x_{i}|_{O} \vee |f|_{O} = \left(\left(\bigwedge_{i=1}^{l} |f_{i}^{\rightarrow}(x_{1}, \dots, x_{n})|_{O} \right) \rightarrow |x_{i}|_{O} \right) \rightarrow |x_{i}|_{O}$$

$$= \left(\bigvee_{i=1}^{l} (|f_{i}^{\rightarrow}(x_{1}, \dots, x_{n})|_{O} \rightarrow |x_{i}|_{O}) \right) \rightarrow |x_{i}|_{O},$$

thus $|f|_O$ is a $\{\rightarrow\}$ -term and $\bigcup_{i=1}^n [|x_i|_O)$ is an implication algebra generated by $|X|_O = \{|x_1|_O, \ldots, |x_n|_O\}$. Then $\bigcup_{i=1}^n [|x_i|_O)$ is a homomorphic image of $F_n(\mathcal{L})$.

Let $f_1, f_2 \in F_n(\mathcal{L}), f_1 \neq f_2$. Since $\mathcal{L} = V(\{\mathcal{L}_s\}_{s \geq 1})$, there is $s \geq 1$ and an epimorphism $k : F_n(\mathcal{L}) \to \mathcal{L}_s$ such that $k(f_1) \neq k(f_2)$. Observe that k is determined

by the image of the generators $k(x_i)$ and, as k is onto, there is an $i_0 \in \{1, ..., n\}$ such that $\mathbf{L}_s = [k(x_{i_0}))$. Hence, there exists $i_0 \in \{1, ..., n\}$ such that $k(x_{i_0}) = 0$.

On the other hand, if $X = \{x_1, \dots, x_n\}$, we have that $X \subseteq F_n(\mathcal{L}) \subseteq F_n(\mathcal{MV})$. Then k can be extended to an onto homomorphism $k_v : F_n(\mathcal{MV}) \to \mathcal{L}_s$ (s = den(v)) such that $k_v \upharpoonright F_n(\mathcal{L}) = k$. Hence $x_{i_0}(v) = k_v(x_{i_0}) = k(x_{i_0}) = 0$ and therefore $v \in O$. Since $v \in O$ and $f_1(v) = k_v(f_1) = k(f_1) \neq k(f_2) = k_v(f_2) = f_2(v)$, we have $|f_1|_O \neq |f_2|_O$, and the theorem is proved.

As example we give a representation for $F_2(\mathcal{L})$. Consider the MV-algebra,

$$\mathbf{M}_2 = \mathbf{F}_1(\mathcal{M}\mathcal{V}) \times \mathbf{F}_1(\mathcal{M}\mathcal{V}).$$

Let $(f_1, f_2) \in M_2$, we say that the pair (f_1, f_2) is *compatible* if $f_1(0) = f_2(0)$. Let M_2^c be the \mathcal{MV} -subalgebra of M_2 of compatible pairs. Let $x_1 = (x, 0)$ and $x_2 = (0, x)$ where x is the free generator of $F_1(\mathcal{MV})$. For i = 1, 2 let $[x_i) = \{(f_1, f_2) \in M_2^c : x_i \leq (f_1, f_2)\}$. By the previous theorem we have that

$$F_2(\mathcal{L}) \cong [x_1) \cup [x_2).$$

Let \mathcal{MV}_k be the variety of k-potent \mathcal{MV} -algebras, i.e., the variety of \mathcal{MV} -algebras generated by the algebras $\boldsymbol{\ell}_s$ with $s \leq k$ (the subvariety that satisfies ε_k). In [13], the free algebra $\boldsymbol{F}_n(\mathcal{MV}_k)$ is described. More precisely

$$F_n(\mathcal{MV}_k) \cong \prod \{F_n(\mathcal{MV}) \upharpoonright \{v\} : v \text{ rational point, } den(v) \leq k\}.$$

As immediate consequence of this and Theorem 4 we have:

Corollary 5 Let $\mathcal{L}_k = V(\mathbf{L}_k)$ be the k-potent subvariety of \mathcal{L} . Then

$$F_n(\mathcal{L}_k) \cong \bigcup_{i=1}^n [|x_i|_O),$$

Where $[x_i]_O = \{|f|_O \in F_n(\mathcal{MV}_k) \mid O : |x_i|_O \leq |f|_O\}$, with x_i the generators of $F_n(\mathcal{MV}_k)$.

This is a new representation of $F_n(\mathcal{L}_k)$ different of that given in [2]. *Examples*:

• For all k > 1,

$$F_1(\mathcal{L}) \cong F_1(\mathcal{L}_k) \cong F_1(\mathcal{MV}) \upharpoonright \{0\} \cong \mathbf{2},$$

where **2** is the two-element implication algebra.

• $F_n(\mathcal{L}_1) \cong \bigcup_{x \in X} [x)$, with X the set of free generators of $F_n(\mathcal{B})$ and \mathcal{B} the variety of Boolean algebras.

• $F_2(\mathcal{L}_2)$ is described in [7]. If $g_1 = (0, 1, 0, \frac{1}{2}, 0)$, and $g_2 = (0, 0, 1, 0, \frac{1}{2})$ are elements in $F_2(\mathcal{MV}_2) \upharpoonright O \cong \mathbf{L}_1^3 \times \mathbf{L}_2^2$, then

$$F_2(\mathcal{L}_2) \cong [g_1) \cup [g_2).$$

References

- 1. Aglianó, P., Panti, G.: Geometrical methods in Wajsberg hoops. J. Algebra 256, 352–374 (2002)
- 2. Berman, J., Blok, W.J.: Free Lukasiewicz hoop residuation algebras. Stud. Log. 77, 153–180 (2004)
- Blok, W.J., Raftery, J.G.: On the quasivariety of BCK-algebras and its subquasivarieties. Algebra Universalis 33, 68–90 (1995)
- Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate texts in Mathematics, vol. 78. Springer, New York (1981)
- 5. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467-490 (1958)
- Cignoli, R., D'Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logics. vol. 7. Kluwer, Dordrecht (2000)
- Díaz Varela, J.P., Torrens, A.: Decomposability of free Łukasiewicz implication algebras. Arch. Math. Log. 45, 1011–1020 (2006)
- 8. Font, J.M., Rodriguez, A.J., Torrens, A.: Wajsberg algebras. Stochastica 8, 5–31 (1984)
- Komori, Y.: The separation theorem of the ℵ₀-valued propositional logic. Rep. Fac. Sci. Shizouka Univ. 12, 1–5 (1978)
- 10. Komori, Y.: Super-Łukasiewicz implicational logics. Nogoya Math. J. 72, 127-133 (1978)
- Mundici, D.: MV-algebras are categorically equivalent to bounded commutative BCK.-algebras. Math. Jpn. 31, 889–894 (1986)
- Panti, G.: A geometric proof of the completeness of the Łukasiewicz calculus. J. Symb. Log. 60(2), 563–578 (1995)
- 13. Panti, G.: Varieties of MV-algebras. Multi Valued Log. 9(1), 141-157 (1999)

