Free Lukasiewicz implication algebras

José Patricio Díaz Varela

Received: 6 December 2006 / Revised: 8 March 2007
© Springer-Verlag 2008

Abstract

MV algebras. They are the algebraic counterpart of Super-Łukasiewicz Implicational Logics investigated in Komori (Nogoya Math J 72:127-133, 1978). In this paper we give a description of free Łukasiewicz implication algebras in the context of McNaughton functions. More precisely, we show that the $|X|$-free Łukasiewicz implication algebra is isomorphic to $\bigcup_{x \in X}\left[x_{\theta}\right)$ for a certain congruence θ over the $|X|$-free $M V$-algebra. As corollary we describe the free algebras in all subvarieties of Łukasiewicz implication algebras.

Keywords Łukasiewicz implication algebras • Free algebras • MV-algebras • Wajsberg algebras $\cdot \mathrm{McNaughton}$ functions

Mathematics Subject Classification (2000) 06F99 • 08A30 • 08B20

1 Introduction and preliminaries

Łukasiewicz implication algebras are the algebraic counterpart of the implicational fragment of Super-Łukasiewicz Logic [9,10]. In fact they are the class of all $\{\rightarrow, 1\}$ subreducts of the $M V$-algebras ($M V$-algebras are term-wise equivalent to Wajsberg algebras and bounded commutative BCK-algebras $[5,8,11]$). They are also called C -algebras in [9,10] and Łukasiewicz residuation algebras by Berman and Blok in [2].

[^0]A Lukasiewicz implication algebra is an algebra $\boldsymbol{A}=\langle A, \rightarrow, 1\rangle$ of type $\langle 2,0\rangle$ that satisfies the equations:
(ł1) $1 \rightarrow x \approx x$,
(ł2) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z)) \approx 1$,
(13) $(x \rightarrow y) \rightarrow y \approx(y \rightarrow x) \rightarrow x$,
(ł4) $(x \rightarrow y) \rightarrow(y \rightarrow x) \approx y \rightarrow x$.
We will denote by \mathcal{E} the variety of all Łukasiewicz implication algebras. The following properties are satisfied in \mathcal{E} :
(15) $x \rightarrow x \approx 1$,
(16) $x \rightarrow 1 \approx 1$,
(17) if $x \rightarrow y \approx y \rightarrow x \approx 1$, then $x \approx y$,
(ł8) $x \rightarrow(y \rightarrow x) \approx 1$,
(ł9) $x \rightarrow(y \rightarrow z) \approx y \rightarrow(x \rightarrow z)$.
If $\boldsymbol{A} \in \mathcal{E}$ then the relation $a \leq b$ if and only if $a \rightarrow b=1$ is a partial order on A, called the natural order of \boldsymbol{A}, with 1 as its greatest element. The join operation $x \vee y$ is given by the term $(x \rightarrow y) \rightarrow y$ and if $c \in A$, then the polynomial $p(x, y, c):=((x \rightarrow c) \vee(y \rightarrow c)) \rightarrow c$ is such that $p(a, b, c)=a \wedge b=\inf \{a, b\}$ for $a, b \geq c$. The lattice operation satisfies the following properties:
(ł10) $(x \vee y) \rightarrow z \approx(x \rightarrow z) \wedge(y \rightarrow z)$,
(111) $z \rightarrow(x \vee y) \approx(z \rightarrow x) \vee(z \vee y)$,
and if for $a, b \in A, a \wedge b$ exists then for any $c \in A$,
(ł12) $(a \wedge b) \rightarrow c \approx(a \rightarrow c) \vee(b \rightarrow c)$,
(ł13) $c \rightarrow(a \wedge b) \approx(c \rightarrow a) \wedge(c \rightarrow b)$.
For properties and definitions of $M V$-algebras see [6]. An $M V$-algebra (term equivalent to Wajsberg algebra [6, Theorem 4.2.5] and [8]) is an algebra $\boldsymbol{A}=\langle A, \oplus, \neg, 0\rangle$, of type $\langle 2,1,0\rangle$ that satisfies the equations:
(MV1) $x \oplus(y \oplus z) \approx(x \oplus y) \oplus z$,
(MV2) $x \oplus y \approx y \oplus x$,
(MV3) $x \oplus 0 \approx x$,
(MV4) $\neg \neg x \approx x$,
(MV5) $x \oplus \neg 0 \approx \neg 0$,
(MV6) $\neg(\neg x \oplus y) \oplus y \approx \neg(\neg y \oplus x) \oplus x$.
We will denote by $\mathcal{M V}$, the variety of all $M V$-algebras. For $\boldsymbol{A} \in \mathcal{M V}$ we can define the terms
(MV7) $1:=\neg 0$,
(MV8) $x \rightarrow y:=\neg x \oplus y$,
(MV9) $x \odot y:=\neg(\neg x \oplus \neg y)$.
It is known that if $\boldsymbol{A} \in \mathcal{M} \mathcal{V}$, the reduct $\boldsymbol{A}^{\rightarrow}=\langle A, \rightarrow, 1\rangle$ of \boldsymbol{A} is a Łukasiewicz implication algebra. For basic concepts and properties of universal algebra we refer the reader to [4].

Łukasiewicz implication algebras (and $M V$-algebras) are congruence 1-regular. For each congruence relation θ on an algebra $\boldsymbol{A} \in \mathcal{L}$ (or $\mathcal{M V}), 1 / \theta$ is an implicative filter, i.e., contains 1 and if $a, a \rightarrow b \in 1 / \theta$, then $b \in 1 / \theta$ (modus ponens); in particular, $1 / \theta$ is upwardly-closed in the natural order. Conversely, for any implicative filter F of \boldsymbol{A} the relation

$$
\theta_{F}=\left\{\langle a, b\rangle \in A^{2}: a \rightarrow b, b \rightarrow a \in F\right\}
$$

is a congruence on \boldsymbol{A} such that $F=1 / \theta_{F}$. In fact, the correspondence $\theta \mapsto 1 / \theta$ gives an order isomorphism from the family of all congruence relations on \boldsymbol{A} onto the family of all implicative filters of \boldsymbol{A}, ordered by inclusion. Since any implicative filter F contains 1 and is closed by \rightarrow, then it is the universe of a subalgebra \boldsymbol{F} of \boldsymbol{A}. The bounded distributive lattice of the congruence relations on \boldsymbol{A} is algebraic.

The subdirectly irreducible algebras in \mathcal{E} are linearly ordered relative to the natural order, or \mathcal{E}-chains (commutative $B C K$-chains). Finite \mathcal{E}-chains are the $\{\rightarrow, 1\}$-reducts \boldsymbol{L}_{n} of the finite $\mathcal{M} \mathcal{V}$-chains \boldsymbol{L}_{n}. The algebra \boldsymbol{L}_{n} has as universe the set of rationals $Ł_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$, and for each $a, b \in Ł_{n}, a \rightarrow b=\min (1,1-a+b)$. Another important $\mathcal{£}$-chain is the $\{\rightarrow, 1\}$-reduct of the Chang's algebra $\boldsymbol{C}_{\omega}[5$, p. 474]:

$$
\boldsymbol{C}_{\omega} \vec{\omega}=\langle\{(0, y): y \in \mathbb{N}\} \cup\{(1,-y): y \in \mathbb{N}\}, \rightarrow,(1,0)\rangle,
$$

where \mathbb{N} is the set of non-negative integers and

$$
(x, y) \rightarrow(z, u)= \begin{cases}(1,0) & \text { if } z>x \\ (1, \min (0, u-y)) & \text { if } z=x \\ (1-x+z, u-y) & \text { otherwise }\end{cases}
$$

The set $Ł_{\omega}=\{(1,-y): y \in \mathbb{N}\}$ is the unique maximal (proper) implicative filter
 and any infinite subalgebra of $\boldsymbol{\iota}_{\vec{\omega}}$ is isomorphic to a copy of it. Moreover, every non-trivial finite subalgebra of $\boldsymbol{\zeta}_{\omega}$ is isomorphic to $\boldsymbol{\zeta}_{n}$, for some $n>0$. In addition, $\boldsymbol{C}_{\omega}^{\vec{\omega}}$ and all $\boldsymbol{\mathscr { L }}_{n} \overrightarrow{\text { are two-generated and every subalgebra of } \boldsymbol{\mathscr { L }}_{\omega} \overrightarrow{\text { finitely }} \text { generated is }}$ isomorphic to $\boldsymbol{\not}_{n}^{\vec{~}}$, for some $n>0$. In particular, $\boldsymbol{L}_{n}^{\overrightarrow{ }}$ is a subalgebra of $\boldsymbol{\ell}_{m}$ for all $n \leq m$, and every infinite \mathcal{E}-chain contains a copy of $\boldsymbol{\ell}_{n}$ for all $n \geq 0$ [10].

The lattice of all subvarieties of \mathcal{E} was described in [10], and it is a $\omega+1$-chain:
where $V(\boldsymbol{A})$ denotes the variety generated by an algebra \boldsymbol{A}. Observe that $V\left(\boldsymbol{\not}_{0}\right)$ is the trivial variety and $V\left(\boldsymbol{\iota}_{1}\right)$ is the variety of all implication algebras. In order to describe equationally the varieties $V\left(\boldsymbol{L}_{n}\right)$, let us write $x \rightarrow^{0} y:=y$ and for $n \geq 0$, $x \rightarrow^{n+1} y:=x \rightarrow\left(x \rightarrow^{n} y\right)$. For any $k \in \omega$, we consider the equation

$$
\varepsilon_{k}: x \rightarrow^{k} y \approx x \rightarrow^{k+1} y
$$

then we have:

Theorem $1 V\left(\boldsymbol{\not}_{k}\right)$ is the variety of implication Łukasiewicz algebras satisfying the equation ε_{k}.

Let $[\mathbf{0}, \mathbf{1}] \rightarrow\langle[0,1], \rightarrow, 1\rangle$ the $\{\rightarrow, 1\}$-reduct of the $M V$-algebra $[\mathbf{0}, \mathbf{1}]=$ $\langle[0,1], \oplus, \neg, 0,1\rangle$, where $a \oplus b=\min \{1, x+y\}$ and $\neg a=1-a$, for all $a, b \in[0,1]$. For each $k, \boldsymbol{\iota}_{k}$ is a subalgebra of $[\mathbf{0}, \mathbf{1}] \rightarrow$, therefore $\mathcal{E}=V([\mathbf{0}, \mathbf{1}] \rightarrow)$.

2 Free algebras in \mathcal{E}

The goal of this section is to provide a description of the free algebras in \mathcal{E}. For this purpose, we would first need to refer briefly to the free algebras in $\mathcal{M V}$ and some of their properties.

A McNaughton function over the n-cube $[1,6,11,13]$ is a continuous function f : $[0,1]^{n} \rightarrow[0,1]$ for which the following holds: there exist finitely many affine linear polynomials f_{1}, \ldots, f_{k}, each f_{i} of the form $f_{i}=a_{i}^{0} x_{0}+a_{i}^{1} x_{1}+\cdots+a_{i}^{n-1} x_{n-1}+a_{i}^{n}$, with $a_{i}^{0}, \ldots, a_{i}^{n}$ integers, such that, for each $v \in[0,1]^{n}$, there exists $i \in\{1, \ldots, k\}$ with $f(v)=f_{i}(v)$.

If κ is an infinite cardinal, a McNaughton function over the κ-cube, is a continuous function $f:[0,1]^{\kappa} \rightarrow[0,1]$ which depends on finitely many variables $x_{i_{1}}, \ldots, x_{i_{n}}$ and such that $f\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ is a McNaughton function over the n-cube. It is well known [6] that the free $M V$-algebra over κ-generators $\boldsymbol{F}_{\kappa}(\mathcal{M V})$ is the algebra of all McNaughton functions over the κ-cube, and the generators are the projection functions $x_{i}:[0,1]^{\kappa} \rightarrow[0,1]$. We can limit ourselves to the case of κ finite. This is not restrictive, since every element of $\boldsymbol{F}_{\kappa}(\mathcal{M V})$ is generated by finitely many projections, and is therefore essentially an element of $\boldsymbol{F}_{n}(\mathcal{M V})$, for an appropriate choice of indices. Then in what follows, we will consider $\kappa=n$.

For a set $G \subseteq[0,1]^{n}$, let

$$
F_{G}=\left\{f \in \boldsymbol{F}_{n}(\mathcal{M V}): f(v)=1 \text { for all } v \in G\right\}
$$

Clearly F_{G} is an implicative filter of $\boldsymbol{F}_{n}(\mathcal{M V})$. We denote [1]

$$
\boldsymbol{F}_{n}(\mathcal{M V}) \upharpoonright G=\boldsymbol{F}_{n}(\mathcal{M V}) / F_{G},
$$

and $|f|_{G}$ the congruence class of f in the quotient $\boldsymbol{F}_{n}(\mathcal{M V}) / F_{G}$. Observe that two elements $f_{1}, f_{2} \in \boldsymbol{F}_{n}(\mathcal{M V})$ have the property $\left|f_{1}\right|_{G}=\left|f_{2}\right|_{G}$ if and only if $f_{1}(G)=$ $f_{2}(G)$.

A rational point of the n-cube is a point $v \in[0,1]^{n}$ such that $x_{i}(v)$ is a rational number for every $i \in\{1, \ldots, n\}$. If v is a rational point then there exists a uniquely determined sequence $\left\{a_{i}: 0 \leq i \leq n\right\}$ of positive integers such that:

- $a_{0}>0$,
- $x_{i}(v)=\frac{a_{i}}{a_{0}}$ for every $0 \leq i \leq n$,
- the greatest common divisor of the $a_{i}^{\prime} \mathrm{s}$ is 1 .

The numbers $a_{i}^{\prime} \mathrm{s}$ are named homogeneous coordinates of v, and a_{0} is the denominator of $v, \operatorname{den}(v)$. Observe that if v is a rational point,

$$
\boldsymbol{F}_{n}(\mathcal{M V}) \upharpoonright\{v\} \cong \boldsymbol{\not}_{d e n(v)}
$$

and the homomorphism $k_{v}: \boldsymbol{F}_{n}(\mathcal{M V}) \rightarrow \boldsymbol{屯}_{d e n(v)}$, is the extension of the function defined $k_{v}\left(x_{i}\right)=x_{i}(v)=\frac{a_{i}}{a_{0}}$ on the projections x_{i}, for $1 \leq i \leq n$, and has kernel $F_{\{v\}}$. Moreover the application $v \rightarrow F_{\{v\}}$, between rational points over $[0,1]^{n}$ and maximal filters of $\boldsymbol{F}_{n}(\mathcal{M V})$, such that the quotient is isomorphic to \boldsymbol{L}_{s} for some s, is a bijection.

For a given class \mathcal{K} of $\{\rightarrow, 1\}$-algebras, we say that two terms s, t are \mathcal{K}-equivalent if the equation $s \approx t$ holds in \mathcal{K}. Since the class \mathcal{E} is a variety of $B C K$-algebras, it follows from [3, Fact 0] that any $\{\rightarrow, 1\}$-term $s\left(x_{1}, \ldots, x_{n}\right)$ is \mathcal{E}-equivalent to a $\{\rightarrow, 1\}$-term

$$
s^{\prime}\left(x_{1}, \ldots, x_{n}\right)=s_{1} \rightarrow\left(s_{2} \rightarrow\left(\ldots \rightarrow\left(s_{r} \rightarrow x_{i}\right) \ldots\right)\right)
$$

where $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}$ and $s_{i}, 1 \leq i \leq r$, are terms in the variables x_{1}, \ldots, x_{n} in which 1 does not appear. Thus, for any $\{\rightarrow, 1\}$-term s there is a variable x, which appears in s, such that the equation $x \rightarrow s \approx 1$ holds in \mathcal{E}. Therefore, for every subvariety V of \mathcal{E}, every element of $\boldsymbol{F}_{n}(V)$ is greater than or equal to some generator. Hence:

Lemma 2 If V is a subvariety of \mathcal{L}, then $\boldsymbol{F}_{n}(V)=\bigcup_{x \in X}[x)$, where X is the set of generators of $\boldsymbol{F}_{n}(V)$ and $[x)=\left\{y \in \boldsymbol{F}_{n}(V): x \leq y\right\}$.

Remark 3 As $\mathcal{L}=V([\mathbf{0}, \mathbf{1}] \rightarrow)$, is a fact, from standard Universal Algebra, that $\boldsymbol{F}_{n}(£)$ is a subalgebra of the $\mathcal{£}$-algebra whose elements are the functions from $([\mathbf{0}, \mathbf{1}] \rightarrow)^{n}$ to $[\mathbf{0}, \mathbf{1}]^{\rightarrow}$, under pointwise operations. For $i \in\{1, \ldots, n\}$, the i th free generator of $\boldsymbol{F}_{n}(\mathcal{E})$ is the i th projection $x_{i}:\left([\mathbf{0}, \mathbf{1}]^{\rightarrow}\right)^{n} \rightarrow[\mathbf{0}, \mathbf{1}]^{\rightarrow}$. By the previous lemma, if $f \in \boldsymbol{F}_{n}(\mathcal{L})$ there is $i \in\{1, \ldots, n\}$ such that $x_{i} \leq f$. As \mathcal{E} is the class of all $\{\rightarrow, 1\}$ subreducts of all $\mathcal{M V}$-algebras, $\boldsymbol{F}_{n}(\mathcal{£})$, is a subreduct of $\boldsymbol{F}_{n}(\mathcal{M V})$, moreover is isomorphic to the implication subalgebra of $\boldsymbol{F}_{n}(\mathcal{M V})$ generated by x_{1}, \ldots, x_{n}. Then we can consider $\boldsymbol{F}_{n}(\mathcal{E}) \subseteq \boldsymbol{F}_{n}(\mathcal{M V})$. Moreover $\boldsymbol{F}_{n}(\mathcal{L}) \subseteq \bigcup_{i=1}^{n}\left[x_{i}\right)$ with $\left[x_{i}\right)=\{f \in$ $\left.\boldsymbol{F}_{n}(\mathcal{M V}): x_{i} \leq f\right\}$.

For the n-cube $[0,1]^{n}$, we have exactly $2 n,(n-1)$-faces (faces of dimension $\left.n-1\right)$, they are for $i \in\{1, \ldots, n\}$:

$$
C_{i}^{0}=\left\{\left(v_{1}, \ldots, v_{n}\right) \in[0,1]^{n}: v_{i}=0\right\}
$$

and

$$
C_{i}^{1}=\left\{\left(v_{1}, \ldots, v_{n}\right) \in[0,1]^{n}: v_{i}=1\right\}
$$

i.e., the faces C_{i}^{0} are the $(n-1)$-faces that contain the origin $\mathbf{0}=(0, \ldots, 0)$, and the faces C_{i}^{1} are the $(n-1)$-faces that contain the vertex $\mathbf{1}=(1, \ldots, 1)$.
Now we are ready to prove the main theorem of the paper.
Theorem 4 Let $\boldsymbol{F}_{n}(\mathcal{E})$ be the free Łukasiewicz implication algebra over n generators. For $i \in\{1, \ldots, n\}$, let $O=\bigcup_{i=1}^{n} C_{i}^{0}$ and $\left|x_{i}\right| o$ be the congruence class of the projections x_{i} in $\boldsymbol{F}_{n}(\mathcal{M V}) \upharpoonright O$. Then

$$
\boldsymbol{F}_{n}(\mathcal{L}) \cong \bigcup_{i=1}^{n}\left[\left|x_{i}\right| o\right)
$$

where $\left[\left|x_{i}\right| o\right)=\left\{|f| o \in \boldsymbol{F}_{n}(\mathcal{M V}) \upharpoonright O:\left|x_{i}\right| O \leq|f| o\right\}$.
For the proof of this theorem we reproduce the construction of the elements in the free $M V$-algebra given in [1, Theorem 3.1] and [12].
(1) For each vertex $v=\left(v_{1}, \ldots, v_{n}\right)$ of the n-cube, let $h_{v} \in \boldsymbol{F}_{n}(\mathcal{M V})$ be defined as follows:

$$
h_{v}= \begin{cases}x_{1} \vee \ldots \vee x_{n}, & \text { if } v=\mathbf{0}, \\ \neg x_{1} \vee \ldots \vee \neg x_{n}, & \text { if } v=\mathbf{1}, \\ \bigvee\left\{x_{i} \rightarrow x_{j}: v_{i}=1, \text { and } v_{j}=0\right\} & \text { otherwise }\end{cases}
$$

Let $S_{0}=\left\{h_{v}: v\right.$ a vertex of the n-cube $\}$.
(2) Given a finite subset S of $\boldsymbol{F}_{n}(\mathcal{M V})$, a starring of S consists in choosing two elements $h \neq k$ in S, and in forming the new set

$$
S^{\prime}=(S \backslash\{h, k\}) \cup\{h \vee k, h \rightarrow k, k \rightarrow h\} .
$$

(3) For every $f \in \boldsymbol{F}_{n}(\mathcal{M V})$, there exists a finite sequence of starrings S_{0}, \ldots, S_{l}, leading from S_{0} to the set S_{l} having the property that

$$
f=k_{1} \odot \ldots \odot k_{m}
$$

for some $k_{1}, \ldots, k_{m} \in S_{l}$.
For $f \in \boldsymbol{F}_{n}(\mathcal{M V})$, we say that f is $\{\rightarrow\}$-term if there exists a term containing only \rightarrow corresponding to f (if 1 appears it can be replaced by $x \rightarrow x$), i.e., f is the interpretation of a $\{\rightarrow\}$-term $t_{f}\left(y_{1}, \ldots, y_{n}\right)$ in $\boldsymbol{F}_{n}(\mathcal{M V})$, when we replace the variables y_{1}, \ldots, y_{n} by the free generators x_{1}, \ldots, x_{n}.

Proof of the Theorem 4 First observe that

$$
\left|x_{1} \wedge \ldots \wedge x_{n}\right|_{O}=|0|_{o}
$$

This is immediate from the fact that $x_{i}\left(C_{i}^{0}\right)=0$, then $\left(x_{1} \wedge \ldots \wedge x_{n}\right)(v)=0$ for every $v \in O$. Thus for $f \in \boldsymbol{F}_{n}(\mathcal{M V})$, by (113),

$$
|\neg f|_{o}=|f|_{o} \rightarrow|0|_{O}=\bigwedge_{i=1}^{n}\left(|f|_{o} \rightarrow\left|x_{i}\right|_{o}\right)
$$

Let $f_{1}, f_{2} \in \boldsymbol{F}_{n}(\mathcal{M V})$ and $g=f_{1} \odot f_{2}$. Then $g=\neg\left(f_{1} \rightarrow \neg f_{2}\right)$ and therefore,

$$
\begin{aligned}
|g| o & =\left|\neg\left(f_{1} \rightarrow \neg f_{2}\right)\right|_{o}=\bigwedge_{i=1}^{n}\left(\left|f_{1} \rightarrow\left(\bigwedge_{j=1}^{n}\left(f_{2} \rightarrow x_{j}\right)\right)\right|_{o} \rightarrow\left|x_{i}\right|_{o}\right) \\
& =\bigwedge_{i=1}^{n} \bigvee_{j=1}^{n}\left(\left|f_{1} \rightarrow\left(f_{2} \rightarrow x_{j}\right)\right| o \rightarrow\left|x_{i}\right| o\right) .
\end{aligned}
$$

Thus, as \vee is an $\{\rightarrow\}$-term (in the sense that $x \vee y=(x \rightarrow y) \rightarrow y),\left|f_{1} \odot f_{2}\right|_{o}$ is equivalent to an infimum of $\{\rightarrow\}$-terms.

For this simple observation we have that

$$
\left|h_{v}\right|_{O}= \begin{cases}\left|x_{1} \vee \ldots \vee x_{n}\right| o, \text { is a }\{\rightarrow\} \text {-term } & \text { if } v=\mathbf{0}, \\ \left|\neg x_{1} \vee \ldots \vee \neg x_{n}\right| o=|1|_{O}, \text { is a }\{\rightarrow\} \text {-term } & \text { if } v=\mathbf{1}, \\ \mid\left.\bigvee\left\{x_{i} \rightarrow x_{j}: v_{i}=1, \text { and } v_{j}=0\right\}\right|_{O}, \text { is a }\{\rightarrow\} \text {-term } & \text { otherwise } .\end{cases}
$$

By the construction of the starrings given in (2), the elements of a starring S of S_{0} are in the same congruence class of a $\{\rightarrow\}$-term. Since $\left|f_{1} \odot f_{2}\right| o$ is equivalent to an infimum of $\{\rightarrow\}$-terms, by item (3), every $f \in \boldsymbol{F}_{n}(\mathcal{M V})$ is in the same class of an infimum of $\{\rightarrow\}$-terms. Then for every $f \in \boldsymbol{F}_{n}(\mathcal{M V})$

$$
|f|_{o}=\bigwedge_{i=1}^{l}\left|f_{i}^{\rightarrow}\left(x_{1}, \ldots, x_{n}\right)\right|_{o}
$$

where $f_{i} \rightarrow\left(x_{1}, \ldots, x_{n}\right)$ are $\{\rightarrow\}$-terms.
Suppose that $\left|x_{i}\right|_{o} \leq|f|_{o}$, then

$$
\begin{aligned}
|f|_{O} & =\left|x_{i}\right|_{O} \vee|f|_{O}=\left(\left(\bigwedge_{i=1}^{l}\left|f_{i} \rightarrow\left(x_{1}, \ldots, x_{n}\right)\right| O\right) \rightarrow\left|x_{i}\right|_{O}\right) \rightarrow\left|x_{i}\right|_{O} \\
& =\left(\bigvee_{i=1}^{l}\left(\left|f_{i}\left(x_{1}, \ldots, x_{n}\right)\right| O \rightarrow\left|x_{i}\right|_{O}\right)\right) \rightarrow\left|x_{i}\right|_{O}
\end{aligned}
$$

thus $|f|_{O}$ is a $\{\rightarrow\}$-term and $\bigcup_{i=1}^{n}\left[\left|x_{i}\right|_{O}\right)$ is an implication algebra generated by $|X|_{o}=\left\{\left|x_{1}\right|_{o}, \ldots,\left|x_{n}\right|_{o}\right\}$. Then $\bigcup_{i=1}^{n}\left[\left|x_{i}\right|_{o}\right)$ is a homomorphic image of $\boldsymbol{F}_{n}(\mathcal{E})$.

Let $f_{1}, f_{2} \in \boldsymbol{F}_{n}(\mathcal{E}), f_{1} \neq f_{2}$. Since $\mathcal{E}=V\left(\left\{\boldsymbol{L}_{s}\right\}_{s \geq 1}\right)$, there is $s \geq 1$ and an epimorphism $k: \boldsymbol{F}_{n}(\mathcal{E}) \rightarrow \boldsymbol{E}_{s}$ such that $k\left(f_{1}\right) \neq k\left(f_{2}\right)$. Observe that k is determined
by the image of the generators $k\left(x_{i}\right)$ and, as k is onto, there is an $i_{0} \in\{1, \ldots, n\}$ such that $\boldsymbol{\not}_{s}=\left[k\left(x_{i_{0}}\right)\right)$. Hence, there exists $i_{0} \in\{1, \ldots, n\}$ such that $k\left(x_{i_{0}}\right)=0$.

On the other hand, if $X=\left\{x_{1}, \ldots, x_{n}\right\}$, we have that $X \subseteq \boldsymbol{F}_{n}(\mathcal{E}) \subseteq \boldsymbol{F}_{n}(\mathcal{M V})$. Then k can be extended to an onto homomorphism $k_{v}: \boldsymbol{F}_{n}(\mathcal{M V}) \rightarrow \boldsymbol{L}_{s}(s=\operatorname{den}(v))$ such that $k_{v} \upharpoonright \boldsymbol{F}_{n}(\mathcal{L})=k$. Hence $x_{i_{0}}(v)=k_{v}\left(x_{i_{0}}\right)=k\left(x_{i_{0}}\right)=0$ and therefore $v \in O$. Since $v \in O$ and $f_{1}(v)=k_{v}\left(f_{1}\right)=k\left(f_{1}\right) \neq k\left(f_{2}\right)=k_{v}\left(f_{2}\right)=f_{2}(v)$, we have $\left|f_{1}\right| o \neq\left|f_{2}\right|_{o}$, and the theorem is proved.

As example we give a representation for $\boldsymbol{F}_{2}(\mathcal{E})$. Consider the $M V$-algebra,

$$
\boldsymbol{M}_{2}=\boldsymbol{F}_{1}(\mathcal{M V}) \times \boldsymbol{F}_{1}(\mathcal{M V})
$$

Let $\left(f_{1}, f_{2}\right) \in \boldsymbol{M}_{2}$, we say that the pair $\left(f_{1}, f_{2}\right)$ is compatible if $f_{1}(0)=f_{2}(0)$. Let \boldsymbol{M}_{2}^{c} be the $\mathcal{M} \mathcal{V}$-subalgebra of \boldsymbol{M}_{2} of compatible pairs. Let $x_{1}=(x, 0)$ and $x_{2}=(0, x)$ where x is the free generator of $\boldsymbol{F}_{1}(\mathcal{M V})$. For $i=1,2$ let $\left[x_{i}\right)=\left\{\left(f_{1}, f_{2}\right) \in \boldsymbol{M}_{2}^{c}\right.$: $\left.x_{i} \leq\left(f_{1}, f_{2}\right)\right\}$. By the previous theorem we have that

$$
\boldsymbol{F}_{2}(\mathcal{E}) \cong\left[x_{1}\right) \cup\left[x_{2}\right) .
$$

Let $\mathcal{M} \mathcal{V}_{k}$ be the variety of k-potent $\mathcal{M V}$-algebras, i.e., the variety of $\mathcal{M V}$-algebras generated by the algebras \boldsymbol{L}_{s} with $s \leq k$ (the subvariety that satisfies ε_{k}). In [13], the free algebra $\boldsymbol{F}_{n}\left(\mathcal{M} \mathcal{V}_{k}\right)$ is described. More precisely

$$
\boldsymbol{F}_{n}\left(\mathcal{M} \mathcal{V}_{k}\right) \cong \prod\left\{\boldsymbol{F}_{n}(\mathcal{M V}) \upharpoonright\{v\}: v \text { rational point, } \operatorname{den}(v) \leq k\right\}
$$

As immediate consequence of this and Theorem 4 we have:
Corollary 5 Let $\mathcal{E}_{k}=V\left(\boldsymbol{\iota}_{k}\right)$ be the k-potent subvariety of $£$. Then

$$
\boldsymbol{F}_{n}\left(\mathcal{E}_{k}\right) \cong \bigcup_{i=1}^{n}\left[\left|x_{i}\right| o\right)
$$

Where $\left[x_{i}\right)_{O}=\left\{|f|_{O} \in \boldsymbol{F}_{n}\left(\mathcal{M} \mathcal{V}_{k}\right) \upharpoonright O:\left|x_{i}\right|_{o} \leq|f|_{o}\right\}$, with x_{i} the generators of $\boldsymbol{F}_{n}\left(\mathcal{M} \mathcal{V}_{k}\right)$.

This is a new representation of $\boldsymbol{F}_{n}\left(\mathcal{E}_{k}\right)$ different of that given in [2].
Examples:

- For all $k \geq 1$,

$$
\boldsymbol{F}_{1}(\mathcal{E}) \cong \boldsymbol{F}_{1}\left(\mathcal{E}_{k}\right) \cong \boldsymbol{F}_{1}(\mathcal{M V}) \upharpoonright\{0\} \cong \mathbf{2},
$$

where $\mathbf{2}$ is the two-element implication algebra.

- $\quad \boldsymbol{F}_{n}\left(\mathcal{E}_{1}\right) \cong \bigcup_{x \in X}[x)$, with X the set of free generators of $\boldsymbol{F}_{n}(\mathcal{B})$ and \mathcal{B} the variety of Boolean algebras.
- $\boldsymbol{F}_{2}\left(\mathfrak{E}_{2}\right)$ is described in [7]. If $g_{1}=\left(0,1,0, \frac{1}{2}, 0\right)$, and $g_{2}=\left(0,0,1,0, \frac{1}{2}\right)$ are elements in $\boldsymbol{F}_{2}\left(\mathcal{M} \mathcal{V}_{2}\right) \upharpoonright O \cong \boldsymbol{\iota}_{1}^{3} \times \boldsymbol{\not}_{2}^{2}$, then

$$
\boldsymbol{F}_{2}\left(\mathcal{E}_{2}\right) \cong\left[g_{1}\right) \cup\left[g_{2}\right)
$$

References

1. Aglianó, P., Panti, G.: Geometrical methods in Wajsberg hoops. J. Algebra 256, 352-374 (2002)
2. Berman, J., Blok, W.J.: Free Lukasiewicz hoop residuation algebras. Stud. Log. 77, 153-180 (2004)
3. Blok, W.J., Raftery, J.G.: On the quasivariety of BCK-algebras and its subquasivarieties. Algebra Universalis 33, 68-90 (1995)
4. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate texts in Mathematics, vol. 78. Springer, New York (1981)
5. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467-490 (1958)
6. Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logics. vol. 7. Kluwer, Dordrecht (2000)
7. Díaz Varela, J.P., Torrens, A.: Decomposability of free Łukasiewicz implication algebras. Arch. Math. Log. 45, 1011-1020 (2006)
8. Font, J.M., Rodriguez, A.J., Torrens, A.: Wajsberg algebras. Stochastica 8, 5-31 (1984)
9. Komori, Y.: The separation theorem of the \aleph_{0}-valued propositional logic. Rep. Fac. Sci. Shizouka Univ. 12, 1-5 (1978)
10. Komori, Y.: Super-Łukasiewicz implicational logics. Nogoya Math. J. 72, 127-133 (1978)
11. Mundici, D.: MV-algebras are categorically equivalent to bounded commutative BCK.-algebras. Math. Jpn. 31, 889-894 (1986)
12. Panti, G.: A geometric proof of the completeness of the Łukasiewicz calculus. J. Symb. Log. $\mathbf{6 0}$ (2), 563-578 (1995)
13. Panti, G.: Varieties of MV-algebras. Multi Valued Log. 9(1), 141-157 (1999)

[^0]: The support of Universidad Nacional del Sur and CONICET is gratefully acknowledged.
 J. P. Díaz Varela (\boxtimes)

 Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
 e-mail: usdiavar@ criba.edu.ar

