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Topological representation for implication algebras

Manuel Abad, J. Patricio Dı́az Varela and Antoni Torrens

Abstract. In this paper we give a description of an implication algebra A as a union of
a unique family of filters of a suitable Boolean algebra Bo(A), called the Boolean closure
of A. From this representation we obtain a notion of topological implication space and
we give a dual equivalence based in the Stone representation for Boolean algebras. As an
application we provide the implication space of all free implication algebras.

1. Introduction and preliminaries

The aim of this paper is to give a topological representation for implication
algebras, also known as Tarski algebras (see [1, 4, 5]). These algebras have been
developed by J. C. Abbott in [2, 3]. They are the {→}-subreducts of Boolean
algebras (see [2, Theorem 17]), and they are also the algebraic counterpart of the
implicational fragment of classical propositional logic [7].

An implication algebra is an algebra 〈A,→〉 of type 〈2〉 that satisfies the equa-
tions:

(T1) (x → y) → x = x,
(T2) (x → y) → y = (y → x) → x,
(T3) x → (y → z) = y → (x → z).

In any implication algebra A the term x → x is constant, which we represent
by 1. The relation x ≤ y if and only if x → y = 1 is a partial order, called the natural
order of A, with 1 as its greatest element. Relative to this partial order A is a join-
semilattice and the join of two elements a and b is given by a ∨ b = (a → b) → b.
Besides, for each a in A, [a) = {x ∈ A : a ≤ x} is a Boolean algebra in which, for
b, c ≥ a, b∧c = (b → (c → a)) → a gives the meet and b → a is the complement of b.
In fact, following [2, Theorems 6 and 7] any implication algebra is a join-semilattice
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with greatest element, such that for each element a, [a) with the inherited order is
a Boolean algebra.

We assume familiarity with the theory of Boolean algebras and implication al-
gebras. The lattice filters of a Boolean algebra B are called simply filters. If
X ⊆ B, we denote by F (X) the filter generated by X , and by B(X) the sub-
algebra generated by X . F (X) = {b ∈ B : b ≥ ∧n

i=1 xi, xi ∈ X, n ∈ N},
where N is the set of natural numbers, and in particular, if X is increasing,
F (X) = {b ∈ B : b =

∧n
i=1 xi, xi ∈ X, n ∈ N}. We recall that maximal proper

filters are called ultrafilters.
A generalized Boolean algebra G is a relatively complemented distributive lattice

with upper bound 1. If for any a, b ∈ G we take a → b as the complement of a in
the interval [a ∧ b, 1], then G is an implication algebra in which the natural order
is the lattice order.

The relationship between implication algebras and Boolean and generalized Boo-
lean algebras can be improved as follows.

Lemma 1.1. For each poset (A,≤), with A 
= ∅, the following are equivalent:

(1) A is the universe of an implication algebra whose natural order is ≤.
(2) A is (order isomorphic to) an increasing subset of a Boolean algebra B(A).
(3) A is (order isomorphic to) an increasing subset of a generalized Boolean algebra

F (A).

Moreover, if it is the case, A is the universe of an implication subalgebra of B(A)
and F (A).

Proof. Since each Boolean algebra is also a generalized Boolean algebra and any
increasing subset of a generalized Boolean algebra is closed by →, it suffices to show
that (1) implies (2).

Assume that (1). Then there is a Boolean algebra B such that A is an implication
subalgebra of B (see [2, Theorem 17]). Let B(A) be the Boolean subalgebra of B

generated by A, then it suffices to see that A is increasing in B(A). To show this,
take a ∈ A, b ∈ B(A) such that a ≤ b, and let us see that b ∈ A. Every b ∈ B(A)
can be written

b =
r∧

k=1

(( ∨
i∈Ik

¬ai

) ∨ ( ∨
j∈Jk

cj

))
,

where Ik ∩ Jk = ∅, ⋃r
k=1(Ik ∪ Jk) 
= ∅ is a finite set and ai, cj ∈ A.

Let bk = (
∨

i∈Ik
¬ai) ∨ (

∨
j∈Jk

cj), k = 1, . . . , r. Then it is enough to prove that
bk ∈ A for any k.

If k is such that Jk 
= ∅, then
∨

j∈Jk
cj ∈ A. So,

bk =
( ∨

i∈Ik

¬ai

) ∨ ( ∨
j∈Jk

cj

)
=

∨
i∈Ik

(
ai →

∨
j∈Jk

cj

) ∈ A.
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If k is such that Jk = ∅, then a ≤ ∨
i∈Ik

¬ai, and consequently,

bk =
∨

i∈Ik

¬ai =
∨

i∈Ik

¬ai ∨ a =
∨

i∈Ik

(ai → a) ∈ A. �

Observe that from Lemma 1.1 it follows that an implication algebra A is a union
of filters of B(A).

We denote by St(B) the Stone space of a Boolean algebra B, and by Clop(X) the
Boolean algebra of all clopen subsets of a Boolean space X [6]. A dual equivalence
between the category of Boolean algebras and homomorphisms and the category of
Boolean spaces and continuous maps, is given by

• For a Boolean algebra B,

{
sB : B → Clop(St(B))

a �→ sB(a) = Na = {U ∈ St(B) : a ∈ U}

• For a Boolean space X ,

{
tX : X → St(Clop(X))

x �→ tX(x) = {N ∈ Clop(X) : x ∈ N}
For each Boolean algebra B, the correspondence

F �→ CF = {U ∈ St(B) : F ⊆ U}
gives a dual order isomorphism from the set F of all filters of B onto the set C of
all closed sets of St(B), ordered by inclusion. Its inverse is given by

C �→ FC = {a ∈ B : C ⊆ sB(a) = Na} =
⋂

{U ∈ St(B) : U ∈ C}.

2. Boolean closures of implication algebras

The aim of this section is to give for any implication algebra A the least, up to
isomorphism, Boolean algebra in which the filter generated by A is an ultrafilter.
First we provide the construction for generalized Boolean algebras.

Lemma 2.1. Each generalized Boolean algebra G is an ultrafilter of a Boolean
algebra Bo(G).

Proof. Since G is an implication algebra we can consider B(G) as in Lemma 1.1
and F (G) = G. Thus we consider

Bo(G) =
{

B(G) if F (G) 
= B(G)
B(G) × {0, 1} if F (G) = B(G)

If G 
= B(G) and ¬G = {¬a : a ∈ G}, then, since G∩¬G = ∅ and G∪¬G = B(G),
G is an ultrafilter of B(G) = Bo(G). If G = B(G), identifying G with G × {1}, G

can be considered as an ultrafilter of Bo(G). �
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A subset C of a Boolean algebra B satisfies the finite meet property (fmp for
short), provided that 0 cannot be obtained with finite meets of elements of C, that
is, the lattice filter generated by C in B is proper.

Theorem 2.2. Let A be an implication algebra, then there is a Boolean algebra
Bo(A) such that:

(1) A is an increasing subset of Bo(A) and A satisfies the fmp.
(2) If h : A → B is an {→}-homomorphism from the implication algebra A into a

Boolean algebra B, such that h[A] has the fmp in B, then there is a Boolean
homomorphism ĥ : Bo(A) → B such that ĥ�A = h, i.e., the diagram

A ⊆ Bo(A)
h↘ ↓ ĥ

B

commutes.
Moreover, the proper filter F (A) generated by A in Bo(A) is an ultrafilter.

Proof. Let F (A) be the filter generated by A in B(A) and let Bo(A) = Bo(F (A)).
Then by Lemma 2.1 we have (1).

Now let B be a Boolean algebra and h : A → B satisfying the hypothesis of (2).
In order to define ĥ consider b ∈ Bo(A). If b ∈ F (A), then there are b1, . . . , bn ∈ A,
such that b =

∧n
i=1 bi and we take ĥ(b) =

∧n
i=1 h(bi). If b /∈ F (A), then we take

ĥ(b) = ¬ĥ(¬b). Observe that h[A] has the fmp and hence F (h[A]) ∩ ¬F (h[A]) = ∅.
Since for all a, b ∈ F (A), a =

∧m
j=1 aj and b =

∧n
i=1 bi where aj , bi ∈ A, we have

a → b =
( m∧

j=1

aj

)
→

( n∧
i=1

bi

)
=

n∧
i=1

( m∨
j=1

(aj → bi)
)

and for all j, i, aj → bi ∈ A, then it is straightforward to see that ĥ is well defined,
preserves → and ĥ(0) = 0. Thus ĥ is an homomorphism of Boolean algebras and
by definition ĥ�A = h. �

As a consequence of the above results we obtain.

Corollary 2.3. Let h : A1 → A2 be a homomorphism of implication algebras. Then
there is a Boolean homomorphism ĥ : Bo(A1) → Bo(A2) such that ĥ�A1 = h, and
ĥ−1[F (A2)] = F (A1). In particular, if h is an isomorphism, then ĥ is also an
isomorphism.

Proof. To prove the first part it is enough to consider in Theorem 2.2, A = A1, and
B = Bo(A2). Since F (A1) ⊆ ĥ−1[F (A2)], the equality follows from the maximality
of F (A1) and ĥ−1[F (A2)]. Moreover, if h is isomorphism, then ĥ−1 = ĥ−1 and ĥ is
also isomorphism. �
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Remark 2.4. Observe that if A is an implication algebra and is an increasing subset
of a generalized Boolean algebra G and A generates G, then Bo(G) = Bo(A).

Given an implication algebra we refer to F (A) and Bo(A) = Bo(F (A)) as the
generalized Boolean closure and Boolean closure of A, respectively.

Two implication algebras may have the same Boolean closure, but they can be
distinguished by means of the filters contained in them. Indeed, if M(A) is the
family of all maximal elements in the set of all filters of Bo(A) contained in the
implication algebra A, ordered by inclusion, then:

(a) A =
⋃

F∈M(A) F,

(b) M(A) is an antichain, relative to the inclusion,
(c) if M is a filter of Bo(A) contained in A, then M ⊆ F for some F ∈ M(A).

Moreover, these properties characterize M(A), in the sense that if A is an implica-
tion algebra and G is an antichain of filters of Bo(A) contained in A and satisfying
(a), (b) and (c), then G = M(A). Notice that the case M(A) = {A} is not excluded.

3. Implication spaces

By an implication space we mean a triple (X, u, C) such that

(i) X is a Boolean space,
(ii) u is a fixed element of X ,
(iii) C is an antichain, with respect to inclusion, of closed sets of X such that⋂ C = {u},
(iv) if C is a closed subset of X such that for every clopen N of X , C ⊆ N implies

D ⊆ N for some D ∈ C, then there exists D′ ∈ C such that D′ ⊆ C.

Let A be an implication algebra. If St(Bo(A)) is the Boolean space of its Boolean
closure, then, by Theorem 2.2, F (A) ∈ St(Bo(A)). By taking C(A) = {CF : F ∈
M(A)} the family of closed sets in St(Bo(A)) corresponding with the set M(A),
it is straightforward to see that

X(A) = (St(Bo(A)), F (A), C(A))

is an implication space. Condition (iv) is a consequence of condition (c).

Theorem 3.1. Let f : A1 → A2 be a homomorphism of implication algebras, let
f̂ : Bo(A1) → Bo(A2) be as in Corollary 2.3, and consider

St(f̂) : St(Bo(A2)) → St(Bo(A1))

U �→ f̂−1(U).

Then we have:

(1) St(f̂) is continuous;



44 M. Abad, J. P. Dı́az Varela and A. Torrens Algebra univers.

(2) St(f̂)(F (A2)) = F (A1);
(3) for F ∈ M(A1), there is H ∈ M(A2) such that CH ⊆ St(f̂)−1[CF ].

Proof. (1) follows from the Boolean duality, and (2) from the fact that, by definition,
F (A1) ⊆ f̂−1([F (A2)]) ∈ St(Bo(A1)).
(3) Let F ∈ M(A1), then

U ∈ St(f̂)−1(CF ) iff St(f̂)(U) ∈ CF iff F ⊆ f̂−1(U) iff f̂ [F ] ⊆ U.

Hence St(f̂)−1(CF ) = CF (f [F ]). Now, since f [F ] ⊆ A2 is closed under finite meets,
the increasing set {a ∈ A2 : a ≥ b, for some b ∈ f [F ]} is a filter of Bo(A2)
contained in A2 and containing f [F ]. This shows that F (f [F ]) ⊆ A2, and f [F ] is
contained in some H ∈ M(A2), or equivalently CH ⊆ St(f̂)−1(CF ). �

The above results motivate the next definition. Let (X1, u1, C1) and (X2, u2, C2)
be implication spaces. We say that a map f : X1 → X2 is i-continuous provided
that:

(1) f is continuous;
(2) f(u1) = u2;
(3) for all C ∈ C2, there is D ∈ C1 such that D ⊆ f−1[C].

Moreover, if f is a homeomorphism and its inverse is also i-continuous, then we
refer to f as an i-homeomorphism. Observe that in this case, the maximality of
D ∈ C1 implies that f [D] ∈ C2 and in the same way for all C ∈ C2, f−1[C] ∈ C1.
Hence we have.

Corollary 3.2. Let f be an i-continuous map from the implication space (X1, u1, C1)
into the implication space (X2, u2, C2) such that f is a homeomorphism. Then f is
an i-homeomorphism if and only if for all D ∈ C1, f [D] ∈ C2.

It follows from the above that

Corollary 3.3. If f : A1 → A2 is a homomorphism of implication algebras, then
X(f) = St(f̂), defined as in Theorem 3.1, is an i-continuous map from X(A2) into
X(A1). Moreover, if f is an isomorphism, then X(f) is an i-homeomorphism.

Let (X, u, C) be an implication space and consider

I(X) = {N ∈ Clop(X) : C ⊆ N for some C ∈ C}.
Since I(X) is an increasing subset in the Boolean algebra Clop(X), I(X) is an
implication algebra. Moreover, if FC = {N ∈ Clop(X) : C ⊆ N}, then I(X) =⋃

C∈C FC . Then we have:

Lemma 3.4. For each implication space (X, u, C), the following properties hold for
the implication algebra I(X):
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(1) F (I(X)) = {N ∈ Clop(X) : u ∈ N};
(2) Bo(I(X)) = Clop(X);
(3) M(I(X)) = {FC : C ∈ C}.
Proof. Observe that for any closed subset C of X , and for any x ∈ X , we have x ∈ C

if and only if FC ⊆ tX(x). Hence
⋃

C∈C FC ⊆ tX(x) if and only if x ∈ ⋂
C∈C C if and

only if x = u. Thus F (I(X)) = F (
⋃

C∈C FC) = tX(u) = {N ∈ Clop(X) : u ∈ N},
and we have (1). (2) is an immediate consequence of (1). Finally, condition (iv) in
the definition of implication spaces implies that each filter F of Clop(X) such that
F ⊆ I(X) is contained in some FC . Hence (3) follows. �

Lemma 3.5. Let h : X1 → X2 be an i-continuous map from the implication space
(X1, u1, C1) into the implication space (X2, u2, C2), then

I(h) = Clop(h) � I(X2) : I(X2) → I(X1)

N �→ Clop(h)(N) = h−1[N ]

defines a homomorphism of implication algebras. Moreover, if h is an i-homeomor-
phism, then I(h) is an isomorphism.

Proof. Since Clop(h) gives a Boolean homomorphism, it is enough to see that
Clop(h)[I(X2)] ⊆ I(X1). Indeed, if N ∈ I(X2), then there exists C ∈ C2 such
that C ⊆ N . Thus h−1[C] ⊆ h−1[N ], and since h is i-continuous, there is D ∈ C1

such that D ⊆ h−1[C], hence D ⊆ h−1[N ] = I(h)(N), and so I(h)(N) ∈ I(X1).
If h is i-homeomorphism, then it follows from Corollary 3.2 that I(h) is an isomor-
phism. �

4. The natural dual equivalence

The results obtained in the preceding section suggest us the dual equivalence for
implication algebras and implication spaces.

We consider I the category whose objects are implication algebras and its arrows
are implication homomorphisms, and X the category with implication spaces as
objects and i-continuous maps as arrows. Then from Corollary 3.1 and the fact
that St is a functor and hence compatible with composition, we obtain:

Theorem 4.1. The correspondence X : I� X defined by

A1
X� X(A1)

f ↓ ↑ X(f)=St(f̂)

A2
X� X(A2)

defines a contravariant functor from I into X.
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Since I is compatible with composition and transforms i-homeomorphisms into
isomorphisms, we have the following result:

Theorem 4.2. The correspondence I : X� I defined by

(X1, u1, C1)
I� I(X1)

h ↓ ↑ I(h)

(X2, u2, C2)
I� I(X2)

gives a contravariant functor from X into I.

Now we can state the duality theorem.

Theorem 4.3. The functors I, X define a dual equivalence between the categories
I and X. More explicitly,

(1) If for each implication algebra A we consider

σA : A → IX(A)

a �→ σA(a) = Na = {U ∈ St(Bo(A)) : a ∈ U},
then σ defines a natural transformation from the functor IX into the identity
functor IdI.

(2) If for each implication space (X, u, C) we consider

τX : X → XI(X)

x �→ τX(x) = Ux = {N ∈ St(Clop(X)) : x ∈ N},
then τ defines a natural transformation from the functor XI into the identity
functor IdX.

Proof. (1) Observe that if sBo(A) is the natural isomorphism from the Boolean
algebra Bo(A) onto Clop(St(Bo(A))), then σA = sBo(A)�A. Hence in order to see
that σA is an isomorphism it suffices to see that sBo(A)[A] = IX(A). If a ∈ A, then
there exists F ∈ M(A) such that a ∈ F . So CF ⊆ Na, that is, σA(a) = Na ∈
I(X(A)). If N ∈ I(X(A)), there exists a ∈ Bo(A) such that N = Na ∈ I(X(A)).
Thus there exists F ∈ M(A) such that CF ⊆ Na, that is, every ultrafilter containing
F also contains a. So a ∈ F ⊆ A.

Observe that if A and A′ are implication algebras, then it follows from Corol-
lary 2.3, Lemma 3.5, definition of σ and the fact that s is a natural transformation
from Clop St into the identity, that the diagram

A
σA−→ IX(A)

f ↓ ↓ IX(f)

A′ σA′→ IX(A′)

commutes. Thus σ gives a natural transformation.
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(2) Observe that if tBo(A) is the natural isomorphism from the Boolean space
X onto St(Clop(X)), then by definition, τX = tX . By (1) of Lemma 3.4, τX(u) =
F (I(X)), and by (3) of the Lemma 3.4, we have that for a closed set C,

C ∈ C iff FτX [C] ∈ M(I(X)).

Then τX is i-homeomorphism.
Finally it is easy to see that if (X, u, C) and (X ′, u′, C) are implication spaces,

then the following diagram

X
τX−→ XI(X)

h ↓ ↓ XI(h)

X ′ τX′→ XI(X ′)

commutes. So τ gives a natural transformation. �

In the following section we give an example of an application of this duality.

5. The implication space of a free implication algebra

We recall that the |Y |-free implication algebra FI(Y ) is the increasing subset
of the |Y |-free Boolean algebra FB(Y ) generated by a set Y . In other words,
FI(Y ) = {x ∈ FB(Y ) : y ≤ x for some y ∈ Y } =

⋃
y∈Y Fy , where Fy = F ({y}) is

the principal filter generated by y in FB(Y ) (see [4] and the references given there).
Now since any infinite Y generates an ultrafilter F (Y ) in FB(Y ), then

Bo(FI(Y )) = FB(Y ).

Lemma 5.1. For every set Y , M(FI(Y )) = {Fy : y ∈ Y }.
Proof. We need to see that: (1) Fy ∈ M(FI(Y )), and (2) if F is a filter of FB(Y )
such that F ⊆ FI(Y ) =

⋃
y∈Y Fy, then F ⊆ Fy for some y ∈ Y .

For (1), suppose that there exists a proper filter F such that F ⊆ FI(Y ) and
Fy ⊆ F . If x ∈ F \ Fy, then x∧ y ∈ F and there exists y′ ∈ Y with y′ ≤ x∧ y < y.
Consider the extension f : FB(Y ) → 2 = {0, 1} of f : Y → 2 defined by f(y) = 0
and f(y′) = 1 for every y′ ∈ Y \ {y}. Then f(y′) = 1 < 0 = f(y), a contradiction.
Hence F \ Fy = ∅ and F = Fy.

In order to prove (2), we recall that if Y is infinite, then for any infinite subset
Y0 of Y , the unique upper bound of Y0 in FB(Y ) is 1. Hence, for any x ∈ FI(Y ),
x 
= 1 implies that P (x) = {y ∈ Y : y ≤ x} is finite.

Now, let F ⊆ ⋃
y∈Y Fy be a filter and let n = min {|P (x)| : x ∈ F}. If t ∈ F is

such that |P (t)| = n, then for each z ∈ F we have z ∧ t ∈ F and P (z ∧ t) ⊆ P (t),
so P (z ∧ t) = P (t). Hence

∨
y∈P (t) y ≤ z, that is, y ≤ z for every y ∈ P (t).

Consequently, z ∈ Fy for every y ∈ P (t), that is, F ⊆ Fy for every y ≤ t. This
closes the proof. �
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Hence, for all y ∈ Y , CFy = Ny which is clopen. On the other hand, the Boolean
space associated to the |Y |-free Boolean algebra is the Cantor space 2Y endowed
with the product topology by considering the discrete topology in 2 = {0, 1}. It
is clear that it can be identify with P(Y ), the family of all subsets of Y . If for all
y ∈ Y , we take Cy = {Z ⊆ Y : y ∈ Z}, then the implication space of the |Y |-free
implication algebra is

I(FI(Y )) = (2Y , Y, {Cy : y ∈ Y }).
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