

WWW.MATHEMATICSWEB.ORG

Journal of Algebra 265 (2003) 247-263

www.elsevier.com/locate/jalgebra

Embedding of the vertices of the Auslander–Reiten quiver of an iterated tilted algebra of Dynkin type Δ in $\mathbb{Z}\Delta$

Octavio Mendoza Hernández¹ and María Inés Platzeck^{1,*}

Departamento de Matemática, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina Received 29 July 2002

Communicated by Kent R. Fuller

Abstract

Let Δ be a Dynkin diagram and k an algebraically closed field. Let A be an iterated tilted finitedimensional k-algebra of type Δ and denote by \hat{A} its repetitive algebra. We approach the problem of finding a combinatorial algorithm giving the embedding of the vertices of the Auslander–Reiten quiver Γ_A of A in the Auslander–Reiten quiver $\Gamma(\underline{\text{mod}}(\hat{A})) \simeq \mathbb{Z}\Delta$ of the stable category $\underline{\text{mod}}(\hat{A})$. Let T be a trivial extension of finite representation type and Cartan class Δ . Assume that we know the vertices of $\mathbb{Z}\Delta$ corresponding to the radicals of the indecomposable projective T-modules. We determine the embedding of Γ_A in $\mathbb{Z}\Delta$ for any algebra A such that $T(A) \simeq T$. © 2003 Elsevier Science (USA). All rights reserved.

Introduction

The algebras to be considered in this paper are basic finite-dimensional algebras over an algebraically closed field k. Any such algebra A can be written as a bound quiver algebra kQ_A/I , where I is an admissible ideal of the path algebra kQ_A and Q_A is the quiver associated to A.

^{*} Corresponding author.

E-mail addresses: omendoza@criba.edu.ar (O. Mendoza Hernández), impiovan@criba.edu.ar (M.I. Platzeck).

¹ A grant from CONICET is gratefully acknowledged. The second author is a researcher from CONICET, Argentina.

For a quiver Q, let Q_0 denote the set of vertices of Q and Q_1 the set of arrows of Q. An arrow α of Q_1 starts at the vertex $o(\alpha)$ and ends at $e(\alpha)$.

Let k be an algebraically closed field, Δ a Dynkin diagram and let A be an iterated tilted algebra of type Δ [1]. Let $T(A) = A \ltimes D_A(A)$ be the trivial extension of A by its minimal injective cogenerator $D_A(A) = \text{Hom}_k(A, k)$. The algebra T(A) is known to be of finite representation type [3] and there exists an embedding of mod A in the stable category $\operatorname{mod} T(A)$. Then the set of vertices (Γ_A)₀ of the AR-quiver Γ_A of A can be embedded in the stable part ${}_{S}\Gamma_{T(A)}$ of the AR-quiver $\Gamma_{T(A)}$ of T(A). Moreover, T(A) admits universal Galois covering $\hat{A} \to T(A)$, where \hat{A} is the repetitive algebra of A, ${}_{S}\Gamma_{\hat{A}} \simeq \mathbb{Z}\Delta$ and thus Γ_{A} can be embedded in $\mathbb{Z}\Delta$ [1,7,8,11]. This is, the vertices of the AR-quiver Γ_A of any iterated tilted algebra A of type Δ can be embedded in $\mathbb{Z}\Delta$, and in such way that knowing which vertices of $\mathbb{Z}\Delta$ correspond to A-modules we can obtain the arrows of Γ_A in a canonical way, so that we get the AR-quiver Γ_A of A. Taking this into account and for simplicity we will just say that the AR-quiver Γ_A embeds in $\mathbb{Z}\Delta$ to mean that there is an injective map $\varphi: (\Gamma_A)_0 \to (\mathbb{Z}\Delta)_0$. Our main objective is to describe this embedding explicitly. We recall that the trivial extensions of finite representation type and Cartan class Δ are precisely the trivial extensions of iterated tilted algebras of Dynkin type Δ [3]. We divided the problem in two parts.

Let T be a trivial extension of finite representation type and Cartan class Δ .

- (1) Assume that we know the vertices of $\mathbb{Z}\Delta$ corresponding to the radicals of the indecomposable projective *T*-modules. Determine the embedding of Γ_A in $\mathbb{Z}\Delta$ for any algebra *A* such that $T(A) \simeq T$.
- (2) Describe an algorithm to determine which subsets of vertices in $\mathbb{Z}\Delta$ represent the radicals of the indecomposable projective modules over the trivial extension *T*.

In this paper we solve the first part. The second is studied in the first author's Ph.D. thesis [15] where an algorithm is given for $\Delta = \mathbf{A}_n$ and $\Delta = \mathbf{D}_n$, and will be published in a forthcoming paper.

We describe the embedding more explicitly. Let *A* be an iterated tilted algebra of type Δ and let $T(A) = A \ltimes D_A(A)$ be the trivial extension of *A* by $D_A(A) = \text{Hom}_k(A, k)$. The canonical epimorphism $p: T(A) \to A$ given by $p(a, \varphi) = a$ induces a full and faithful functor

$$F_p : \operatorname{mod} A \hookrightarrow \operatorname{mod} T(A),$$

which identifies mod A with the full subcategory of mod T(A) whose objects are the T(A)-modules annihilated by $D_A(A)$. Moreover, the composition of F_p with the canonical functor $\theta : \mod T(A) \to \mod T(A)$ is also a full and faithful functor

$$\theta F_p : \operatorname{mod} A \hookrightarrow \operatorname{mod} T(A).$$

Therefore the AR-quiver Γ_A of A can be embedded in the AR-quiver $\Gamma_{T(A)}$ of T(A) and in the stable AR-quiver ${}_{S}\Gamma_{T(A)}$ making the following diagram commutative

It is known (see 2.6 in [8]) that there exists a translation quiver morphism $\pi : {}_{S}\Gamma_{\hat{A}} \to {}_{S}\Gamma_{T(A)}$, which is the universal covering of ${}_{S}\Gamma_{T(A)}$, and that ${}_{S}\Gamma_{\hat{A}} \simeq \mathbb{Z}\Delta$

Then we can consider a connected lifting ${}_{S}\Gamma_{T(A)}[0]$ of the quiver ${}_{S}\Gamma_{T(A)}$ to $\mathbb{Z}\Delta$ (see Section 3). Since the quiver Γ_{A} is embedded in ${}_{S}\Gamma_{T(A)}$ the above lifting induces a subquiver $\Gamma_{A}[0]$ of ${}_{S}\Gamma_{T(A)}[0]$ in such way that the following diagram is commutative

$$\Gamma_{A}[0] \longrightarrow S\Gamma_{\hat{A}} = \mathbb{Z}\Delta$$

$$\downarrow^{\pi} \qquad \qquad \qquad \downarrow^{\pi}$$

$$\Gamma_{A} \longrightarrow S\Gamma_{T(A)}$$

We get an embedding of Γ_A in $\mathbb{Z}\Delta$ and we are looking for the vertices of $\mathbb{Z}\Delta$ corresponding to indecomposable *A*-modules under such embedding.

We start by studying the embedding $\Gamma_A \hookrightarrow \Gamma_{T(A)}$ induced by the canonical epimorphism $p: T(A) \to A$. Thus, we have to determine which vertices of $\Gamma_{T(A)}$ correspond to indecomposable *A*-modules. We know that $A \simeq T(A)/D_A(A)$, and that a T(A)-module *M* is an *A*-module if and only if $D_A(A)M = 0$. Therefore we have to know what the condition $D_A(A)M = 0$ means in the Auslander–Reiten quiver $\Gamma_{T(A)}$. Let $A = kQ_A/I$, in [9,10] the quiver of $Q_{T(A)}$ is obtained from Q_A by adding some arrows. Moreover, the ideal $D_A(A)$ of T(A) is generated precisely by these added arrows [9]. On the other hand, given a trivial extension *T* of finite representation type a method is given in [9] to obtain the iterated tilted algebras *B* such that $T(B) \simeq T$. In fact, such algebras are obtained by deleting exactly one arrow in each nonzero oriented cycle of Q_T and considering the induced relations. Thus *B* is the factor of *T* by an ideal generated by arrows.

First we will study when an ideal generated by arrows annihilates a module M. In Section 2 we give a characterization of modules M over a quotient k-algebra Λ/\mathcal{J} where \mathcal{J} is an ideal of Λ generated by arrows of Q_{Λ} . In particular, when Λ is T(A) and $\mathcal{J} = D(A)$ we describe the vertices of $\Gamma_{T(A)}$ corresponding to $A \simeq T(A)/\mathcal{J}$ -modules. More precisely, suppose that \mathcal{J} is generated by some arrows $\alpha_1, \alpha_2, \ldots, \alpha_t$ of $Q_{T(A)}$. We consider the subquiver $\mathcal{P}_{\alpha_1,\alpha_2,\ldots,\alpha_t}$ of $\Gamma_{T(A)}$ induced by the nonzero paths in $\Gamma_{T(A)}$ starting at the projective $P_{o(\alpha_i)}$ and ending at the projective $P_{e(\alpha_i)}$ for some $i = 1, 2, \ldots, t$. We prove that the vertices of Γ_A are exactly the vertices of $\Gamma_{T(A)}$ which are not contained in $\mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_t}$. A similar description is given in Section 3 for the embedding of Γ_A in $\Gamma_{\hat{A}}$. To do that, we define an appropriate lifting of $\Gamma_{T(A)}$ to $\Gamma_{\hat{A}}$, and we study how nonzero paths between projective modules in $\Gamma_{T(A)}$ lift to $\Gamma_{\hat{A}}$. In this way we obtain the embedding $\Gamma_A \hookrightarrow \Gamma_{\hat{A}}$, and then the desired embedding $\Gamma_A \hookrightarrow \mathbb{Z} \Delta \simeq {}_S \Gamma_{\hat{A}}$.

1. Preliminaries

Let Q be a quiver, which may be infinite. A *path* γ in the quiver Q is either an oriented sequence of arrows $\alpha_n \cdots \alpha_1$ with $e(\alpha_i) = o(\alpha_{i+1})$ for $1 \le t < n$, or the symbol e_i for $i \in Q_0$. The *length* $\ell(\gamma)$ of γ is n in the first case, and $\ell(e_i) = 0$. We call the paths e_i trivial paths and we define $o(e_i) = e(e_i)$. Let I be an ideal of the path algebra kQ. We consider $\Lambda = kQ/I$ as a k-category whose objects are the vertices Q_0 of Q and the morphism space $\Lambda(i, j)$ from i to j is $\overline{e_j}\Lambda\overline{e_i}$, where $\overline{e_i} = e_i + I$ (see [5]).

Let *A* be a *k*-algebra. For a given vertex *j* of Q_A we denote by S_j the simple *A*-module corresponding to *j*, by P_j the projective cover of S_j , and by I_j the injective envelope of S_j . We will use freely properties of the module category mod *A* of finitely generated left *A*-modules, the stable category <u>mod</u> *A* module projectives, the Auslander–Reiten quiver Γ_A and the Auslander–Reiten translations $\tau = DTr$ and $\tau^{-1} = TrD$, as can be found in [4]. We denote by ind *A* (respectively by <u>ind</u> *A*) the full subcategory of mod *A* (<u>mod</u> *A*) formed by chosen representatives of the indecomposable modules. Moreover, we will frequently identify the objects of ind *A* with the vertices of the AR-quiver Γ_A representing such objects.

We will freely use the notions of locally finite k-category, translation quiver, covering functor, well behaved functor and related notions. We refer the reader to [4,5,11,17,18] for definitions and basic properties of these objects.

Let Δ be an oriented tree. Following Chr. Riedtmann [17] (see also [4]) we will consider the translation quiver $\mathbb{Z}\Delta$, defined as follows:

$$(\mathbb{Z}\Delta)_0 = \mathbb{Z} \times \Delta_0, \quad (\mathbb{Z}\Delta)_1 = \{-1, 1\} \times \mathbb{Z} \times \Delta_1.$$

For an arrow $x \xrightarrow{\alpha} y$ of Δ we define the arrows $(-1, n, \alpha)$ and $(1, n, \alpha)$ as

$$(n-1, y) \xrightarrow{(-1,n,\alpha)} (n, x)$$
 and $(n, x) \xrightarrow{(1,n,\alpha)} (n, y)$.

Finally, the translation τ is $\tau(n, y) = (n - 1, y)$.

2. Modules over quotients of quasi-schurian weakly symmetric algebras

We start this section by giving a characterization of modules M over a quotient k-algebra Λ/\mathcal{J} where \mathcal{J} is an ideal of Λ generated by arrows of Q_{Λ} . Then we go on to study the case when Λ is quasi-schurian and weakly symmetric. Finally, we give an application to trivial extensions of finite representation type.

We recall from [14] that an algebra Λ is *quasi-schurian* if it satisfies:

- (a) dim_k Hom_A(P, Q) ≤ 1 if P and Q are non isomorphic indecomposable projective A-modules and
- (b) dim_k End_A(P) = 2 for any indecomposable projective A-module P.

Let $A = kQ_A/I$ be a *schurian* (that is, dim_k Hom_A(P_i, P_j) ≤ 1 for any vertices *i* and *j* of Q_A) and *triangular* (that is, Q_A has non oriented cycles) *k*-algebra, with *I* admissible ideal. Then the trivial extension T(A) of *A* is a quasi-schurian algebra.

As a consequence we get that the trivial extensions of finite representation type are quasi-schurian. This follows from the fact, proved by K. Yamagata in [20], that the trivial extension of a non triangular algebra is of infinite representation type.

Since we want to describe the Λ -modules M annihilated by a finite number of arrows of Q_{Λ} , we start by studying when $\overline{\alpha}M = 0$ for a given arrow α .

Lemma 2.1. Let $\Lambda = kQ_{\Lambda}/I$ be a k-algebra with I an admissible ideal. Let $\alpha : i \to j$ be an arrow in Q_{Λ} and $M \in \text{mod } \Lambda$.

The following conditions are equivalent:

- (a) $\overline{\alpha}M \neq 0$.
- (b) $\operatorname{Hom}_{\Lambda}(\rho_{\alpha}, M) : \operatorname{Hom}_{\Lambda}(P_i, M) \to \operatorname{Hom}_{\Lambda}(P_j, M)$ is nonzero, where $\rho_{\alpha} : P_j \to P_i$ is the right multiplication by $\overline{\alpha}$.

Proof. The proof is straightforward. \Box

Lemma 2.2. Let $\Lambda = kQ_{\Lambda}/I$ be a k-algebra with I an admissible ideal. Let $\alpha : i \to j$ be an arrow in Q_{Λ} and $M \in \text{mod } \Lambda$. Then

- (a) If $\overline{\alpha}M \neq 0$ then there are morphisms $f: P_i \to M, g: M \to I_j$ such that $gf \neq 0$.
- (b) Assume that $\operatorname{Hom}_{\Lambda}(\rho_{\alpha}, I_{j}) : \operatorname{Hom}_{\Lambda}(P_{i}, I_{j}) \to \operatorname{Hom}_{\Lambda}(P_{j}, I_{j})$ is a monomorphism, where $\rho_{\alpha} : P_{j} \to P_{i}$ is the right multiplication by $\overline{\alpha}$. If there are morphisms $f : P_{i} \to M, g : M \to I_{j}$ with $gf \neq 0$, then $\overline{\alpha}M \neq 0$.

Proof. (a) From Lemma 2.1 we know that there is a nonzero morphism $f: P_i \to M$ such that $f\rho_{\alpha}: P_j \to M$ is nonzero. Then there is $g: M \to I_j$ such that $gf\rho_{\alpha} \neq 0$, and consequently $gf \neq 0$.

(b) Assume that $\operatorname{Hom}_{\Lambda}(\rho_{\alpha}, I_{j})$ is a monomorphism and let $f: P_{i} \to M, g: M \to I_{j}$ such that $gf \neq 0$. Then $0 \neq \operatorname{Hom}_{\Lambda}(\rho_{\alpha}, I_{j})(gf) = (gf)\rho_{\alpha} = g(f\rho_{\alpha})$, proving that $f\rho_{\alpha} \neq 0$. Thus $\operatorname{Hom}_{\Lambda}(\rho_{\alpha}, M)(f) \neq 0$ and by Lemma 2.1 we get that $\overline{\alpha}M \neq 0$. \Box

In case Λ is a quasi-schurian weakly symmetric algebra we obtain the following theorem.

Theorem 2.3. Let $\Lambda = kQ_{\Lambda}/I$ be a quasi-schurian and weakly-symmetric k-algebra with I an admissible ideal. Let $\alpha : i \rightarrow j$ be an arrow in Q_{Λ} . Then the following conditions are equivalent for an indecomposable Λ -module M:

(a) $\overline{\alpha}M \neq 0$.

252

(b) There are morphisms $P_i \xrightarrow{f} M$, $M \xrightarrow{g} P_j$ with $gf \neq 0$.

Proof. (a) \Rightarrow (b) Since Λ is weakly-symmetric then $P_j = I_j$ for any vertex $j \in Q_{\Lambda}$. So Lemma 2.2(a) proves the result in this case.

(b) \Rightarrow (a) Assume that $i \neq j$. Using Lemma 2.2(b) we only need to prove that

 $\operatorname{Hom}_{\Lambda}(\rho_{\alpha}, P_{j}) : \operatorname{Hom}_{\Lambda}(P_{i}, P_{j}) \to \operatorname{Hom}_{\Lambda}(P_{j}, P_{j})$

is nonzero. Since Λ is quasi-schurian and weakly-symmetric it is not hard to prove that there exists a path δ starting at *j*, ending at *i* and such that $\delta \alpha$ is nonzero (see in [14, 2.2 and 3]). In particular, from [14, Theorem 3, IV] we obtain that $\alpha \delta$ is nonzero. Thus Hom_{Λ}(ρ_{α} , P_j) is nonzero.

If i = j then α is a loop. Now, the only (up to isomorphisms) indecomposable quasi-schurian and weakly-symmetric *k*-algebra with loops is $\Lambda \simeq k[x]/\langle x^2 \rangle$ (see [14, Lemma 14]). Assume that $e(\alpha) = o(\alpha) = 1$. Then the projective P_1 and the simple S_1 are the unique (up to isomorphism) indecomposable Λ -modules.

Suppose that $M = P_1$. Then $\overline{\alpha}P_1 \neq 0$ and the morphisms $f = \rho_{\alpha}$ and $g = 1_{P_1}$ satisfy (b).

Let $M = S_1$, then $\overline{\alpha}S_1 = 0$. On the other hand, since $\operatorname{rad}^2(P_1, P_1) = 0$ we get that gf = 0 for any $f: P_1 \to S_1$ and $g: S_1 \to P_1$. \Box

Corollary 2.4. Let $\Lambda = kQ_{\Lambda}/I$ be a quasi-schurian and weakly-symmetric k-algebra with I an admissible ideal. Let $\alpha_i : a_i \to b_i$ be arrows in Q_{Λ} for i = 1, 2, ..., t. Then the following conditions are equivalent for an indecomposable Λ -module M.

- (a) *M* is a $\Lambda/\langle \overline{\alpha}_1, \ldots, \overline{\alpha}_t \rangle$ -module.
- (b) If f: P_{ai} → M, g: M → P_{bi} are morphisms in mod Λ, then their composition gf is zero for all i = 1, 2, ..., t.

Proof. Follows easily from the preceding theorem. \Box

We are now in a position to characterize the modules M over Λ which are in mod Λ/\mathcal{J} in terms of certain chains of irreducible morphism, in case Λ is quasi-schurian, weakly-symmetric and of finite representation type, and \mathcal{J} is an ideal of Λ generated by arrows of Q_{Λ} .

Corollary 2.5. Let $\Lambda = kQ_{\Lambda}/I$ be a quasi-schurian and weakly-symmetric k-algebra of finite representation type, with I an admissible ideal. Let $\alpha_i : a_i \to b_i$ be arrows in Q_{Λ} for i = 1, 2, ..., t. Then the following conditions are equivalent for an indecomposable Λ -module M:

(a) *M* is a $\Lambda/\langle \overline{\alpha}_1, \ldots, \overline{\alpha}_t \rangle$ -module.

(b) Any chain of irreducible maps in ind Λ

$$X_0 \xrightarrow{f_1} X_1 \to \dots \to X_j = M \xrightarrow{f_{j+1}} X_{j+1} \to \dots \xrightarrow{f_r} X_r$$

with $X_0 = P_{a_i}$, $X_r = P_{b_i}$ has zero composition for all i = 1, 2, ..., t.

Proof. Follows from the above corollary using that if Λ is of finite representation type, then each nonzero morphism between indecomposable modules can be written as a sum of compositions of irreducible morphisms between indecomposable modules [4]. \Box

Let Λ be a k-algebra as in the preceding corollary, and let $A = \Lambda/\mathcal{J}$ where \mathcal{J} is the ideal of Λ generated by some arrows $\alpha_1, \alpha_2, \ldots, \alpha_t$ of Q_Λ . We denote by $\mathcal{P}_{\alpha_1,\alpha_2,\ldots,\alpha_t}$ the subquiver of Γ_Λ induced by the nonzero paths in $k(\Gamma_\Lambda)$ starting at the projective $P_{o(\alpha_i)}$ and ending at the projective $P_{e(\alpha_i)}$ for some $i = 1, 2, \ldots, t$. Then by Corollary 2.5 we have that the vertices of Γ_Λ can be identified with the vertices of Γ_Λ which are not in $\mathcal{P}_{\alpha_1,\alpha_2,\ldots,\alpha_t}$. That is, $(\Gamma_\Lambda)_0 = (\Gamma_\Lambda)_0 \setminus (\mathcal{P}_{\alpha_1,\alpha_2,\ldots,\alpha_t})_0$.

Let $A = kQ_A/I$ be an iterated tilted *k*-algebra of Dynkin type, with *I* an admissible ideal and let T(A) be the trivial extension of *A*. Then A = T(A) satisfies the hypothesis of Corollary 2.5. This is the case because the trivial extension of an iterated tilted algebra of Dynkin type is of finite representation type (see [3]) and, as we have seen at the beginning of this section, T(A) is quasi-schurian.

Remark 2.6. Let $T = kQ_T/I_T$ be a trivial extension of finite representation type and let A be an iterated tilted k-algebra of Dynkin type such that $T \simeq T(A)$. As we observed in the introduction, A is obtained by deleting exactly one arrow in each nonzero cycle of Q_T , and considering the induced relations. So we have that $A = T/\langle \overline{\alpha}_1, \ldots, \overline{\alpha}_t \rangle$ where $\alpha_1, \alpha_2, \ldots, \alpha_t$ are arrows in Q_T . Suppose that we know which vertices of the AR-quiver Γ_T correspond to the projective T-modules P_j associated with each vertex j of Q_T . As we observed above, the vertices of Γ_A can be identified with the vertices of Γ_T which are not in $\mathcal{P}_{\alpha_1,\alpha_2,\ldots,\alpha_t}$.

Therefore the embedding $\Gamma_A \hookrightarrow \Gamma_T$ is determined by the position in Γ_T of the vertices corresponding to the projective *T*-modules P_j for $j \in (Q_T)_0$.

Example. Let *A* be the iterated tilted algebra of type \mathbf{D}_4 with ordinary quiver Q_A , and with relation $0 = \alpha \delta - \varepsilon \eta$, where

By [10] the ordinary quiver $Q_{T(A)}$ of the trivial extension T(A) of A is

and the ideal *I* such that $T(A) = kQ_{T(A)}/I$ is generated by the relations: $\alpha\delta - \varepsilon\eta$, $\delta\beta\varepsilon$, $\eta\beta\alpha$, $\beta\alpha\delta\beta\alpha$, $\varepsilon\eta\beta\varepsilon$. In this case we have $A = T(A)/\langle\overline{\beta}\rangle$. Hence we have to look for the nonzero paths in $\Gamma_{T(A)}$ from $P_{o(\beta)} = P_2$ to $P_{e(\beta)} = P_3$. The shaded region of Fig. 1 corresponds to \mathcal{P}_{β} .

Then we delete from the quiver $\Gamma_{T(A)}$ the modules which are in \mathcal{P}_{β} . In Fig. 2 we indicate with \Box the vertices of $\Gamma_{T(A)}$ corresponding to A-modules.

Fig. 1.

Fig. 2.

Then the embedding $\Gamma_A \hookrightarrow {}_S\Gamma_{T(A)}$ is described in Fig. 3, where we indicate with \Box the vertices of ${}_S\Gamma_{T(A)}$ corresponding to A-modules.

The other iterated tilted algebras *B* such that $T(B) \simeq T(A)$ are of the form $T(A)/\langle \overline{\alpha}, \overline{\varepsilon} \rangle$, $T(A)/\langle \overline{\alpha}, \overline{\eta} \rangle$, $T(A)/\langle \overline{\delta}, \overline{\varepsilon} \rangle$, and $T(A)/\langle \overline{\delta}, \overline{\eta} \rangle$. The embedding of Γ_B in ${}_{S}\Gamma_{T(A)}$ for these algebras *B* is obtained in the same way.

The embedding $\Gamma_A \hookrightarrow {}_{S}\Gamma_{T(A)}$ is reduced to the embedding $\Gamma_A \hookrightarrow \Gamma_{T(A)}$, since the stable part ${}_{S}\Gamma_{T(A)}$ of $\Gamma_{T(A)}$ is obtained from $\Gamma_{T(A)}$ by deleting the vertices of $\Gamma_{T(A)}$ associated to projective modules. In general, we have information about the stable quiver ${}_{S}\Gamma_{T(A)}$. Indeed, suppose that the trivial extension $\Lambda = T(A)$ of A is of Cartan class Δ , where Δ is a Dynkin diagram. Then ${}_{S}\Gamma_A \xrightarrow{\sim} \mathbb{Z}\Delta/\Pi({}_{S}\Gamma_A, x)$ where $\Pi({}_{S}\Gamma_A, x)$ is the fundamental group associated to the universal covering $\pi : \mathbb{Z}\Delta \to {}_{S}\Gamma_A$ of the stable translation quiver ${}_{S}\Gamma_A$ (see [17]). Moreover, the group $\Pi({}_{S}\Gamma_A, x)$ is generated by τ^{m_A} , where m_{Δ} is the Loewy length of the mesh category $k(\mathbb{Z}\Delta)$ [2,6]. We recall that the values of m_{Δ} are: $m_{\mathbf{A}_n} = n$, $m_{\mathbf{D}_n} = 2n - 3$, $m_{\mathbf{E}_6} = 11$, $m_{\mathbf{E}_7} = 17$, $m_{\mathbf{E}_8} = 29$.

In this way we have information about the structure of the stable quiver ${}_{S}\Gamma_{A}$. Our problem now is to recover the structure of Γ_{A} from the knowledge we have about ${}_{S}\Gamma_{A}$. To do that, we need to know which vertices of ${}_{S}\Gamma_{A}$ correspond to the radicals of the projective modules P_{i} for $i \in (Q_{A})_{0}$, since $0 \rightarrow rP_{i} \rightarrow P_{i} \amalg rP_{i}/\operatorname{soc} P_{i} \rightarrow P_{i}/\operatorname{soc} P_{i} \rightarrow 0$ is an AR-sequence for each vertex *i* of Q_{A} . We denote by C_{A} the set of vertices of ${}_{S}\Gamma_{A}$ representing the radicals of the projective A-modules. It is well known that C_{A} is a configuration of ${}_{S}\Gamma_{A}$, as defined by Chr. Riedtmann in [18]. This is, the elements of C_{A} satisfy the following definition.

Definition 2.7. [18]. Let Γ be a stable translation quiver and $k(\Gamma)$ the mesh-category associated to Γ . A *configuration* C of Γ is a set of vertices of Γ which satisfies the following conditions:

- (a) For any vertex $x \in \Gamma_0$ there exists a vertex $y \in C$ such that $k(\Gamma)(x, y) \neq 0$,
- (b) $k(\Gamma)(x, y) = 0$ if x and y are different elements of C,
- (c) $k(\Gamma)(x, x) = k$ for all $x \in C$.

Let Δ be a Dynkin diagram, Λ a trivial extension of Cartan class Δ , and $\pi : \mathbb{Z}\Delta \to {}_{S}\Gamma_{\Lambda}$ the universal covering of ${}_{S}\Gamma_{\Lambda}$. Since C_{Λ} is a configuration of ${}_{S}\Gamma_{\Lambda}$, we obtain from [18] that $\widetilde{C}_{\Lambda} = \pi^{-1}(C_{\Lambda})$ is a configuration of $\mathbb{Z}\Delta$. We will say that \widetilde{C}_{Λ} is the configuration of $\mathbb{Z}\Delta$ associated to Λ .

3. The lifting process

Throughout this section Δ denotes a Dynkin diagram. Let A be an iterated tilted k-algebra of type Δ and let T(A) be the trivial extension of A. In the preceding section we described an embedding of Γ_A into ${}_{S}\Gamma_{T(A)}$ which we will lift to an embedding of Γ_A in $\mathbb{Z}\Delta = {}_{S}\Gamma_{\hat{A}}$. Our purpose now is describing directly this embedding in terms of a section in $\mathbb{Z}\Delta$ and some nonzero paths in $\Gamma_{\hat{A}}$ between projective \hat{A} -modules. A similar description was done in the preceding section for the embedding of Γ_A into $\Gamma_{T(A)}$. So, we will define a connected lifting ${}_{S}\Gamma_{T(A)}[0]$ of ${}_{S}\Gamma_{T(A)}[0]$ of ${}_{S}\Gamma_{T(A)}[0]$ of ${}_{T(A)}[0]$ of $\Gamma_{T(A)}$ to $\Gamma_{\hat{A}}$. Afterwards we will study how nonzero paths in $\Gamma_{T(A)}$ between projective modules lift to $\Gamma_{\hat{A}}$. Since there are infinitely many $\Gamma_{\hat{A}}$ -projectives and we want to circumscribe to a small part of $\mathbb{Z}\Delta$, we need to study how long the nonzero paths between the projective modules in $\Gamma_{\hat{A}}$ are. So we start with some preliminaries.

Following [6,12] we denote the *Nakayama-permutation* on $\mathbb{Z}\Delta$ by v_{Δ} . This is the bijection $v_{\Delta} : (\mathbb{Z}\Delta)_0 \to (\mathbb{Z}\Delta)_0$ which satisfies the following condition: for each vertex x of $\mathbb{Z}\Delta$ there exists a path $w : x \to v_{\Delta}(x)$ whose image \overline{w} in the mesh-category $k(\mathbb{Z}\Delta)$ is not zero, and w has longest length among all nonzero paths starting at x. The Loewy length m_{Δ} of the mesh-category $k(\mathbb{Z}\Delta)$ is the smallest integer m such that $\overline{v} = 0$ in $k(\mathbb{Z}\Delta)$ for all paths v in $\mathbb{Z}\Delta$ whose length is greater than or equal to m. Thus $m_{\Delta} - 1$ is the common length of all nonzero paths from x to $v_{\Delta}(x)$. Moreover, we have that $\tau^{-m_{\Delta}} = v_{\Delta}^2 \tau^{-1}$.

Let (Γ, τ) be a connected stable translation quiver. Following P. Gabriel in [12] we will call *slice* of Γ to a full connected subquiver whose vertices are determined by choosing a unique element in each τ -orbit of Γ_0 . Then for each vertex $x \in \Gamma$ there is a well-determined slice admitting x as its unique source. We call it *slice starting at x* and denote it by $S_{x\to \cdot}$. Likewise, the *slice ending at x* admits x as its unique sink and is denoted by $S_{\to x}$.

Let $f: (\mathbb{Z}\Delta)_0 \to \mathbb{Z}$. We recall that f is *additive* if it satisfies the equation

$$f(x) + f(\tau(x)) = \sum_{z \in x^{-}} f(z)$$

for each vertex x. It is well known that the additive function f_x , which has value 1 on $S_{x\to}$, determines the support of the functor $k(\mathbb{Z}\Delta)(x, -)$. In fact, dim_k $k(\mathbb{Z}\Delta)(x, y) = f_x(y)$.

Proposition 3.1. *Let* x *be a vertex of* $\mathbb{Z}\Delta$ *. Then*

(a) Supp $k(\mathbb{Z}\Delta)(x, -) =$ Supp $k(\mathbb{Z}\Delta)(-, \nu_{\Delta}(x)),$ (b) Supp $k(\mathbb{Z}\Delta)(x, -) \cap$ Supp $k(\mathbb{Z}\Delta)(-, \nu_{\Delta}^{2}(x)) = \{\nu_{\Delta}(x)\}.$

Proof. (a) The proof given by Chr. Riedtmann for the D_n case in [19, page 312] can be adapted to the other Dynkin diagrams.

(b) Follows from (a) and the fact that $\mathbb{Z}\Delta$ has no oriented cycles. \Box

Let x be a vertex of $\mathbb{Z}\Delta$. Using (a) of the preceding proposition we obtain that the support of the functor $k(\mathbb{Z}\Delta)(x, -)$ is contained in the set of vertices of $\mathbb{Z}\Delta$ laying on or

between the sections $S_{x \to}$ and $S_{\to \nu_{\Delta}(x)}$. Though this inclusion is not in general an equality it is so in the case $\Delta = \mathbf{A}_n$.

Remark 3.2. Let Λ be a trivial extension of Cartan class Δ , and let $F: k(\mathbb{Z}\Delta) \to \underline{ind} \Lambda$ be a well-behaved functor induced by the universal covering $\pi: \mathbb{Z}\Delta \to {}_S\Gamma_{\Lambda}$. Since F is a covering functor, then it induces a *k*-vector space isomorphism

$$\coprod_{y\in\pi^{-1}(Y)}k(\mathbb{Z}\Delta)(x,y)\xrightarrow{\sim}\underline{\mathrm{Hom}}_{A}(\pi(x),Y).$$

Since Δ is of Dynkin type we can say more: if $\underline{\text{Hom}}_{\Lambda}(\pi(x), Y) \neq 0$, then the left side has a unique nonzero summand. Dually, if $\underline{\text{Hom}}_{\Lambda}(X, \pi(y)) \neq 0$ there exists a unique $x \in \pi^{-1}(X)$ such that $k(\mathbb{Z}\Delta)(x, y) \neq 0$.

In fact, we assume that $k(\mathbb{Z}\Delta)(x, y_i) \neq 0$ for i = 1, 2 and $\pi(y_1) = \pi(y_2)$. Suppose that $y_1 \neq y_2$. Then $y_1 = \tau^{jm_\Delta} y_2$ for some integer j, which we may assume positive. Let $\delta: y_1 \to y_2$ and $\gamma: x \to y_1$ be paths in $\mathbb{Z}\Delta$. Therefore we have a path $\delta\gamma: x \to y_2$ with length $\ell(\delta\gamma) \ge \ell(\delta) = 2jm_\Delta$. Since paths between vertices of $\mathbb{Z}\Delta$ have the same length, we obtain that any path starting at x and ending at y_2 has length at least $2jm_\Delta$. This is a contradiction because the longest length of a nonzero path in $k(\mathbb{Z}\Delta)$ is $m_\Delta - 1$. This proves the first statement of the remark. The second statement follows by duality.

As a consequence of the above remark we can see that the information we have about the support of the functor $k(\mathbb{Z}\Delta)(x, -)$ in $\mathbb{Z}\Delta$ can be carried out through the universal covering $\pi : \mathbb{Z}\Delta \to {}_{S}\Gamma_{\Lambda}$ to determine the support of $\underline{\text{Hom}}_{\Lambda}(\pi(x), -)$ in ${}_{S}\Gamma_{\Lambda}$.

Proposition 3.3. Let Λ be a trivial extension of Cartan class Δ . Then the universal covering $\pi : \mathbb{Z}\Delta \to {}_{S}\Gamma_{\Lambda}$ induces the following bijections:

- (i) $\operatorname{Supp} k(\mathbb{Z}\Delta)(x, -) \xrightarrow{\sim} \operatorname{Supp} \operatorname{Hom}_{\Lambda}(\pi(x), -).$
- (ii) $\operatorname{Supp} k(\mathbb{Z}\Delta)(-, x) \xrightarrow{\sim} \operatorname{Supp} \operatorname{Hom}_{\Lambda}(-, \pi(x)).$

The next result is an interesting application of the preceding corollary.

Corollary 3.4. Let Λ be a trivial extension of Cartan class Δ with Δ a Dynkin diagram. Then for all $X, Y \in \underline{ind} \Lambda$ we have

$$\dim_k \underline{\operatorname{Hom}}_{\Lambda}(X, Y) \leqslant \begin{cases} 1 & \text{if } \Delta = \mathbf{A}_n, \\ 2 & \text{if } \Delta = \mathbf{D}_n, \\ 3 & \text{if } \Delta = \mathbf{E}_p \text{ and } p = 6, 7, \\ 6 & \text{if } \Delta = \mathbf{E}_8. \end{cases}$$

Proof. Let $\pi : \mathbb{Z}\Delta \to {}_{S}\Gamma_{A}$ be the universal covering of ${}_{S}\Gamma_{A}$. To describe $\underline{\operatorname{Hom}}_{A}(X, Y)$ we consider a fixed $x \in \pi^{-1}(X)$. We know by Remark 3.2 that there exists a unique $y \in \pi^{-1}(Y)$ such that $\underline{\operatorname{Hom}}_{A}(X, Y)$ is isomorphic to $k(\mathbb{Z}\Delta)(x, y)$. On the other hand,

 $\dim_k k(\mathbb{Z}\Delta)(x, y) = f_x(y)$ where f_x is the additive function starting at x. We use the work of Gabriel [12, p. 53] where he computes the values of this function for some vertices x of $\mathbb{Z}\Delta$, to get the bounds for $\dim_k \operatorname{Hom}_A(X, Y) = f_x(y)$ above stated. \Box

When A is an iterated tilted algebra of Cartan class Δ , there is an embedding ind $A \hookrightarrow \underline{\operatorname{ind}} T(A)$. Thus, the bounds given in the preceding corollary are also bounds for dim_k $\underline{\operatorname{Hom}}_A(X, Y)$ if $X, Y \in \operatorname{ind} A$.

For a fixed vertex x of $\mathbb{Z}\Delta$ we define the partition $\{\mathbb{P}_x[j]: j \in \mathbb{Z}\}\$ of $\mathbb{Z}\Delta$, where $\mathbb{P}_x[0]$ is the full subquiver of $\mathbb{Z}\Delta$ with vertices lying on or between the slices $S_{x\to}$ and $\tau^{-m_{\Delta}+1}S_{x\to}$, and $\mathbb{P}_x[j] = \tau^{-jm_{\Delta}}\mathbb{P}_x[0]$ for any $j \in \mathbb{Z}$. Let z be a vertex of $\mathbb{P}_x[0]$, for any integer j we denote by z[j] the vertex $\tau^{-jm_{\Delta}z}$ of $\mathbb{P}_x[j]$.

Let Λ be a trivial extension of Cartan class Δ , and let $\pi : \mathbb{Z}\Delta \to {}_{S}\Gamma_{\Lambda}$ be the universal covering of ${}_{S}\Gamma_{\Lambda}$. Let $M \in \underline{ind} \Lambda$ and let M[0] be a fixed element of the fibre $\pi^{-1}(M)$. Then $\pi|_{\mathbb{P}_{M[0]}} : \mathbb{P}_{M[0]} \to {}_{S}\Gamma_{\Lambda}$ is a quiver morphism, which is a bijection on the vertices of $\mathbb{P}_{M[0]}$, since the quiver ${}_{S}\Gamma_{\Lambda}$ is isomorphic to the cylinder $\mathbb{Z}\Delta/\langle \tau^{m_{\Delta}} \rangle$. The inverse $\varphi_{M} : ({}_{S}\Gamma_{\Lambda})_{0} \to (\mathbb{Z}\Delta)_{0}$ of this bijection defines an embedding of ${}_{S}\Gamma_{\Lambda}$ into $\mathbb{Z}\Delta$. Moreover, the map $\pi|_{\mathbb{P}_{M[0]}}$ is injective on the arrows of $\mathbb{P}_{M[0]}$ but not surjective. Indeed, the arrows $X \to Y$ of ${}_{S}\Gamma_{\Lambda}$ with $X \in S_{\tau M \to}$ and $Y \in S_{M \to}$ are not in the image of $\pi|_{\mathbb{P}_{M[0]}}$ (see Fig. 4).

Definition 3.5. Let Λ be a trivial extension of Cartan class Δ and let $M \in \underline{ind} \Lambda$. We say that the quiver ${}_{S}\Gamma_{\Lambda}[0] = \mathbb{P}_{M[0]}$ is a lifting of ${}_{S}\Gamma_{\Lambda}$ to $\mathbb{Z}\Delta$ at M. Moreover, if we do not want to state precisely the lifting vertex we will say that ${}_{S}\Gamma_{\Lambda}[0]$ is a lifting of ${}_{S}\Gamma_{\Lambda}$ to $\mathbb{Z}\Delta$.

For an algebra *A* such that $\Lambda \simeq T(A)$ we denote by $\Gamma_A[0]$ the embedding of Γ_A in $\mathbb{Z}\Delta$ obtained as the composition of the embeddings $\Gamma_A \hookrightarrow {}_S\Gamma_{T(A)}$ (given in the preceding section) and $\varphi_M : {}_S\Gamma_A \hookrightarrow \mathbb{Z}\Delta$.

Fig. 4.

Remark 3.6. Let ${}_{S}\Gamma_{A}[0]$ be a lifting of ${}_{S}\Gamma_{A}$ to $\mathbb{Z}\Delta$ at M, and let $\alpha : X \to Y$ be an arrow of ${}_{S}\Gamma_{A}$. For any $j \in \mathbb{Z}$, there exists a unique arrow $\alpha_{j} : X[j] \to Y_{j}$ in $\mathbb{Z}\Delta$ such that $\pi(\alpha_{j}) = \alpha$, where $\pi : \mathbb{Z}\Delta \to {}_{S}\Gamma_{A}$ is the universal covering of ${}_{S}\Gamma_{A}$. Moreover, we have that Y_{j} is either equal to Y[j] or to Y[j+1]. The latter case occurs when $Y \in S_{M \to S}$.

Let *A* be an iterated tilted algebra of Cartan class Δ , with Δ a Dynkin diagram. Let $\pi : \mathbb{Z}\Delta \to {}_{S}\Gamma_{T(A)}$ be the universal covering of ${}_{S}\Gamma_{T(A)}$, $C_{T(A)} = \{rP_i: i \in (Q_{T(A)})_0\}$ and let $\widetilde{C}_{T(A)} = \pi^{-1}(C_{T(A)})$ be the configuration of $\mathbb{Z}\Delta$ associated to T(A). From this data Chr. Riedtmann constructed in [18] the universal covering of $\Gamma_{T(A)}$ by adding to $\mathbb{Z}\Delta$ the "projective vertices", exactly one for each vertex of the configuration $\widetilde{C}_{T(A)}$, and appropriate arrows. This can be described as follows. Let ${}_{S}\Gamma_{T(A)}[0]$ be a lifting of ${}_{S}\Gamma_{T(A)}$ to $\mathbb{Z}\Delta$. Then $\{rP_i[j]: j \in \mathbb{Z}\} = \pi^{-1}(rP_i)$ for any vertex *i* of $Q_{T(A)}$. We denote by $\mathbb{Z}\Delta_{\widetilde{C}_{T(A)}}$ the translation quiver obtained from $\mathbb{Z}\Delta$ by adding a new vertex $\mathbf{P}_i[j]$ and arrows $rP_i[j] \to \mathbf{P}_i[j], \mathbf{P}_i[j] \to \tau^{-1}rP_i[j]$ for each $rP_i[j] \in \widetilde{C}_{T(A)}$. The translation of $\mathbb{Z}\Delta_{\widetilde{C}_{T(A)}}$ coincides with the translation of $\mathbb{Z}\Delta$ on the common vertices and is not defined on the remaining ones.

The action of $\Pi({}_{S}\Gamma_{T(A)}, x) = \langle \tau^{m_{\Delta}} \rangle$ on $\mathbb{Z}\Delta$ can be extended to $\mathbb{Z}\Delta_{\widetilde{C}_{T(A)}}$ by defining $\tau^{m_{\Delta}}(\mathbf{P}_{i}[j]) = \mathbf{P}_{i}[j-1]$. Moreover, the covering $\pi : \mathbb{Z}\Delta \to {}_{S}\Gamma_{T(A)}$ admits an extension $\tilde{\pi} : \mathbb{Z}\Delta_{\widetilde{C}_{T(A)}} \to \Gamma_{T(A)}$ by defining $\tilde{\pi}(\mathbf{P}_{i}[j]) = P_{i}$ for any *i* and *j*. It is not difficult to see that $\tilde{\pi} : \mathbb{Z}\Delta_{\widetilde{C}_{T(A)}} \to \Gamma_{T(A)}$ is the universal covering of $\Gamma_{T(A)}$ and that it induces an isomorphism $\mathbb{Z}\Delta_{\widetilde{C}_{T(A)}}/\langle \tau^{m_{\Delta}} \rangle \to \Gamma_{T(A)}$.

For any $M \in \underline{\operatorname{ind}} T(A)$ the embedding $\varphi_M : {}_S \Gamma_{T(A)} \hookrightarrow \mathbb{Z}\Delta$ can be extended to an embedding $\tilde{\varphi}_M : \Gamma_{T(A)} \hookrightarrow \mathbb{Z}\Delta_{\tilde{C}_{T(A)}}$ by defining $\tilde{\varphi}_M(P_j) = \mathbf{P}_j[0]$ for any vertex j of $Q_{T(A)}$. We denote by $\Gamma_{T(A)}[0]$ the full subquiver of $\mathbb{Z}\Delta_{\tilde{C}_{T(A)}}$ with vertices $\tilde{\varphi}_M((\Gamma_{T(A)})_0)$. Then $\tilde{\pi}|_{\Gamma_{T(A)}[0]} : \Gamma_{T(A)}[0] \to \Gamma_{T(A)}$ is a quiver morphism, which is a bijection with inverse $\tilde{\varphi}_M$ on the vertices of $\Gamma_{T(A)}[0]$. In this way, we have that the lifting ${}_S\Gamma_{T(A)}[0]$ of ${}_S\Gamma_{T(A)}$ to $\mathbb{Z}\Delta_{\tilde{C}_{T(A)}}$.

Given a set *X* of vertices of $\Gamma_{T(A)}[0]$ we denote by X[j] the shifted set $\tau^{-jm_{\Delta}}X$.

Proposition 3.7. With the above notation we have that $\Gamma_{\hat{A}} \simeq \mathbb{Z}\Delta_{\tilde{C}_{T(A)}}$ and the protective vertices $\mathbf{P}_{i}[j]$ of $\mathbb{Z}\Delta_{\tilde{C}_{T(A)}}$ represent the projective \hat{A} -modules. Moreover, there is a commutative diagram

Proof. Let $F: k(\mathbb{Z}\Delta_{\tilde{C}_{T(A)}}) \to \operatorname{ind} T(A)$ be a well-behaved functor induced by the universal covering $\tilde{\pi}: \mathbb{Z}\Delta_{\tilde{C}_{T(A)}} \to \Gamma_{T(A)}$. Let \tilde{A} be the full subcategory of $k(\mathbb{Z}\Delta_{\tilde{C}_{T(A)}})$ whose objects are the projective vertices of $\mathbb{Z}\Delta_{\tilde{C}_{T(A)}}$. Then the restriction of the functor F to \tilde{A} induces a

covering functor $F': \tilde{A} \to T(A)$ (see [11, 2]). This functor is the universal covering since T(A) is standard [13, 3]. On the other hand, it is proven in [16] that the Galois covering $\hat{A} \to T(A)$ is universal. So $\tilde{A} \simeq \hat{A}$ proving the result. \Box

Remark 3.8. For any $M \in \underline{\operatorname{ind}} T(A)$ the embeddings $\varphi_M : {}_{S}\Gamma_{T(A)} \hookrightarrow \mathbb{Z}\Delta$ and $\tilde{\varphi}_M : \Gamma_{T(A)} \hookrightarrow \mathbb{Z}\Delta_{\tilde{C}_{T(A)}}$ induce embeddings of Γ_A in ${}_{S}\Gamma_{\hat{A}}$ and $\Gamma_{\hat{A}}$, respectively, making the following diagram commutative

Moreover, we have that $\Gamma_A[j] \hookrightarrow {}_S\Gamma_{T(A)}[j] \hookrightarrow \Gamma_{T(A)}[j]$ for any $j \in \mathbb{Z}$.

We know that $A = T(A)/\langle \overline{\alpha}_1, ..., \overline{\alpha}_t \rangle$, where $\alpha_1, \alpha_2, ..., \alpha_t$ are arrows of $Q_{T(A)}$. In Section 2 we have seen that $(\Gamma_A)_0 = (\Gamma_{T(A)})_0 \setminus (\mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_t})_0$, where $\mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_t}$ is the full subquiver of $\Gamma_{T(A)}$ induced by the nonzero paths in $k(\Gamma_{T(A)})$ starting at the projective $P_{o(\alpha_i)}$ and ending at the projective $P_{e(\alpha_i)}$ for some i = 1, 2, ..., t. Thus, to obtain the embedding $\Gamma_A \hookrightarrow \Gamma_{\hat{A}}$ and then the desired embedding $\Gamma_A \hookrightarrow \mathbb{Z} \Delta \simeq_S \Gamma_{\hat{A}}$ we have to lift $\mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_t}$ through the universal covering $\tilde{\pi} : \mathbb{Z} \Delta_{\tilde{C}_{T(A)}} \to \Gamma_{T(A)}$. As we recalled at the beginning of this section, the length of any nonzero path in

As we recalled at the beginning of this section, the length of any nonzero path in $k(\mathbb{Z}\Delta)$ is at most $m_{\Delta} - 1$. Though in $\mathbb{Z}\Delta_{\tilde{C}_{T(A)}}$ there are longer paths which are nonzero in $k(\mathbb{Z}\Delta_{\tilde{C}_{T(A)}})$, we have that the length of these paths is bounded by $2m_{\Delta}$, as follows from the following known result.

Lemma 3.9 [6, 1.2]. Any nonzero path $v: x \to y$ in $k(\mathbb{Z}\Delta_{\widetilde{C}_{T(A)}})$ can be extended to a nonzero path $\mathbf{P}_i[j] \xrightarrow{u} x \xrightarrow{v} y \xrightarrow{w} \mathbf{P}_i[j+1] = \tau^{-m_\Delta} \mathbf{P}_i[j]$ for some $i \in (Q_{T(A)})_0$ and $j \in \mathbb{Z}$. In particular, the nonzero path $v: x \to y$ has length $\ell(v) \leq 2m_\Delta$.

Remark 3.10. Let Λ be a trivial extension of Cartan class Δ , with Δ a Dynkin diagram. Let $F:k(\mathbb{Z}\Delta_{\widetilde{C}_{\Lambda}}) \to \operatorname{ind} \Lambda$ be a well-behaved functor induced by the universal covering $\widetilde{\pi}:\mathbb{Z}\Delta_{\widetilde{C}_{\Lambda}} \to \Gamma_{\Lambda}$. We consider now the isomorphism

$$\coprod_{y \in \tilde{\pi}^{-1}(Y)} k\big(\mathbb{Z}\Delta_{\tilde{\mathcal{C}}_{\Lambda}}\big)(x, y) \xrightarrow{\sim} \operatorname{Hom}_{\Lambda}\big(\tilde{\pi}(x), Y\big) \tag{\ast}$$

induced by the covering functor $F: k(\mathbb{Z}\Delta_{\widetilde{C}_A}) \to \text{ind } \Lambda$. In analogy with the result stated in Remark 3.2 for the stable case, we obtain that if $\text{Hom}_A(\tilde{\pi}(x), Y) \neq 0$ then the left side

of (*) has a unique nonzero summand, unless $\tilde{\pi}(x) \simeq Y$. Though this is not true when $\tilde{\pi}(x) \simeq Y$; in this case the left side of (*) has at most two nonzero summands.

In fact, the last claim follows directly from Lemma 3.9. To prove the first, let $y \in \tilde{\pi}^{-1}(Y)$ be such that $k(\mathbb{Z}\Delta_{\widetilde{C}_{\Lambda}})(x, y) \neq 0$. Using Lemma 3.9 we only need to prove that $k(\mathbb{Z}\Delta_{\widetilde{C}_{\Lambda}})(x, \tau^{jm_{\Delta}}y) = 0$ for $j = \pm 1$. Since any path $w : y \to \tau^{-m_{\Delta}}y$ has length $2m_{\Delta}$ and we have a path $v : x \to y$ with $x \neq y$, we conclude that any path $u : x \to \tau^{-m_{\Delta}}y$ has length $\ell(u) \ge 2m_{\Delta} + 1$. Thus by Lemma 3.9 we obtain that $k(\mathbb{Z}\Delta_{\widetilde{C}_{\Lambda}})(x, \tau^{-m_{\Delta}}y) = 0$. Likewise, we get that also $k(\mathbb{Z}\Delta_{\widetilde{C}_{\Lambda}})(x, \tau^{m_{\Delta}}y) = 0$, proving the result.

We are now in a position to prove the main result of this section.

Theorem 3.11. Let A be an iterated tilted algebra of Dynkin type Δ , and let $A = T(A)/\langle \overline{\alpha}_1, \overline{\alpha}_2, ..., \overline{\alpha}_n \rangle$, where $\alpha_1, \alpha_2, ..., \alpha_t$ are arrows of $Q_{T(A)}$. Let ${}_{S}\Gamma_{T(A)}[0]$ be a lifting of ${}_{S}\Gamma_{T(A)}$ to $\mathbb{Z}\Delta$. For any integer j we denote by $\mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_t}[j]$ the full subquiver of $\mathbb{Z}\Delta_{\widetilde{C}_{T(A)}}$ induced by the nonzero paths in $k(\mathbb{Z}\Delta_{\widetilde{C}_{T(A)}})$ starting at $\mathbf{P}_{o(\alpha_i)}[j]$ and ending either at $\mathbf{P}_{e(\alpha_i)}[j]$ or at $\mathbf{P}_{e(\alpha_i)}[j+1]$ for some i = 1, 2, ..., t. Then the vertices of $\Gamma_A[0]$ are the vertices of ${}_{S}\Gamma_{T(A)}[0]$ which are not in $\mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_n}[-1] \cup \mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_n}[0]$.

Proof. Let $\tilde{\pi} : \mathbb{Z}\Delta_{\tilde{C}_{T(A)}} \to \Gamma_{T(A)}$ be the universal covering of $\Gamma_{T(A)}$. By Remarks 2.6 and 3.8 we know that $\Gamma_A[0] = {}_{S}\Gamma_{T(A)}[0] \setminus \tilde{\pi}^{-1}(\mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_t})$. On the other hand, $\mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_t}[j] \cap {}_{S}\Gamma_{T(A)}[0] = \emptyset$ for $j \ge 1$ and $j \le -2$. Then the desired result follows from the equality

$$\tilde{\pi}^{-1}(\mathcal{P}_{\alpha_1,\alpha_2,\dots,\alpha_t}) = \bigcup_{j \in \mathbb{Z}} \mathcal{P}_{\alpha_1,\alpha_2,\dots,\alpha_t}[j],$$

which is a consequence of Lemma 3.9 and Remark 3.10. \Box

Example. Let *T* be the trivial extension of Cartan class A_5 with ordinary quiver Q_T and with the relations $\alpha_4\alpha_3 = 0$, $\alpha_1\alpha_6 = 0$, $\alpha_3\alpha_2\alpha_1 - \alpha_6\alpha_5\alpha_4 = 0$, $\alpha_2\alpha_1\alpha_3\alpha_2 = 0$, $\alpha_5\alpha_4\alpha_6\alpha_5 = 0$.

Let $A = T/\langle \overline{\alpha_2}, \overline{\alpha_5} \rangle$ and $B = T/\langle \overline{\alpha_3}, \overline{\alpha_4} \rangle$. Hence T(A) = T = T(B) and the embeddings $\Gamma_A[j] \hookrightarrow \Gamma_{\hat{A}}, \Gamma_B[j] \hookrightarrow \Gamma_{\hat{B}}$ for each integer *j* are as follows:

(1) The shaded regions in Fig. 5 correspond to $\mathcal{P}_{\alpha_2,\alpha_5}[j]$ for $j \in \mathbb{Z}$. Hence, the vertices of $\Gamma_{\hat{A}}$ which are not in these shaded regions correspond to A-modules.

(2) The shaded regions in Fig. 6 correspond to $\mathcal{P}_{\alpha_3,\alpha_4}[j]$ for $j \in \mathbb{Z}$. Consequently, the vertices of $\Gamma_{\hat{B}}$ which are not in these regions correspond to *B*-modules.

Finally, we can describe Γ_A and Γ_B from this information. Indeed, the vertices of Γ_A can be represented by the vertices of ${}_{S}\Gamma_{T(A)}[0]$, which are not in the shaded regions. The arrows of Γ_A are obtained by studying the paths in ${}_{S}\Gamma_{T(A)}[-1] \cup {}_{S}\Gamma_{T(A)}[0] \cup {}_{S}\Gamma_{T(A)}[1]$, as follows from Remarks 3.2 and 3.6. Then we get the AR-quivers Γ_A and Γ_B

References

- I. Assem, Tilting theory an introduction, Topics in Algebra, in: Banach Center Publications, Vol. 26, part 1, 1990.
- [2] H. Asashiba, The derived equivalence classification of representation-finite selfinjective algebras, J. Algebra 214 (1999) 182–221.
- [3] I. Assem, D. Happel, O. Roldán, Representation-finite trivial extension algebras, J. Pure Appl. Algebra 33 (1984).
- [4] M. Auslander, I. Reiten, S. Smalo, Representation Theory of Artin Algebras, Cambridge University Press, 1995.
- [5] K. Bongartz, P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65 (1982) 331-378.
- [6] O. Bretscher, Chr. Läser, Chr. Riedtmann, Selfinjective and simply connected algebras, Manuscripta Math. 36 (1981) 253–307.
- [7] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, Cambridge Univ. Press, 1988.
- [8] D. Hughes, J. Waschbusch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (3) (1983) 347–364.
- [9] E. Fernández, Ph.D. Thesis: Extensiones triviales y álgebras inclinadas iteradas, 1999.
- [10] E. Fernández, M.I. Platzeck, Presentations of trivial extensions of finite-dimensional algebras and a theorem of S. Brenner, J. Algebra 249 (2000) 326–344.
- [11] P. Gabriel, The universal cover of a representation-finite algebra, in: Lecture Notes in Math., Vol. 903, 1981, pp. 68–105.
- [12] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math., Vol. 831, 1980, pp. 1–71.
- [13] R. Martinez-Villa, J.A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (1983) 277–292.
- [14] O. Mendoza, Symmetric quasi-schurian algebras, in: Lecture Notes in Pure and Applied Mathematics, Vol. 224, Marcel Decker, Inc., 2001, pp. 99–116.
- [15] O. Mendoza, La inmersion en $Z(\Delta)$ del carcajde Auslander–Reiten de un álgebra inclinada iterada de tipo Dynkin Δ , Ph.D. Thesis, Universidad Nacional del Sur, Argentina, 2001.
- [16] M.J. Redondo, Universal Galois coverings of selfinjective algebras by repetitive algebras and Hoschschild Cohomology, J. Algebra 247 (2002) 332–364.
- [17] Chr. Riedtmann, Algebren, Darstellunsköcher, Ueberlagerungen und Zurück, Comment. Math. Helvet. 55 (1980) 199–224.
- [18] Chr. Riedtmann, Representation-finite selfinjective algebras of class A_n , in: Lecture Notes in Math., Vol. 832, 1980, pp. 449–520.
- [19] Chr. Riedtmann, Configurations of $\mathbb{Z}\mathbf{D}_n$, J. Algebra 82 (2) (1983) 309–327.
- [20] K. Yamagata, On Algebras Whose Trivial Extensions Are of Finite Representation Type, in: Lecture Notes in Math., Vol. 903, 1981.