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Abstract

Let ∆ be a Dynkin diagram andk an algebraically closed field. LetA be an iterated tilted finite
dimensionalk-algebra of type∆ and denote byÂ its repetitive algebra. We approach the probl
of finding a combinatorial algorithm giving the embedding of the vertices of the Auslander–R
quiverΓA of A in the Auslander–Reiten quiverΓ (mod(Â)) � Z∆ of the stable category mod(Â).
Let T be a trivial extension of finite representation type and Cartan class∆. Assume that we know
the vertices ofZ∆ corresponding to the radicals of the indecomposable projectiveT -modules. We
determine the embedding ofΓA in Z∆ for any algebraA such thatT (A)� T .
 2003 Elsevier Science (USA). All rights reserved.

Introduction

The algebras to be considered in this paper are basic finite-dimensional algebras
algebraically closed fieldk. Any such algebraA can be written as a bound quiver algeb
kQA/I , whereI is an admissible ideal of the path algebrakQA andQA is the quiver
associated toA.
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For a quiverQ, let Q0 denote the set of vertices ofQ andQ1 the set of arrows ofQ.
An arrowα of Q1 starts at the vertexo(α) and ends ate(α).

Let k be an algebraically closed field,∆ a Dynkin diagram and letA be an iterated
tilted algebra of type∆ [1]. Let T (A) = A � DA(A) be the trivial extension ofA by its
minimal injective cogeneratorDA(A)= Homk(A, k). The algebraT (A) is known to be of
finite representation type [3] and there exists an embedding of modA in the stable categor
modT (A). Then the set of vertices(ΓA)0 of the AR-quiverΓA of A can be embedded i
the stable partSΓT (A) of the AR-quiverΓT (A) of T (A). Moreover,T (A) admits universa
Galois coveringÂ → T (A), whereÂ is the repetitive algebra ofA, SΓÂ

� Z∆ and thusΓA

can be embedded inZ∆ [1,7,8,11]. This is, the vertices of the AR-quiverΓA of any iterated
tilted algebraA of type∆ can be embedded inZ∆, and in such way that knowing whic
vertices ofZ∆ correspond toA-modules we can obtain the arrows ofΓA in a canonica
way, so that we get the AR-quiverΓA of A. Taking this into account and for simplicity w
will just say that the AR-quiverΓA embeds inZ∆ to mean that there is an injective m
ϕ : (ΓA)0 → (Z∆)0. Our main objective is to describe this embedding explicitly. We re
that the trivial extensions of finite representation type and Cartan class∆ are precisely the
trivial extensions of iterated tilted algebras of Dynkin type∆ [3]. We divided the problem
in two parts.

Let T be a trivial extension of finite representation type and Cartan class∆.

(1) Assume that we know the vertices ofZ∆ corresponding to the radicals of th
indecomposable projectiveT -modules. Determine the embedding ofΓA in Z∆ for
any algebraA such thatT (A)� T .

(2) Describe an algorithm to determine which subsets of vertices inZ∆ represent the
radicals of the indecomposable projective modules over the trivial extensionT .

In this paper we solve the first part. The second is studied in the first author’s
thesis [15] where an algorithm is given for∆ = An and∆ = Dn, and will be published in
a forthcoming paper.

We describe the embedding more explicitly. LetA be an iterated tilted algebra of typ
∆ and letT (A) = A � DA(A) be the trivial extension ofA by DA(A) = Homk(A, k).
The canonical epimorphismp :T (A)→ A given byp(a,ϕ)= a induces a full and faithfu
functor

Fp : modA ↪→ modT (A),

which identifies modA with the full subcategory of modT (A) whose objects are th
T (A)-modules annihilated byDA(A). Moreover, the composition ofFp with the canonica
functorθ : modT (A)→ modT (A) is also a full and faithful functor

θFp : modA ↪→ modT (A).

Therefore the AR-quiverΓA of A can be embedded in the AR-quiverΓT (A) of T (A) and
in the stable AR-quiverSΓT (A) making the following diagram commutative
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ΓA SΓT (A)

It is known (see 2.6 in [8]) that there exists a translation quiver morphismπ : SΓÂ
→

SΓT (A), which is the universal covering ofSΓT (A), and thatSΓÂ
� Z∆

SΓÂ
= Z∆

π

ΓA SΓT (A)

Then we can consider a connected liftingSΓT (A)[0] of the quiverSΓT (A) to Z∆ (see
Section 3). Since the quiverΓA is embedded inSΓT (A) the above lifting induces a subquiv
ΓA[0] of SΓT (A)[0] in such way that the following diagram is commutative

ΓA[0]
π

SΓÂ
= Z∆

π

ΓA SΓT (A)

We get an embedding ofΓA in Z∆ and we are looking for the vertices ofZ∆ corresponding
to indecomposableA-modules under such embedding.

We start by studying the embeddingΓA ↪→ ΓT (A) induced by the canonical epimo
phismp :T (A) → A. Thus, we have to determine which vertices ofΓT (A) correspond to
indecomposableA-modules. We know thatA � T (A)/DA(A), and that aT (A)-moduleM
is anA-module if and only ifDA(A)M = 0. Therefore we have to know what the conditi
DA(A)M = 0 means in the Auslander–Reiten quiverΓT (A). LetA = kQA/I , in [9,10] the
quiver ofQT (A) is obtained fromQA by adding some arrows. Moreover, the idealDA(A)

of T (A) is generated precisely by these added arrows [9]. On the other hand, given a
extensionT of finite representation type a method is given in [9] to obtain the iterated t
algebrasB such thatT (B)� T . In fact, such algebras are obtained by deleting exactly
arrow in each nonzero oriented cycle ofQT and considering the induced relations. ThusB

is the factor ofT by an ideal generated by arrows.
First we will study when an ideal generated by arrows annihilates a moduleM. In

Section 2 we give a characterization of modulesM over a quotientk-algebraΛ/J where
J is an ideal ofΛ generated by arrows ofQΛ. In particular, whenΛ is T (A) and
J = D(A) we describe the vertices ofΓT (A) corresponding toA � T (A)/J -modules.
More precisely, suppose thatJ is generated by some arrowsα1, α2, . . . , αt of QT (A). We
consider the subquiverPα1,α2,...,αt of ΓT (A) induced by the nonzero paths inΓT (A) starting
at the projectivePo(αi) and ending at the projectivePe(αi ) for somei = 1,2, . . . , t . We



250 O. Mendoza Hernández, M.I. Platzeck / Journal of Algebra 265 (2003) 247–263

n

o
g

e

f
t
ver
.

uently
h

g
18] for

sider

t

an
prove that the vertices ofΓA are exactly the vertices ofΓT (A) which are not contained i
Pα1,α2,...,αt . A similar description is given in Section 3 for the embedding ofΓA in Γ

Â
.

To do that, we define an appropriate lifting ofΓT (A) to Γ
Â

, and we study how nonzer
paths between projective modules inΓT (A) lift to Γ

Â
. In this way we obtain the embeddin

ΓA ↪→ Γ
Â

, and then the desired embeddingΓA ↪→ Z∆� SΓÂ
.

1. Preliminaries

LetQ be a quiver, which may be infinite. Apathγ in the quiverQ is either an oriented
sequence of arrowsαn · · ·α1 with e(αt ) = o(αt+1) for 1 � t < n, or the symbolei for
i ∈Q0. Thelength"(γ ) of γ is n in the first case, and"(ei) = 0. We call the pathsei trivial
paths and we defineo(ei) = e(ei). Let I be an ideal of the path algebrakQ. We consider
Λ= kQ/I as ak-category whose objects are the verticesQ0 of Q and the morphism spac
Λ(i, j) from i to j is ejΛei , whereei = ei + I (see [5]).

LetA be ak-algebra. For a given vertexj of QA we denote bySj the simpleA-module
corresponding toj , by Pj the projective cover ofSj , and byIj the injective envelope o
Sj . We will use freely properties of the module category modA of finitely generated lef
A-modules, the stable category modA module projectives, the Auslander–Reiten qui
ΓA and the Auslander–Reiten translationsτ = DTr andτ−1 = TrD, as can be found in [4]
We denote by indA (respectively by indA) the full subcategory of modA (modA) formed
by chosen representatives of the indecomposable modules. Moreover, we will freq
identify the objects of indA with the vertices of the AR-quiverΓA representing suc
objects.

We will freely use the notions of locally finitek-category, translation quiver, coverin
functor, well behaved functor and related notions. We refer the reader to [4,5,11,17,
definitions and basic properties of these objects.

Let∆ be an oriented tree. Following Chr. Riedtmann [17] (see also [4]) we will con
the translation quiverZ∆, defined as follows:

(Z∆)0 = Z ×∆0, (Z∆)1 = {−1,1} × Z ×∆1.

For an arrowx
α→ y of ∆ we define the arrows(−1, n,α) and(1, n,α) as

(n− 1, y)
(−1,n,α)−−−−−→ (n, x) and (n, x)

(1,n,α)−−−−→ (n, y).

Finally, the translationτ is τ (n, y)= (n− 1, y).

2. Modules over quotients of quasi-schurian weakly symmetric algebras

We start this section by giving a characterization of modulesM over a quotien
k-algebraΛ/J whereJ is an ideal ofΛ generated by arrows ofQΛ. Then we go on
to study the case whenΛ is quasi-schurian and weakly symmetric. Finally, we give
application to trivial extensions of finite representation type.
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We recall from [14] that an algebraΛ is quasi-schurianif it satisfies:

(a) dimk HomΛ(P,Q) � 1 if P andQ are non isomorphic indecomposable project
Λ-modules and

(b) dimk EndΛ(P) = 2 for any indecomposable projectiveΛ-moduleP .

LetA = kQA/I be aschurian(that is, dimk HomA(Pi,Pj )� 1 for any verticesi andj
of QA) andtriangular (that is,QA has non oriented cycles)k-algebra, withI admissible
ideal. Then the trivial extensionT (A) of A is a quasi-schurian algebra.

As a consequence we get that the trivial extensions of finite representation ty
quasi-schurian. This follows from the fact, proved by K. Yamagata in [20], that the t
extension of a non triangular algebra is of infinite representation type.

Since we want to describe theΛ-modulesM annihilated by a finite number of arrow
of QΛ, we start by studying whenαM = 0 for a given arrowα.

Lemma 2.1. LetΛ = kQΛ/I be ak-algebra withI an admissible ideal. Letα : i → j be
an arrow inQΛ andM ∈ modΛ.

The following conditions are equivalent:

(a) αM �= 0.
(b) HomΛ(ρα,M) : HomΛ(Pi,M) → HomΛ(Pj ,M) is nonzero, whereρα :Pj → Pi is

the right multiplication byα.

Proof. The proof is straightforward. ✷

Lemma 2.2. LetΛ = kQΛ/I be ak-algebra withI an admissible ideal. Letα : i → j be
an arrow inQΛ andM ∈ modΛ. Then

(a) If αM �= 0 then there are morphismsf :Pi → M, g :M → Ij such thatgf �= 0.
(b) Assume thatHomΛ(ρα, Ij ) : HomΛ(Pi, Ij ) → HomΛ(Pj , Ij ) is a monomorphism

where ρα :Pj → Pi is the right multiplication byα. If there are morphism
f :Pi →M , g :M → Ij with gf �= 0, thenαM �= 0.

Proof. (a) From Lemma 2.1 we know that there is a nonzero morphismf :Pi → M

such thatfρα :Pj → M is nonzero. Then there isg :M → Ij such thatgfρα �= 0, and
consequentlygf �= 0.

(b) Assume that HomΛ(ρα, Ij ) is a monomorphism and letf :Pi →M , g :M → Ij
such thatgf �= 0. Then 0 �= HomΛ(ρα, Ij )(gf ) = (gf )ρα = g(fρα), proving that
fρα �= 0. Thus HomΛ(ρα,M)(f ) �= 0 and by Lemma 2.1 we get thatαM �= 0. ✷

In caseΛ is a quasi-schurian weakly symmetric algebra we obtain the follow
theorem.
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Theorem 2.3. LetΛ = kQΛ/I be a quasi-schurian and weakly-symmetrick-algebra with
I an admissible ideal. Letα : i → j be an arrow inQΛ. Then the following conditions ar
equivalent for an indecomposableΛ-moduleM:

(a) αM �= 0.

(b) There are morphismsPi
f→M, M

g→ Pj with gf �= 0.

Proof. (a) ⇒ (b) SinceΛ is weakly-symmetric thenPj = Ij for any vertexj ∈ QΛ. So
Lemma 2.2(a) proves the result in this case.

(b) ⇒ (a) Assume thati �= j . Using Lemma 2.2(b) we only need to prove that

HomΛ(ρα,Pj ) : HomΛ(Pi,Pj )→ HomΛ(Pj ,Pj )

is nonzero. SinceΛ is quasi-schurian and weakly-symmetric it is not hard to prove
there exists a pathδ starting atj , ending ati and such thatδα is nonzero (see in [14
2.2 and 3]). In particular, from [14, Theorem 3, IV] we obtain thatαδ is nonzero. Thus
HomΛ(ρα,Pj ) is nonzero.

If i = j then α is a loop. Now, the only (up to isomorphisms) indecomposa
quasi-schurian and weakly-symmetrick-algebra with loops isΛ � k[x]/〈x2〉 (see [14,
Lemma 14]). Assume thate(α) = o(α) = 1. Then the projectiveP1 and the simpleS1 are
the unique (up to isomorphism) indecomposableΛ-modules.

Suppose thatM = P1. Then αP1 �= 0 and the morphismsf = ρα and g = 1P1

satisfy (b).
LetM = S1, thenαS1 = 0. On the other hand, since rad2(P1,P1)= 0 we get thatgf = 0

for anyf :P1 → S1 andg :S1 → P1. ✷
Corollary 2.4. Let Λ = kQΛ/I be a quasi-schurian and weakly-symmetrick-algebra
with I an admissible ideal. Letαi :ai → bi be arrows inQΛ for i = 1,2, . . . , t . Then
the following conditions are equivalent for an indecomposableΛ-moduleM.

(a) M is aΛ/〈α1, . . . , αt 〉-module.
(b) If f :Pai → M, g :M → Pbi are morphisms inmodΛ, then their compositiongf is

zero for alli = 1,2, . . . , t .

Proof. Follows easily from the preceding theorem.✷
We are now in a position to characterize the modulesM overΛ which are in modΛ/J

in terms of certain chains of irreducible morphism, in caseΛ is quasi-schurian, weakly
symmetric and of finite representation type, andJ is an ideal ofΛ generated by arrow
of QΛ.

Corollary 2.5. Let Λ = kQΛ/I be a quasi-schurian and weakly-symmetrick-algebra of
finite representation type, withI an admissible ideal. Letαi :ai → bi be arrows inQΛ

for i = 1,2, . . . , t . Then the following conditions are equivalent for an indecompos
Λ-moduleM:
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(a) M is aΛ/〈α1, . . . , αt 〉-module.
(b) Any chain of irreducible maps inindΛ

X0
f1−→X1 → ·· · →Xj =M

fj+1−−−→Xj+1 → ·· · fr−→Xr

with X0 = Pai , Xr = Pbi has zero composition for alli = 1,2, . . . , t .

Proof. Follows from the above corollary using that ifΛ is of finite representation type
then each nonzero morphism between indecomposable modules can be written as a
compositions of irreducible morphisms between indecomposable modules [4].✷

Let Λ be ak-algebra as in the preceding corollary, and letA = Λ/J whereJ is the
ideal ofΛ generated by some arrowsα1, α2, . . . , αt of QΛ. We denote byPα1,α2,...,αt the
subquiver ofΓΛ induced by the nonzero paths ink(ΓΛ) starting at the projectivePo(αi) and
ending at the projectivePe(αi ) for somei = 1,2, . . . , t . Then by Corollary 2.5 we have th
the vertices ofΓA can be identified with the vertices ofΓΛ which are not inPα1,α2,...,αt .
That is,(ΓA)0 = (ΓΛ)0\(Pα1,α2,...,αt )0.

Let A = kQA/I be an iterated tiltedk-algebra of Dynkin type, withI an admissible
ideal and letT (A) be the trivial extension ofA. ThenΛ= T (A) satisfies the hypothesis o
Corollary 2.5. This is the case because the trivial extension of an iterated tilted alge
Dynkin type is of finite representation type (see [3]) and, as we have seen at the beg
of this section,T (A) is quasi-schurian.

Remark 2.6. Let T = kQT /IT be a trivial extension of finite representation type and
A be an iterated tiltedk-algebra of Dynkin type such thatT � T (A). As we observed in
the introduction,A is obtained by deleting exactly one arrow in each nonzero cyc
QT , and considering the induced relations. So we have thatA = T/〈α1, . . . , αt 〉 where
α1, α2, . . . , αt are arrows inQT . Suppose that we know which vertices of the AR-qui
ΓT correspond to the projectiveT -modulesPj associated with each vertexj of QT . As
we observed above, the vertices ofΓA can be identified with the vertices ofΓT which are
not inPα1,α2,...,αt .

Therefore the embeddingΓA ↪→ ΓT is determined by the position inΓT of the vertices
corresponding to the projectiveT -modulesPj for j ∈ (QT )0.

Example. Let A be the iterated tilted algebra of typeD4 with ordinary quiverQA, and
with relation 0= αδ − εη, where

QA

1•
α

2 • • 3.

δ

η

•
ε

4
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By [10] the ordinary quiverQT (A) of the trivial extensionT (A) of A is

QT (A)

1•
α

2 • β • 3.

δ

η

•
ε

4

and the idealI such thatT (A) = kQT (A)/I is generated by the relations:αδ − εη, δβε,
ηβα, βαδβ , αδβα, εηβε. In this case we haveA = T (A)/〈β〉. Hence we have to look fo
the nonzero paths inΓT (A) from Po(β) = P2 to Pe(β) = P3. The shaded region of Fig.
corresponds toPβ .

Then we delete from the quiverΓT (A) the modules which are inPβ . In Fig. 2 we indicate
with � the vertices ofΓT (A) corresponding toA-modules.

Fig. 1.

Fig. 2.
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Fig. 3.

Then the embeddingΓA ↪→ SΓT (A) is described in Fig. 3, where we indicate with� the
vertices ofSΓT (A) corresponding toA-modules.

The other iterated tilted algebrasB such thatT (B)� T (A) are of the formT (A)/〈α, ε〉,
T (A)/〈α, η〉, T (A)/〈δ, ε〉, andT (A)/〈δ, η〉. The embedding ofΓB in SΓT (A) for these
algebrasB is obtained in the same way.

The embeddingΓA ↪→ SΓT (A) is reduced to the embeddingΓA ↪→ ΓT (A), since the
stable partSΓT (A) of ΓT (A) is obtained fromΓT (A) by deleting the vertices ofΓT (A)

associated to projective modules. In general, we have information about the
quiver SΓT (A). Indeed, suppose that the trivial extensionΛ = T (A) of A is of Cartan
class∆, where∆ is a Dynkin diagram. ThenSΓΛ

∼→ Z∆/Π(SΓΛ,x) whereΠ(SΓΛ,x)

is the fundamental group associated to the universal coveringπ :Z∆→ SΓΛ of the stable
translation quiverSΓΛ (see [17]). Moreover, the groupΠ(SΓΛ,x) is generated byτm∆ ,
wherem∆ is the Loewy length of the mesh categoryk(Z∆) [2,6]. We recall that the value
of m∆ are:mAn = n, mDn = 2n− 3,mE6 = 11,mE7 = 17,mE8 = 29.

In this way we have information about the structure of the stable quiverSΓΛ. Our
problem now is to recover the structure ofΓΛ from the knowledge we have aboutSΓΛ.
To do that, we need to know which vertices ofSΓΛ correspond to the radicals of th
projective modulesPi for i ∈ (QΛ)0, since 0→ rPi → Pi � rPi/socPi → Pi/socPi → 0
is an AR-sequence for each vertexi of QΛ. We denote byCΛ the set of vertices o
SΓΛ representing the radicals of the projectiveΛ-modules. It is well known thatCΛ is
a configuration ofSΓΛ, as defined by Chr. Riedtmann in [18]. This is, the elements oCΛ
satisfy the following definition.

Definition 2.7. [18]. Let Γ be a stable translation quiver andk(Γ ) the mesh-categor
associated toΓ . A configurationC of Γ is a set of vertices ofΓ which satisfies the
following conditions:

(a) For any vertexx ∈ Γ0 there exists a vertexy ∈ C such thatk(Γ )(x, y) �= 0,
(b) k(Γ )(x, y)= 0 if x andy are different elements ofC,
(c) k(Γ )(x, x)= k for all x ∈ C.

Let∆ be a Dynkin diagram,Λ a trivial extension of Cartan class∆, andπ :Z∆→ SΓΛ

the universal covering ofSΓΛ. SinceCΛ is a configuration ofSΓΛ, we obtain from [18]
that C̃Λ = π−1(CΛ) is a configuration ofZ∆. We will say thatC̃Λ is the configuration o
Z∆ associated toΛ.
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3. The lifting process

Throughout this section∆ denotes a Dynkin diagram. LetA be an iterated tilted
k-algebra of type∆ and letT (A) be the trivial extension ofA. In the preceding sectio
we described an embedding ofΓA into SΓT (A) which we will lift to an embedding o
ΓA in Z∆= SΓÂ

. Our purpose now is describing directly this embedding in terms

section inZ∆ and some nonzero paths inΓ
Â

between projectiveÂ-modules. A similar
description was done in the preceding section for the embedding ofΓA into ΓT (A). So, we
will define a connected liftingSΓT (A)[0] of SΓT (A) to Z∆ and extend it to a connecte
lifting ΓT (A)[0] of ΓT (A) to Γ

Â
. Afterwards we will study how nonzero paths inΓT (A)

between projective modules lift toΓ
Â

. Since there are infinitely manyΓ
Â

-projectives and
we want to circumscribe to a small part ofZ∆, we need to study how long the nonze
paths between the projective modules inΓ

Â
are. So we start with some preliminaries.

Following [6,12] we denote theNakayama-permutationon Z∆ by ν∆. This is the
bijectionν∆ : (Z∆)0 → (Z∆)0 which satisfies the following condition:for each vertexx of
Z∆ there exists a pathw :x → ν∆(x) whose imagew in the mesh-categoryk(Z∆) is not
zero, andw has longest length among all nonzero paths starting atx. The Loewy length
m∆ of the mesh-categoryk(Z∆) is the smallest integerm such thatv = 0 in k(Z∆) for all
pathsv in Z∆ whose length is greater than or equal tom. Thusm∆ − 1 is the common
length of all nonzero paths fromx to ν∆(x). Moreover, we have thatτ−m∆ = ν2

∆τ
−1.

Let (Γ, τ ) be a connected stable translation quiver. Following P. Gabriel in [12] we
call sliceof Γ to a full connected subquiver whose vertices are determined by choo
unique element in eachτ -orbit ofΓ0. Then for each vertexx ∈ Γ there is a well-determine
slice admittingx as its unique source. We call itslice starting atx and denote it bySx→.
Likewise, theslice ending atx admitsx as its unique sink and is denoted byS→x .

Let f : (Z∆)0 → Z. We recall thatf is additiveif it satisfies the equation

f (x)+ f
(
τ (x)

) =
∑
z∈x−

f (z)

for each vertexx. It is well known that the additive functionfx , which has value 1 onSx→,
determines the support of the functork(Z∆)(x,−). In fact, dimk k(Z∆)(x, y)= fx(y).

Proposition 3.1. Let x be a vertex ofZ∆. Then

(a) Suppk(Z∆)(x,−)= Suppk(Z∆)(−, ν∆(x)),
(b) Suppk(Z∆)(x,−)∩ Suppk(Z∆)(−, ν2

∆(x))= {ν∆(x)}.

Proof. (a) The proof given by Chr. Riedtmann for theDn case in [19, page 312] can b
adapted to the other Dynkin diagrams.

(b) Follows from (a) and the fact thatZ∆ has no oriented cycles.✷
Let x be a vertex ofZ∆. Using (a) of the preceding proposition we obtain that

support of the functork(Z∆)(x,−) is contained in the set of vertices ofZ∆ laying on or
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between the sectionsSx→ andS→ν∆(x). Though this inclusion is not in general an equa
it is so in the case∆= An.

Remark 3.2. Let Λ be a trivial extension of Cartan class∆, and letF : k(Z∆) → indΛ
be a well-behaved functor induced by the universal coveringπ :Z∆→ SΓΛ. SinceF is a
covering functor, then it induces ak-vector space isomorphism

∐
y∈π−1(Y )

k(Z∆)(x, y)
∼→ HomΛ

(
π(x),Y

)
.

Since∆ is of Dynkin type we can say more: if HomΛ(π(x),Y ) �= 0, then the left side
has a unique nonzero summand. Dually, if HomΛ(X,π(y)) �= 0 there exists a uniqu
x ∈ π−1(X) such thatk(Z∆)(x, y) �= 0.

In fact, we assume thatk(Z∆)(x, yi) �= 0 for i = 1,2 andπ(y1) = π(y2). Suppose
thaty1 �= y2. Theny1 = τ jm∆y2 for some integerj , which we may assume positive. L
δ :y1 → y2 andγ :x → y1 be paths inZ∆. Therefore we have a pathδγ :x → y2 with
length"(δγ ) � "(δ) = 2jm∆. Since paths between vertices ofZ∆ have the same length
we obtain that any path starting atx and ending aty2 has length at least 2jm∆. This is a
contradiction because the longest length of a nonzero path ink(Z∆) ism∆−1. This proves
the first statement of the remark. The second statement follows by duality.

As a consequence of the above remark we can see that the information we hav
the support of the functork(Z∆)(x,−) in Z∆ can be carried out through the univer
coveringπ :Z∆→ SΓΛ to determine the support of HomΛ(π(x),−) in SΓΛ.

Proposition 3.3. Let Λ be a trivial extension of Cartan class∆. Then the universa
coveringπ :Z∆→ SΓΛ induces the following bijections:

(i) Suppk(Z∆)(x,−)
∼→ SuppHomΛ(π(x),−).

(ii) Suppk(Z∆)(−, x)
∼→ SuppHomΛ(−,π(x)).

The next result is an interesting application of the preceding corollary.

Corollary 3.4. LetΛ be a trivial extension of Cartan class∆ with ∆ a Dynkin diagram.
Then for allX,Y ∈ indΛ we have

dimk HomΛ(X,Y )�




1 if ∆= An,
2 if ∆= Dn,
3 if ∆= Ep andp = 6,7,
6 if ∆= E8.

Proof. Let π :Z∆→ SΓΛ be the universal covering ofSΓΛ. To describe HomΛ(X,Y )

we consider a fixedx ∈ π−1(X). We know by Remark 3.2 that there exists a uniq
y ∈ π−1(Y ) such that HomΛ(X,Y ) is isomorphic tok(Z∆)(x, y). On the other hand
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dimk k(Z∆)(x, y)= fx(y) wherefx is the additive function starting atx. We use the work
of Gabriel [12, p. 53] where he computes the values of this function for some verticex of
Z∆, to get the bounds for dimk HomΛ(X,Y )= fx(y) above stated. ✷

When A is an iterated tilted algebra of Cartan class∆, there is an embeddin
indA ↪→ indT (A). Thus, the bounds given in the preceding corollary are also bo
for dimk HomA(X,Y ) if X,Y ∈ indA.

For a fixed vertexx of Z∆ we define the partition{Px[j ]: j ∈ Z} of Z∆, where
Px[0] is the full subquiver ofZ∆ with vertices lying on or between the slicesSx→ and
τ−m∆+1Sx→, andPx[j ] = τ−jm∆Px[0] for anyj ∈ Z. Let z be a vertex ofPx [0], for any
integerj we denote byz[j ] the vertexτ−jm∆z of Px[j ].

Let Λ be a trivial extension of Cartan class∆, and letπ :Z∆→ SΓΛ be the universa
covering ofSΓΛ. Let M ∈ indΛ and letM[0] be a fixed element of the fibreπ−1(M).
Thenπ |PM[0] :PM[0] → SΓΛ is a quiver morphism, which is a bijection on the vertic
of PM[0], since the quiverSΓΛ is isomorphic to the cylinderZ∆/〈τm∆〉. The inverse
ϕM : (SΓΛ)0 → (Z∆)0 of this bijection defines an embedding ofSΓΛ into Z∆. Moreover,
the mapπ |PM[0] is injective on the arrows ofPM[0] but not surjective. Indeed, the arrow
X → Y of SΓΛ with X ∈ SτM→ andY ∈ SM→ are not in the image ofπ |PM[0] (see Fig. 4).

Definition 3.5. Let Λ be a trivial extension of Cartan class∆ and letM ∈ indΛ. We say
that the quiverSΓΛ[0] = PM[0] is a lifting of SΓΛ to Z∆ at M. Moreover, if we do not
want to state precisely the lifting vertex we will say thatSΓΛ[0] is a lifting of SΓΛ to Z∆.

For an algebraA such thatΛ � T (A) we denote byΓA[0] the embedding ofΓA in
Z∆ obtained as the composition of the embeddingsΓA ↪→ SΓT (A) (given in the preceding
section) andϕM : SΓΛ ↪→ Z∆.

Fig. 4.
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Remark 3.6. Let SΓΛ[0] be a lifting of SΓΛ to Z∆ atM, and letα :X → Y be an arrow
of SΓΛ. For anyj ∈ Z, there exists a unique arrowαj :X[j ] → Yj in Z∆ such that
π(αj ) = α, whereπ :Z∆→ SΓΛ is the universal covering ofSΓΛ. Moreover, we have
thatYj is either equal toY [j ] or toY [j + 1]. The latter case occurs whenY ∈ SM→.

Let A be an iterated tilted algebra of Cartan class∆, with ∆ a Dynkin diagram.
Let π :Z∆→ SΓT (A) be the universal covering ofSΓT (A), CT (A) = {rPi : i ∈ (QT (A))0}
and let C̃T (A) = π−1(CT (A)) be the configuration ofZ∆ associated toT (A). From this
data Chr. Riedtmann constructed in [18] the universal covering ofΓT (A) by adding to
Z∆ the “projective vertices”, exactly one for each vertex of the configurationC̃T (A),
and appropriate arrows. This can be described as follows. LetSΓT (A)[0] be a lifting of
SΓT (A) to Z∆. Then{rPi[j ]: j ∈ Z} = π−1(rPi) for any vertexi of QT (A). We denote by
Z∆C̃T (A) the translation quiver obtained fromZ∆ by adding a new vertexPi [j ] and arrows

rPi [j ] → Pi[j ], Pi[j ] → τ−1rPi [j ] for eachrPi [j ] ∈ C̃T (A). The translation ofZ∆C̃T (A)
coincides with the translation ofZ∆ on the common vertices and is not defined on
remaining ones.

The action ofΠ(SΓT (A), x) = 〈τm∆〉 on Z∆ can be extended toZ∆C̃T (A) by defining
τm∆(Pi[j ]) = Pi[j − 1]. Moreover, the coveringπ :Z∆→ SΓT (A) admits an extensio
π̃ :Z∆C̃T (A) → ΓT (A) by definingπ̃(Pi[j ])= Pi for anyi andj . It is not difficult to see tha
π̃ :Z∆C̃T (A) → ΓT (A) is the universal covering ofΓT (A) and that it induces an isomorphis

Z∆C̃T (A)/〈τm∆〉 ∼→ ΓT (A).
For anyM ∈ indT (A) the embeddingϕM : SΓT (A) ↪→ Z∆ can be extended to a

embedding̃ϕM :ΓT (A) ↪→ Z∆C̃T (A) by definingϕ̃M(Pj )= Pj [0] for any vertexj of QT (A).
We denote byΓT (A)[0] the full subquiver ofZ∆C̃T (A) with verticesϕ̃M((ΓT (A))0). Then

π̃ |ΓT (A)[0] :ΓT (A)[0] → ΓT (A) is a quiver morphism, which is a bijection with inverseϕ̃M
on the vertices ofΓT (A)[0]. In this way, we have that the liftingSΓT (A)[0] of SΓT (A) to Z∆

extends directly to a liftingΓT (A)[0] of ΓT (A) to Z∆C̃T (A) .

Given a setX of vertices ofΓT (A)[0] we denote byX[j ] the shifted setτ−jm∆X.

Proposition 3.7. With the above notation we have thatΓ
Â

� Z∆C̃T (A) and the protective

vertices Pi[j ] of Z∆C̃T (A) represent the projectiveÂ-modules. Moreover, there is
commutative diagram

SΓÂ
= Z∆

π

Z∆C̃T (A) = Γ
Â

π̃

SΓT (A) ΓT (A).

Proof. LetF : k(Z∆C̃T (A) )→ indT (A) be a well-behaved functor induced by the univer

coveringπ̃ :Z∆C̃T (A) → ΓT (A). Let Ã be the full subcategory ofk(Z∆C̃T (A)) whose objects

are the projective vertices ofZ∆˜ . Then the restriction of the functorF to Ã induces a
CT (A)
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covering functorF ′ : Ã → T (A) (see [11, 2]). This functor is the universal covering sin
T (A) is standard [13, 3]. On the other hand, it is proven in [16] that the Galois cov
Â → T (A) is universal. SoÃ � Â proving the result. ✷
Remark 3.8. For anyM ∈ indT (A) the embeddingsϕM : SΓT (A) ↪→Z∆ andϕ̃M :ΓT (A) ↪→
Z∆C̃T (A) induce embeddings ofΓA in SΓÂ

andΓ
Â

, respectively, making the following d
agram commutative

SΓÂ
= Z∆

π

Z∆C̃T (A) = Γ
Â

π̃ΓA

SΓT (A) ΓT (A).

Moreover, we have thatΓA[j ] ↪→ SΓT (A)[j ] ↪→ ΓT (A)[j ] for anyj ∈ Z.

We know thatA = T (A)/〈α1, . . . , αt 〉, whereα1, α2, . . . , αt are arrows ofQT (A). In
Section 2 we have seen that(ΓA)0 = (ΓT (A))0\(Pα1,α2,...,αt )0, wherePα1,α2,...,αt is the full
subquiver ofΓT (A) induced by the nonzero paths ink(ΓT (A)) starting at the projectiv
Po(αi) and ending at the projectivePe(αi ) for somei = 1,2, . . . , t . Thus, to obtain the
embeddingΓA ↪→ Γ

Â
and then the desired embeddingΓA ↪→ Z∆� SΓÂ

we have to lift
Pα1,α2,...,αt through the universal covering̃π :Z∆C̃T (A) → ΓT (A).

As we recalled at the beginning of this section, the length of any nonzero pa
k(Z∆) is at mostm∆ − 1. Though inZ∆C̃T (A) there are longer paths which are nonzero
k(Z∆C̃T (A)), we have that the length of these paths is bounded by 2m∆, as follows from the
following known result.

Lemma 3.9 [6, 1.2]. Any nonzero pathv :x → y in k(Z∆C̃T (A) ) can be extended to

nonzero pathPi[j ] u→ x
v→ y

w→ Pi[j +1] = τ−m∆Pi[j ] for somei ∈ (QT (A))0 andj ∈ Z.
In particular, the nonzero pathv :x → y has length"(v) � 2m∆.

Remark 3.10. Let Λ be a trivial extension of Cartan class∆, with ∆ a Dynkin diagram.
Let F : k(Z∆C̃Λ) → indΛ be a well-behaved functor induced by the universal cove
π̃ :Z∆C̃Λ → ΓΛ. We consider now the isomorphism

∐
y∈π̃−1(Y )

k
(
Z∆C̃Λ

)
(x, y)

∼→ HomΛ

(
π̃ (x), Y

)
(∗)

induced by the covering functorF : k(Z∆C̃Λ) → indΛ. In analogy with the result state
in Remark 3.2 for the stable case, we obtain that if HomΛ(π̃(x),Y ) �= 0 then the left side
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of (∗) has a unique nonzero summand, unlessπ̃(x) � Y . Though this is not true whe
π̃(x)� Y ; in this case the left side of(∗) has at most two nonzero summands.

In fact, the last claim follows directly from Lemma 3.9. To prove the first, lety ∈
π̃−1(Y ) be such thatk(Z∆C̃Λ)(x, y) �= 0. Using Lemma 3.9 we only need to prove th

k(Z∆C̃Λ)(x, τ
jm∆y)= 0 for j = ±1. Since any pathw :y → τ−m∆y has length 2m∆ and

we have a pathv :x → y with x �= y, we conclude that any pathu :x → τ−m∆y has length
"(u) � 2m∆ + 1. Thus by Lemma 3.9 we obtain thatk(Z∆C̃Λ)(x, τ

−m∆y)= 0. Likewise,
we get that alsok(Z∆C̃Λ)(x, τ

m∆y)= 0, proving the result.
We are now in a position to prove the main result of this section.

Theorem 3.11. Let A be an iterated tilted algebra of Dynkin type∆, and let A =
T (A)/〈α1, α2, . . . , αn〉, whereα1, α2, . . . , αt are arrows ofQT (A). Let SΓT (A)[0] be a
lifting of SΓT (A) to Z∆. For any integerj we denote byPα1,α2,...,αt [j ] the full subquiver
of Z∆C̃T (A) induced by the nonzero paths ink(Z∆C̃T (A)) starting atPo(αi)[j ] and ending
either atPe(αi)[j ] or at Pe(αi)[j + 1] for somei = 1,2, . . . , t . Then the vertices ofΓA[0]
are the vertices ofSΓT (A)[0] which are not inPα1,α2,...,αn[−1] ∪Pα1,α2,...,αn[0].

Proof. Let π̃ :Z∆C̃T (A) → ΓT (A) be the universal covering ofΓT (A). By Remarks 2.6 and

3.8 we know thatΓA[0]= SΓT (A)[0]\π̃−1(Pα1,α2,...,αt ). On the other hand,Pα1,α2,...,αt [j ]∩
SΓT (A)[0] = ∅ for j � 1 andj � −2. Then the desired result follows from the equality

π̃−1(Pα1,α2,...,αt )=
⋃
j∈Z

Pα1,α2,...,αt [j ],

which is a consequence of Lemma 3.9 and Remark 3.10.✷
Example. Let T be the trivial extension of Cartan classA5 with ordinary quiverQT

and with the relationsα4α3 = 0, α1α6 = 0, α3α2α1 − α6α5α4 = 0, α2α1α3α2 = 0,
α5α4α6α5 = 0.

1
QT

5 3•

α2

•
α6

•

α1

α4

•
α3

•

α5

4 2

Let A = T/〈α2, α5〉 andB = T/〈α3, α4〉. HenceT (A) = T = T (B) and the embedding
ΓA[j ] ↪→ Γ

Â
, ΓB [j ] ↪→ Γ

B̂
for each integerj are as follows:

(1) The shaded regions in Fig. 5 correspond toPα2,α5[j ] for j ∈ Z. Hence, the vertice
of Γ

Â
which are not in these shaded regions correspond toA-modules.

(2) The shaded regions in Fig. 6 correspond toPα3,α4[j ] for j ∈ Z. Consequently, the
vertices ofΓ ˆ which are not in these regions correspond toB-modules.
B
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Fig. 5.

Fig. 6.

Finally, we can describeΓA andΓB from this information. Indeed, the vertices ofΓA

can be represented by the vertices ofSΓT (A)[0], which are not in the shaded regions. T
arrows ofΓA are obtained by studying the paths inSΓT (A)[−1]∪ SΓT (A)[0]∪ SΓT (A)[1],
as follows from Remarks 3.2 and 3.6. Then we get the AR-quiversΓA andΓB

ΓA P4 = I5

P2 I3

•

• • • •

• • •

• • • •

•

P1 I1

P5 I4

P = I
3 2
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ΓB P1 = I4

P5 I5

P4 I2
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