metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis[μ -2-(3-phenoxyphenyl)propionato- $\kappa^2 O:O'$]bis[(dimethylformamide- κO)copper(II)]

Mariela A. Agotegaray,^a Oscar V. Quinzani,^a Ricardo Faccio,^{b,c}* Cecilia Goyenola^{b,c} and Álvaro W. Mombrú^{b,c}

^aDepartamentode Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina, ^bCrystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Química, Universidad de la República, CC 1157, 11800 Montevideo, Uruguay, and ^cCentro NanoMat, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, 91000, Canelones, Uruguay

Correspondence e-mail: rfaccio@fq.edu.uy

Received 14 October 2008; accepted 19 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.011 Å; R factor = 0.064; wR factor = 0.200; data-to-parameter ratio = 18.3.

The title compound, $[Cu_2(C_{15}H_{13}O_3)_4(C_3H_7NO)_2]$, is formed by the chelate coordination of four racemic fenoprofenate (fenoprofenate is 2,3-phenoxyphenyl propionate) anions and two dimethylformamide molecules to two copper(II) ions, building a paddle-wheel dinuclear molecule. The distorted square-pyramidal coordination of each Cu^{II} atom is made up of four O atoms of the four fenoprofenate units and another O atom from a dimethylformamide molecule. The two enantiomeric forms of the fenoprofenate anions are present in the complex, in an optically inactive centrosymmetric arrangement.

Related literature

For the properties of fenoprofen, see: Brogden *et al.* (1977); Nickander *et al.* (1977); Weder *et al.* (2002). For fenoprofen structures, see: Hamilton & Chen (1988*a*,*b*); Stephenson & Diseroad (2000); Weder *et al.* (2002); Zhu *et al.* (2001).

Experimental

Crystal data	
$[Cu_2(C_{15}H_{13}O_3)_4(C_3H_7NO)_2]$	V = 3037 (3) Å ³
$M_r = 1238.29$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 11.142 (8) Å	$\mu = 0.77 \text{ mm}^{-1}$
b = 11.580 (8) Å	T = 293 (2) K
c = 23.891 (6) Å	$0.20 \times 0.20 \times 0.10 \text{ mm}$
$\beta = 99.85 \ (6)^{\circ}$	

Data collection

Rigaku AFC-7S diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.862, T_{max} = 0.927$ 8818 measured reflections

8818 measured reflections 6969 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	381 parameters
$wR(F^2) = 0.200$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
6969 reflections	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1993); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *MSC/AFC Diffractometer Control Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *PLATON* (Spek, 2003).

The authors thank PEDECIBA-Quimica Uruguay for financial support.

4101 reflections with $I > 2\sigma(I)$

3 standard reflections

every 150 reflections

intensity decay: none

 $R_{\rm int} = 0.091$

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2218).

References

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brogden, R. N., Pinder, R. M., Speight, T. M. & Avery, G. S. (1977). *Drugs*, **13**, 241–265.
- Hamilton, J. A. & Chen, L. (1988a). J. Am. Chem. Soc. 110, 4379-4391.
- Hamilton, J. A. & Chen, L. (1988b). J. Am. Chem. Soc. 110, 5833-5841.
- Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.
- Nickander, R., Marshall, W., Emmerson, J. L., Todd, G. C., McMahon, R. & Culp, H. W. (1977). *Pharmacol. Biochem. Prop. Drug. Subst.* 1, 183–213.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stephenson, G. A. & Diseroad, B. A. (2000). *Int. J. Pharm.* **198**, 167–177. Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J.
- R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95–126.
- Zhu, H., Xu, J., Varlashkin, P., Long, S. & Kidd, C. (2001). J. Pharm. Sci. 90, 845–859.

supplementary materials

Acta Cryst. (2008). E64, m1612-m1613 [doi:10.1107/S1600536808038786]

Tetrakis [μ -2-(3-phenoxyphenyl) propionato- $\kappa^2 O: O'$] bis [(dimethyl formamide- κO) copper(II)]

M. A. Agotegaray, O. V. Quinzani, R. Faccio, C. Goyenola and Á.W. Mombrú

Comment

Fenoprofen[2-(3-phenoxyphenyl)propionic acid] is a non steroidal anti-inflammatory, antipyretic and analgesic drug (Nickander *et al.*, 1977; Brogden *et al.*, 1977). Its crystalline structure as a pure compound is not known. The crystal structures of the inclusion complexes of β -cyclodextrin with racemic fenoprofen and its enantiomerically pure forms have been reported: β -cyclodextrin(*RS*)-fenoprofen clathrate hydrate, β -cyclodextrin (*R*)-(-)-fenoprofen clathrate hydrate, and β -cyclodextrin (S)-(+)-fenoprofen clathrate hydrate (Hamilton & Chen, 1988a,1988b).

Little is known about chemical structures of fenoprofen salts and complexes. Only the crystal structures of sodium fenoprofenate dihydrate (Stephenson & Diseroad, 2000) and calcium fenoprofenate monohydrate (Zhu *et al.*, 2001) have been reported. On the other hand, the complexes of copper(II) with other nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely studied because they have enhanced anti-inflammatory activity and reduced gastrointestinal toxicity compared with their uncomplexed parent drugs (Weder *et al.*, 2002).

Aiming to contribute to the knowledge of new fenoprofen coordination compounds of biological interest, we report in this paper the crystal structure of the complex $Cu_2(Fen)_4(DMF)_2(Fen: fenoprofenate anion, C_{15}H_{13}O_3^-; DMF: dimethyl-formamide).$

Each Cu(II) ion in the dinuclear complex (Fig. 1)has four oxygen atoms from different carboxylate groups in equatorial positions, with a Cu—O range of 1.95–1.96 Å. The square pyramidal geometry is completed with an oxygen atom from the DMF molecule with a Cu—O distance of 2.1634 (39) Å. The four carboxylate bridges linking copper ions form the classical *paddle-wheel* type cage with a Cu—Cu distance of 2.6309 (20) Å. The intermetallic separation is in the range of reported distances for other dicopper(II) tetracarboxilates (Weder *et al.*, 2002). The two enantiomeric forms of the fenoprofenate anion are present in the complex, in an optically inactive centrosymmetric arrangement, where atoms C12 and C32 (shown in Fig. 1) correspond to the *R*-enantiomer.

There are no conventional hydrogen bonds in the structure; while weak $\pi \cdots \pi$ and C—H $\cdots \pi$ i interactions were identified. In the case of the $\pi \cdots \pi$ interactions, one of them corresponds to symmetry related phenyl rings (C14—C19, centroid *Cg*1) with a *Cg*1-*Cg*1ⁱ distance of 3.620 (4) Å [symmetry code (i) = 1 - *x*, 3 - *y*, -*z*], a dihedral angle α =0°, an a slippage angle β = 18.22°.

The other intermolecular phenyl interaction corresponds to C20—C25 (centroid Cg2) and C40—C45 (centroid Cg3)rings, the Cg2-Cg3ⁱⁱ distance being 4.132 (6) Å [symmetry code (ii) = 1 - x, 1/2 + y, 1/2 - z], with a dihedral angle $\alpha = 22.1$ (4)°, and $\beta = 23.63^{\circ}$.

Additionally C14—C19 and C40—C45 rings are involved in intermolecular C—H··· π i interactions. The C22—H22···*Cg*1ⁱⁱⁱ angle is 160° [symmetry code (iii) = 2 - x, 3 - y, -z] and the H22···*Cg*1ⁱⁱⁱ distance is 2.78 Å. The C24—H24···*Cg*3^{iv} angle is 147° [symmetry code (iv) = 1 + x,y, z] and the H24···*Cg*3^{iv} distance is 2.73 Å.

Although the steric demand from the benzyl groups avoids significant contact between neighbour binuclear units, the intermolecular interactions form a weak two-dimensional network parallel to the (100) plane (Fig. 2).

Experimental

A 2.0 mLDMF solution containing 0.0810 g (0.150 mmol) of racemic fenoprofen calcium salthydrate (Ca(Fen)₂.H₂O) was added to a 3.0 ml e thanolicsolution of 0.0170 g (0.100 mmol) CuCl₂.2H₂O. The resulting green solution was stirred at room temperature for about one hourand reposed all over the night. Then an excess of water was added leading tothe immediate precipitation of the complex, which gradually recrystallized atroom temperature after three weeks. The bright green crystals obtained werefiltered, washed with water and air dried (Yield: 43%). Analysis calculated for $C_{66}H_{66}Cu_2N_2O_{14}$: C 64.02, H 5.37, N 2.26%. Found: C 63.5, H 4.9, N, 1.7%. FTIR(cm⁻¹): 1668 (DMF), 1614 (*asym.* stretch.COO), 1484 (*sym.* stretch. COO). UV-visible (DMF, λ max/nm): 705.

Refinement

The H atoms were positionedgeometrically and treated as riding with C—H = 0.93–0.98 Å. H atoms bonded totertiary C atoms were refined with $U_{iso}(H)=1.2U_{eq}(C)$, while for the rest $U_{iso}(H)=1.5U_{eq}(C)$. Additionally, the idealized H atoms from the DMF's methyl groups were allowed to ride on the immediate Catoms. The anisotropic displacements ellipsoids of atoms O13 and O33 displayeda marked elongation in the normal direction to both O—C bond directions, indicating a possible conformation disorder. It can be related with thetendency of higher values of U_{eq} for the outermost phenyl carbonatoms.

The position of the highest residual electron-density peak is located at 1.67 Åfrom N52.

Figures

Tetrakis[μ -2-(3-phenoxyphenyl)propionato- $\kappa^2 O:O'$]bis[(dimethylformamide- κO)copper(II)]

Crystal data [Cu₂(C₁₅H₁₃O₃)₄(C₃H₇NO)₂]

 $F_{000} = 1292$

$M_r = 1238.29$	$D_{\rm x} = 1.354 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 50 reflections
a = 11.142 (8) Å	$\theta = 5.1 - 13.6^{\circ}$
<i>b</i> = 11.580 (8) Å	$\mu = 0.77 \text{ mm}^{-1}$
c = 23.891 (6) Å	T = 293 (2) K
$\beta = 99.85 \ (6)^{\circ}$	Plate, green
$V = 3037 (3) \text{ Å}^3$	$0.20\times0.20\times0.10~mm$
Z = 2	

Data collection

Rigaku AFC-7S diffractometer	$R_{\rm int} = 0.091$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.3^{\circ}$
T = 293(2) K	$h = -1 \rightarrow 14$
$\theta/2\theta$ scans	$k = -1 \rightarrow 15$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -31 \rightarrow 30$
$T_{\min} = 0.862, \ T_{\max} = 0.927$	3 standard reflections
8818 measured reflections	every 150 reflections
6969 independent reflections	intensity decay: none
4101 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H-atom parameters constrained
$wR(F^2) = 0.200$	$w = 1/[\sigma^2(F_o^2) + (0.0755P)^2 + 0.3252P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
6969 reflections	$\Delta \rho_{max} = 0.51 \text{ e } \text{\AA}^{-3}$
381 parameters	$\Delta \rho_{\rm min} = -0.54 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.5569 (6)	1.1752 (5)	-0.0520 (2)	0.0417 (15)
C12	0.5867 (6)	1.2834 (6)	-0.0844 (3)	0.0546 (17)
H12	0.5103	1.3066	-0.1084	0.066*
C13	0.6736 (8)	1.2579 (7)	-0.1238 (3)	0.093 (3)
H13A	0.6440	1.1936	-0.1476	0.139*
H13B	0.7520	1.2393	-0.1022	0.139*
H13C	0.6808	1.3244	-0.1470	0.139*
C14	0.6237 (5)	1.3829 (5)	-0.0446 (2)	0.0391 (13)
C15	0.5925 (5)	1.4966 (5)	-0.0623 (3)	0.0511 (17)
H15	0.5477	1.5090	-0.0983	0.061*
C16	0.6263 (6)	1.5889 (6)	-0.0277 (3)	0.0599 (19)
H16	0.6059	1.6631	-0.0409	0.072*
C17	0.6902 (6)	1.5738 (6)	0.0264 (4)	0.061 (2)
H17	0.7133	1.6368	0.0499	0.073*
C18	0.7191 (5)	1.4632 (6)	0.0449 (3)	0.0501 (15)
C19	0.6876 (5)	1.3686 (5)	0.0097 (3)	0.0413 (14)
H19	0.7098	1.2948	0.0230	0.050*
C20	0.9021 (5)	1.4495 (5)	0.1130 (3)	0.0461 (15)
C21	0.9731 (6)	1.4870 (7)	0.0754 (3)	0.066 (2)
H21	0.9375	1.5124	0.0395	0.079*
C22	1.0966 (6)	1.4868 (9)	0.0911 (3)	0.095 (3)
H22	1.1453	1.5098	0.0652	0.114*
C23	1.1509 (7)	1.4529 (8)	0.1453 (4)	0.088 (3)
H23	1.2353	1.4540	0.1557	0.106*
C24	1.0802 (7)	1.4184 (7)	0.1828 (3)	0.071 (2)
H24	1.1159	1.3953	0.2191	0.085*
C25	0.9548 (6)	1.4174 (6)	0.1672 (3)	0.0572 (17)
H25	0.9061	1.3951	0.1933	0.069*
C31	0.5588 (6)	1.0976 (6)	0.0955 (2)	0.0477 (15)
C32	0.5866 (6)	1 1560 (7)	0.1538 (3)	0.062(2)
H32	0.5509	1 2335	0.1490	0.075*
C33	0.7150 (8)	1 1719 (9)	0.1752 (3)	0 109 (4)
H33A	0.7515	1 2141	0.1479	0.163*
H33B	0.7537	1 0979	0.1817	0.163*
H33C	0.7250	1 2142	0.2102	0.163*
C34	0.5154 (6)	1.0908 (7)	0.1932 (3)	0.0566 (17)
C35	0.3948 (6)	1.0900(7)	0.1932(3)	0.0602(19)
H35	0.3581	1 1753	0.1679	0.072*
C36	0.3279 (6)	1.0659 (8)	0.2289 (3)	0.072
C37	0.3279(0)	0.9814 (9)	0.2209(3)	0.071(2)
H37	0 3338	0.9470	0.2005 (0)	0.072 (3)
C38	0.3350	0.9486 (9)	0.2500	0.111 0.097(3)
H38	0.5312	0.8889	0.2073 (7)	0.097 (3)
C20	0.5512	1 0035 (7)	0.2010	0.110°
U37	0.5050 (7)	1.0055 (7)	0.2291 (3)	0.074 (2)
П 3 У	0.0439	0.2002	0.2293	0.000 "

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C40	0.1689 (6)	1.1642 (7)	0.2655 (3)	0.0594 (18)
C41	0.2497 (7)	1.2272 (7)	0.3036 (3)	0.074 (2)
H41	0.3331	1.2224	0.3037	0.089*
C42	0.2046 (10)	1.2973 (8)	0.3415 (3)	0.095 (3)
H42	0.2578	1.3406	0.3676	0.114*
C43	0.0822 (11)	1.3038 (10)	0.3410 (4)	0.108 (4)
H43	0.0522	1.3519	0.3665	0.129*
C44	0.0026 (8)	1.2392 (9)	0.3027 (4)	0.088 (3)
H44	-0.0806	1.2425	0.3031	0.106*
C45	0.0460 (7)	1.1709 (7)	0.2645 (3)	0.068 (2)
H45	-0.0074	1.1290	0.2379	0.082*
C51	0.8413 (6)	0.9038 (6)	-0.0378 (3)	0.0563 (17)
H51	0.7959	0.9392	-0.0694	0.068*
C53	1.0207 (7)	0.8041 (8)	0.0057 (3)	0.094 (3)
H53A	1.0998	0.8390	0.0148	0.141*
H53B	1.0293	0.7246	-0.0044	0.141*
H53C	0.9804	0.8086	0.0380	0.141*
C54	1.0004 (8)	0.8783 (9)	-0.0945 (3)	0.098 (3)
H54A	0.9425	0.9156	-0.1231	0.147*
H54B	1.0199	0.8034	-0.1077	0.147*
H54C	1.0732	0.9241	-0.0866	0.147*
Cu1	0.61251 (6)	0.96206 (6)	0.00433 (3)	0.0391 (2)
011	0.6419 (4)	1.1044 (4)	-0.03595 (19)	0.0546 (12)
012	0.4481 (4)	1.1667 (3)	-0.04371 (17)	0.0468 (10)
O13	0.7767 (4)	1.4439 (4)	0.10133 (18)	0.0607 (13)
O31	0.6426 (4)	1.0452 (4)	0.07660 (17)	0.0529 (10)
O32	0.4517 (4)	1.1100 (4)	0.06887 (18)	0.0536 (11)
O33	0.2043 (4)	1.0911 (6)	0.2244 (2)	0.095 (2)
O51	0.7945 (4)	0.8967 (4)	0.00567 (19)	0.0579 (12)
N52	0.9482 (5)	0.8656 (5)	-0.0425 (3)	0.0612 (16)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.064 (4)	0.032 (3)	0.029 (3)	-0.018 (3)	0.009 (3)	-0.001 (2)
C12	0.063 (4)	0.052 (4)	0.049 (4)	-0.013 (3)	0.011 (3)	0.008 (3)
C13	0.138 (8)	0.065 (5)	0.084 (6)	-0.028 (6)	0.046 (6)	0.014 (5)
C14	0.027 (3)	0.038 (3)	0.053 (4)	-0.001 (3)	0.009 (3)	0.007 (3)
C15	0.026 (3)	0.048 (4)	0.079 (5)	0.000 (3)	0.008 (3)	0.017 (3)
C16	0.050 (4)	0.038 (4)	0.092 (6)	0.001 (3)	0.013 (4)	0.009 (4)
C17	0.055 (4)	0.040 (4)	0.092 (6)	0.001 (3)	0.025 (4)	-0.009 (4)
C18	0.029 (3)	0.057 (4)	0.068 (4)	-0.007 (4)	0.019 (3)	-0.004 (4)
C19	0.025 (3)	0.038 (3)	0.062 (4)	0.003 (3)	0.011 (3)	0.009 (3)
C20	0.031 (3)	0.046 (4)	0.061 (4)	-0.009 (3)	0.007 (3)	-0.004 (3)
C21	0.041 (3)	0.092 (6)	0.061 (4)	-0.011 (4)	0.001 (3)	0.014 (4)
C22	0.043 (4)	0.170 (10)	0.074 (5)	-0.021 (5)	0.018 (4)	0.034 (6)
C23	0.045 (4)	0.123 (8)	0.088 (6)	-0.001 (5)	-0.010 (4)	0.024 (6)
C24	0.066 (5)	0.070 (5)	0.070 (5)	-0.002 (4)	-0.005 (4)	0.022 (4)

supplementary materials

C25	0.059 (4)	0.057 (4)	0.057 (4)	-0.011 (3)	0.011 (3)	0.001 (3)
C31	0.058 (4)	0.053 (4)	0.033 (3)	-0.020 (4)	0.012 (3)	-0.005 (3)
C32	0.058 (4)	0.084 (5)	0.048 (4)	-0.020 (4)	0.017 (3)	-0.020 (4)
C33	0.113 (8)	0.145 (9)	0.067 (6)	-0.066 (7)	0.013 (5)	-0.019 (6)
C34	0.061 (4)	0.069 (4)	0.039 (4)	-0.009 (4)	0.005 (3)	-0.013 (3)
C35	0.065 (4)	0.078 (5)	0.036 (4)	0.000 (4)	0.002 (3)	-0.008 (3)
C36	0.052 (4)	0.111 (7)	0.050 (4)	0.011 (4)	0.009 (4)	-0.013 (4)
C37	0.074 (5)	0.141 (9)	0.065 (5)	0.002 (6)	0.023 (4)	0.036 (6)
C38	0.076 (6)	0.124 (9)	0.090 (6)	0.014 (6)	0.016 (5)	0.032 (6)
C39	0.054 (4)	0.095 (6)	0.076 (5)	0.007 (4)	0.021 (4)	0.002 (5)
C40	0.050 (4)	0.074 (5)	0.054 (4)	-0.002 (4)	0.006 (3)	0.009 (4)
C41	0.064 (5)	0.091 (6)	0.062 (5)	0.000 (5)	-0.004 (4)	0.007 (5)
C42	0.117 (8)	0.097 (7)	0.063 (6)	0.011 (6)	-0.007 (5)	-0.003 (5)
C43	0.136 (9)	0.123 (9)	0.072 (6)	0.044 (8)	0.040 (7)	-0.008 (6)
C44	0.082 (6)	0.112 (8)	0.075 (6)	0.019 (6)	0.023 (5)	0.012 (6)
C45	0.059 (4)	0.081 (5)	0.067 (5)	0.000 (4)	0.015 (4)	0.005 (4)
C51	0.043 (4)	0.063 (4)	0.060 (4)	0.002 (4)	0.002 (3)	-0.002 (4)
C53	0.063 (5)	0.108 (7)	0.111 (7)	0.041 (5)	0.015 (5)	0.015 (6)
C54	0.091 (6)	0.122 (8)	0.092 (6)	0.009 (6)	0.047 (5)	-0.012 (6)
Cu1	0.0343 (3)	0.0397 (4)	0.0429 (4)	0.0012 (4)	0.0060 (3)	-0.0011 (4)
011	0.037 (2)	0.047 (3)	0.081 (3)	0.001 (2)	0.013 (2)	0.012 (2)
012	0.043 (2)	0.037 (2)	0.061 (3)	-0.0041 (19)	0.010 (2)	0.013 (2)
013	0.039 (2)	0.085 (4)	0.058 (3)	-0.014 (2)	0.010 (2)	-0.009 (3)
031	0.049 (2)	0.058 (3)	0.051 (2)	-0.008 (2)	0.004 (2)	-0.013 (2)
O32	0.046 (2)	0.062 (3)	0.052 (3)	-0.004 (2)	0.003 (2)	-0.011 (2)
O33	0.056 (3)	0.147 (6)	0.082 (4)	0.005 (3)	0.009 (3)	-0.042 (4)
051	0.042 (2)	0.071 (3)	0.062 (3)	0.018 (2)	0.014 (2)	0.004 (3)
N52	0.038 (3)	0.069 (4)	0.080 (4)	0.008 (3)	0.022 (3)	-0.017 (3)

Geometric parameters (Å, °)

1.261 (7)	C34—C35	1.382 (9)
1.265 (7)	C35—C36	1.375 (9)
1.538 (8)	С35—Н35	0.9300
1.491 (9)	C36—C37	1.368 (11)
1.505 (8)	C36—O33	1.393 (8)
0.9800	C37—C38	1.374 (11)
0.9600	С37—Н37	0.9300
0.9600	C38—C39	1.378 (10)
0.9600	С38—Н38	0.9300
1.381 (8)	С39—Н39	0.9300
1.407 (8)	C40—C45	1.368 (9)
1.364 (9)	C40—C41	1.375 (10)
0.9300	C40—O33	1.403 (8)
1.377 (10)	C41—C42	1.374 (11)
0.9300	C41—H41	0.9300
1.375 (9)	C42—C43	1.364 (12)
0.9300	C42—H42	0.9300
1.388 (8)	C43—C44	1.379 (12)
	1.261 (7) 1.265 (7) 1.538 (8) 1.491 (9) 1.505 (8) 0.9800 0.9600 0.9600 1.381 (8) 1.407 (8) 1.364 (9) 0.9300 1.377 (10) 0.9300 1.375 (9) 0.9300 1.388 (8)	1.261(7) $C34-C35$ $1.265(7)$ $C35-C36$ $1.538(8)$ $C35-H35$ $1.491(9)$ $C36-C37$ $1.505(8)$ $C36-O33$ 0.9800 $C37-C38$ 0.9600 $C37-H37$ 0.9600 $C38-C39$ 0.9600 $C38-H38$ $1.381(8)$ $C39-H39$ $1.407(8)$ $C40-C45$ $1.364(9)$ $C40-C41$ 0.9300 $C41-C42$ 0.9300 $C41-C42$ 0.9300 $C42-C43$

C18—O13	1.408 (7)	C43—H43	0.9300
C19—H19	0.9300	C44—C45	1.357 (10)
C20—C21	1.364 (9)	C44—H44	0.9300
C20—O13	1.379 (7)	C45—H45	0.9300
C20—C25	1.379 (8)	C51—O51	1.241 (7)
C21—C22	1.364 (9)	C51—N52	1.293 (8)
C21—H21	0.9300	C51—H51	0.9300
C22—C23	1.388 (10)	C53—N52	1.472 (9)
C22—H22	0.9300	С53—Н53А	0.9600
C23—C24	1.351 (10)	С53—Н53В	0.9600
С23—Н23	0.9300	С53—Н53С	0.9600
C24—C25	1.383 (10)	C54—N52	1.465 (8)
C24—H24	0.9300	C54—H54A	0.9600
С25—Н25	0.9300	С54—Н54В	0.9600
C31—O31	1.260 (7)	C54—H54C	0.9600
C31—O32	1.260 (7)	Cu1—O12 ⁱ	1.945 (4)
C31—C32	1.533 (8)	Cu1—O31	1.955 (4)
C32—C33	1.446 (10)	$Cu1-O32^{i}$	1.959 (4)
C32—C34	1.530 (9)	Cu1—O11	1.964 (4)
C32—H32	0.9800	Cu1—O51	2.160 (4)
С33—Н33А	0.9600	Cu1—Cu1 ⁱ	2.631 (2)
С33—Н33В	0.9600	O12—Cu1 ⁱ	1.945 (4)
С33—Н33С	0.9600	O32—Cu1 ⁱ	1.959 (4)
C34—C39	1.373 (10)		
011—C11—O12	126.3 (5)	С34—С35—Н35	119.3
O11—C11—C12	117.8 (5)	C37—C36—C35	120.8 (7)
O12-C11-C12	115.9 (6)	C37—C36—O33	119.5 (7)
C13—C12—C14	114.4 (6)	C35—C36—O33	119.5 (7)
C13—C12—C11	112.1 (6)	C36—C37—C38	118.5 (8)
C14—C12—C11	111.4 (5)	С36—С37—Н37	120.8
С13—С12—Н12	106.1	С38—С37—Н37	120.8
C14—C12—H12	106.1	C37—C38—C39	120.4 (8)
C11—C12—H12	106.1	С37—С38—Н38	119.8
C12—C13—H13A	109.5	С39—С38—Н38	119.8
С12—С13—Н13В	109.5	C34—C39—C38	121.8 (7)
H13A—C13—H13B	109.5	С34—С39—Н39	119.1
C12—C13—H13C	109.5	С38—С39—Н39	119.1
H13A—C13—H13C	109.5	C45—C40—C41	121.4 (8)
H13B—C13—H13C	109.5	C45—C40—O33	115.0 (7)
C19—C14—C15	117.0 (6)	C41—C40—O33	123.6 (7)
C19—C14—C12	122.9 (5)	C40—C41—C42	118.6 (8)
C15—C14—C12	120.0 (5)	C40—C41—H41	120.7
C16—C15—C14	121.6 (6)	C42—C41—H41	120.7
C16—C15—H15	119.2	C43—C42—C41	120.2 (9)
C14—C15—H15	119.2	C43—C42—H42	119.9
C15—C16—C17	120.9 (7)	C41—C42—H42	119.9
C15—C16—H16	119.5	C42—C43—C44	120.3 (9)
С17—С16—Н16	119.5	C42—C43—H43	119.8

supplementary materials

C18—C17—C16	118.4 (7)	C44—C43—H43	119.8
C18—C17—H17	120.8	C45—C44—C43	119.9 (9)
C16—C17—H17	120.8	C45—C44—H44	120.0
C17—C18—C19	121.3 (6)	C43—C44—H44	120.0
C17—C18—O13	119.9 (7)	C44—C45—C40	119.5 (8)
C19—C18—O13	118.7 (6)	C44—C45—H45	120.2
C14—C19—C18	120.7 (6)	C40—C45—H45	120.2
C14—C19—H19	119.6	O51—C51—N52	125.2 (7)
С18—С19—Н19	119.6	O51—C51—H51	117.4
C21—C20—O13	124.3 (6)	N52—C51—H51	117.4
C21—C20—C25	120.1 (6)	N52—C53—H53A	109.5
O13—C20—C25	115.5 (5)	N52—C53—H53B	109.5
C22—C21—C20	119.3 (7)	H53A—C53—H53B	109.5
C22—C21—H21	120.3	N52—C53—H53C	109.5
C20—C21—H21	120.3	Н53А—С53—Н53С	109.5
C21—C22—C23	121.1 (7)	H53B—C53—H53C	109.5
C21—C22—H22	119.5	N52—C54—H54A	109.5
С23—С22—Н22	119.5	N52—C54—H54B	109.5
C24—C23—C22	119.4 (7)	H54A—C54—H54B	109.5
C24—C23—H23	120.3	N52—C54—H54C	109.5
C22—C23—H23	120.3	H54A—C54—H54C	109.5
C23—C24—C25	120.0 (7)	H54B—C54—H54C	109.5
C23—C24—H24	120.0	O12 ¹ —Cu1—O31	88.38 (18)
C25—C24—H24	120.0	$O12^{i}$ —Cu1—O32 ⁱ	90.05 (18)
C20—C25—C24	119.9 (6)	O31—Cu1—O32 ⁱ	168.30 (17)
С20—С25—Н25	120.0	O12 ⁱ —Cu1—O11	168.87 (17)
С24—С25—Н25	120.0	O31—Cu1—O11	90.08 (19)
O31—C31—O32	124.7 (5)	O32 ⁱ —Cu1—O11	89.23 (19)
O31—C31—C32	119.4 (6)	O12 ⁱ —Cu1—O51	97.32 (18)
O32—C31—C32	115.8 (6)	O31—Cu1—O51	98.09 (18)
C33—C32—C34	115.6 (6)	O32 ⁱ —Cu1—O51	93.61 (18)
C33—C32—C31	114.3 (6)	O11—Cu1—O51	93.81 (17)
C34—C32—C31	107.2 (5)	O12 ⁱ —Cu1—Cu1 ⁱ	83.62 (13)
С33—С32—Н32	106.4	O31—Cu1—Cu1 ⁱ	85.52 (14)
C34—C32—H32	106.4	O32 ⁱ —Cu1—Cu1 ⁱ	82.78 (14)
C31—C32—H32	106.4	O11—Cu1—Cu1 ⁱ	85.28 (13)
С32—С33—Н33А	109.5	O51—Cu1—Cu1 ⁱ	176.28 (13)
С32—С33—Н33В	109.5	C11—O11—Cu1	121.0 (4)
H33A—C33—H33B	109.5	C11—O12—Cu1 ⁱ	123.8 (4)
С32—С33—Н33С	109.5	C20—O13—C18	117.8 (5)
H33A—C33—H33C	109.5	C31—O31—Cu1	121.9 (4)
H33B—C33—H33C	109.5	C31—O32—Cu1 ⁱ	124.8 (4)
C39—C34—C35	116.9 (7)	C36—O33—C40	117.7 (6)
C39—C34—C32	124.0 (7)	C51—O51—Cu1	119.5 (4)
C35—C34—C32	119.1 (7)	C51—N52—C54	123.0 (7)
C36—C35—C34	121.5 (7)	C51—N52—C53	119.1 (6)

С36—С35—Н35	119.3	C54—N52—C53	117.8 (6)
O11—C11—C12—C13	37.9 (8)	C32—C34—C39—C38	178.9 (7)
O12—C11—C12—C13	-142.6 (6)	C37—C38—C39—C34	-1.1 (14)
O11—C11—C12—C14	-91.8 (7)	C45—C40—C41—C42	0.5 (12)
O12-C11-C12-C14	87.8 (6)	O33—C40—C41—C42	179.1 (7)
C13—C12—C14—C19	-94.5 (7)	C40—C41—C42—C43	-0.1 (13)
C11—C12—C14—C19	33.9 (8)	C41—C42—C43—C44	0.5 (15)
C13-C12-C14-C15	85.9 (8)	C42—C43—C44—C45	-1.5 (15)
C11-C12-C14-C15	-145.7 (6)	C43—C44—C45—C40	1.9 (13)
C19-C14-C15-C16	1.5 (9)	C41—C40—C45—C44	-1.5 (12)
C12-C14-C15-C16	-178.8 (6)	O33—C40—C45—C44	179.9 (7)
C14—C15—C16—C17	-1.5 (10)	O12-C11-O11-Cu1	1.8 (8)
C15-C16-C17-C18	-0.1 (10)	C12-C11-O11-Cu1	-178.7 (4)
C16-C17-C18-C19	1.5 (9)	O12 ⁱ —Cu1—O11—C11	-4.9 (13)
C16—C17—C18—O13	-175.5 (5)	O31—Cu1—O11—C11	-86.9 (5)
C15-C14-C19-C18	-0.1 (8)	O32 ⁱ —Cu1—O11—C11	81.4 (5)
C12-C14-C19-C18	-179.7 (5)	O51—Cu1—O11—C11	175.0 (5)
C17—C18—C19—C14	-1.5 (8)	O11—C11—O12—Cu1 ⁱ	-0.9 (8)
O13-C18-C19-C14	175.6 (4)	C12—C11—O12—Cu1 ⁱ	179.6 (4)
O13—C20—C21—C22	-178.8 (8)	C21-C20-O13-C18	9.0 (10)
C25—C20—C21—C22	3.3 (12)	C25-C20-O13-C18	-173.0 (6)
C20-C21-C22-C23	-2.2 (14)	C17-C18-O13-C20	-87.2 (7)
C21—C22—C23—C24	0.7 (15)	C19-C18-O13-C20	95.8 (6)
C22-C23-C24-C25	-0.2 (14)	O32-C31-O31-Cu1	-5.8 (9)
C21—C20—C25—C24	-2.8 (11)	C32—C31—O31—Cu1	176.9 (4)
O13—C20—C25—C24	179.0 (7)	O12 ⁱ —Cu1—O31—C31	-81.3 (5)
C23—C24—C25—C20	1.3 (12)	O32 ⁱ —Cu1—O31—C31	1.1 (12)
O31—C31—C32—C33	16.0 (10)	O11—Cu1—O31—C31	87.7 (5)
O32—C31—C32—C33	-161.6 (7)	O51—Cu1—O31—C31	-178.4 (5)
O31—C31—C32—C34	-113.4 (7)	O31—C31—O32—Cu1 ⁱ	6.3 (9)
O32—C31—C32—C34	69.0 (8)	C32—C31—O32—Cu1 ⁱ	-176.2 (4)
C33—C32—C34—C39	-33.3 (11)	C37—C36—O33—C40	81.8 (10)
C31—C32—C34—C39	95.4 (8)	C35—C36—O33—C40	-103.9 (8)
C33—C32—C34—C35	147.4 (7)	C45—C40—O33—C36	-169.9 (7)
C31—C32—C34—C35	-84.0 (8)	C41—C40—O33—C36	11.5 (11)
C39—C34—C35—C36	2.9 (10)	N52-C51-O51-Cu1	-178.4 (5)
C32—C34—C35—C36	-177.7 (6)	O12 ⁱ —Cu1—O51—C51	136.1 (5)
C34—C35—C36—C37	-1.2 (12)	O31—Cu1—O51—C51	-134.5 (5)
C34—C35—C36—O33	-175.4 (7)	O32 ⁱ —Cu1—O51—C51	45.6 (5)
C35—C36—C37—C38	-1.8 (14)	O11—Cu1—O51—C51	-43.9 (5)
O33—C36—C37—C38	172.4 (8)	O51—C51—N52—C54	-178.6 (7)
C36—C37—C38—C39	2.9 (15)	O51—C51—N52—C53	2.8 (11)
C35—C34—C39—C38	-1.8 (12)		

Symmetry codes: (i) -x+1, -y+2, -z.

Fig. 2