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UNIÓN MATEMÁTICA ARGENTINA
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ITERATED ALUTHGE TRANSFORMS: A BRIEF SURVEY
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Dedicated to the memory of Mischa Cotlar

Abstract. Given an r × r complex matrix T , if T = U |T | is the polar de-
composition of T , then, the Aluthge transform is defined by

∆ (T ) = |T |1/2
U |T |1/2

.

Let ∆n(T ) denote the n-times iterated Aluthge transform of T , i.e. ∆0(T ) = T

and ∆n(T ) = ∆(∆n−1(T )), n ∈ N. In this paper we make a brief survey on
the known properties and applications of the Aluthge trasnsorm, particularly
the recent proof of the fact that the sequence {∆n(T )}n∈N converges for every
r×r matrix T . This result was conjecturated by Jung, Ko and Pearcy in 2003.

1. Introduction

Let H be a Hilbert space and T a bounded operator defined on H whose (left)
polar decomposition is T = U |T |. The Aluthge transform of T is the operator
defined by

∆ (T ) = |T |1/2U |T |1/2 . (1)

This transform was introduced in [1] by Aluthge, in order to study p-hyponormal
and log-hyponormal operators. Roughly speaking, the idea behind the Aluthge
transform is to convert an operator into another operator which shares with the
first one some spectral properties but it is closer to being a normal operator.

The Aluthge transform has received much attention in recent years. One reason
is its connection with the invariant subspace problem. Jung, Ko and Pearcy proved
in [15] that T has a nontrivial invariant subspace if an only if ∆ (T ) does. On
the other hand, Dykema and Schultz proved in [10] that the Brown measure is
preserved by the Aluthge transform. Another reason is related with the iterated
Aluthge transform. Let ∆0 (T ) = T and ∆n (T ) = ∆

(
∆n−1 (T )

)
for every n ∈ N.

In [16] Jung, Ko and Peacy raised the following conjecture:

Conjecture 1. The sequence of iterates {∆n (T )}n∈N converges, for every matrix

T . △
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This paper intends to give a brief survey on different properties of the Aluthge
transform, making special emphasis on those results related with Conjecture 1,
which was originally stated for operators on Hilbert spaces, and remains open for
finite factors.

We begin the article with a historical summary that helps to explain the connec-
tion of the Aluthge transform with the invariant subspace problem and to describe
some results that motivated and suggested that the conjecture might be true for
operators on Hilbert spaces. Nevertheless, some couterexamples were found in this
setting. We will expose one of them with some detail, which is particularly inter-
esting because it shows an operator T ∈ L(H) such that the sequence {∆n (T )}n∈N

does not converge even in the weak operator topology.
In the second part of the article, we summarize two works ([6] and [8]) which

contain a proof of a positive answer to Conjecture 1 and some results on the regu-
larity of the limit function. In these papers a new approach, based on techniques
from dynamical systems, is introduced. The most important result used is the so-
called stable manifold theorem for pseudo-hyperbolic systems (briefly described in
Appendix A). Using this dynamical approach Conjecture 1 is firstly proved in [6],
for every diagonalizable matrix. In the second article [8], using again a dynamical
approach, combined this time with geometrical arguments in order to manage some
technical difficulties, Conjecture 1 is completely solved. Although we shall not de-
scribe it, we also refer to the reader to the work by Huajun Huang and Tin-Yau
Tam [13], where some related results are shown using different techniques

We also include a section with some open problems regarding the continuity
of the limit function and the convergence for some particular operators acting on
infinite dimensional space. Finally, we add two appendices where we give the
precise statements of the stable manifold theorem, and describe the geometrical
properties of similarity and unitary orbits of matrices.

Notation. Throughout this paper Mr(C) denotes the algebra of complex r × r
matrices, Gl r(C) the group of all invertible elements of Mr(C), and U(r) the group
of unitary operators. We denote N (r) = {N ∈ Mr(C) : N is normal}. If v ∈ Cr,
we denote by diag(v) ∈ Mr(C) the diagonal matrix with v in its diagonal.

Given T ∈ Mr(C), σ(T ) denotes the spectrum of T , λ(T ) ∈ Cr the vector
of eigenvalues of T (counted with multiplicity), and ρ(T ) the spectral radius of
T . We shall consider the space of matrices Mr(C) as a real Hilbert space with
the inner product defined by 〈A, B〉 = Re

(
tr(B∗A)

)
. The norm induced by this

inner product is the Frobenius norm, that is denoted by ‖ ·‖2. For T ∈ Mr(C) and
A ⊆ Mr(C), by means of dist(T,A) we denote the distance between them, with
respect to the Frobenius norm. If H is a Hilbert space, L(H) denotes the algebra
of bounded operators on H.

2. Historical remarks

One of the most challenging problems in operator theory is the invariant sub-
space problem (ISP from now on). This problem states that every operator in L(H)
has a non trivial invariant subspace. It is a property that has every operator in a
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ITERATED ALUTHGE TRANSFORMS: A BRIEF SURVEY 31

(complex) finite dimensional space because of the existence of eigenvectors. It is
not difficult to see that the ISP also has a positive answer if the underlying Hilbert
space is not separable. However, for separable Hilbert spaces, the problem is still
open.

Although the ISP is very difficult to deal with, it was proved that some par-
ticular classes of operators have many non-trivial invariant subspaces. One of the
most important is the class of normal operators. Indeed, using the functional cal-
culus developed by von Neumann, it can be proved that a normal operator has as
many invariant subspaces. This suggested the idea of isolating some properties of
normal operators that could be related with the fact of having invariant subspaces.
This motivated the definition of hyponormal and p-hyponormal operators. Recall
that, given a Hilbert space H and p ∈ (0, 1], and operator T ∈ L(H) is called
p-hyponormal (p-hn) if

(T ∗T )p ≥ (TT ∗)p .

If p = 1, i.e., if ‖Tx‖ ≥ ‖T ∗x‖ for every x ∈ H, then T is simply called hyponormal
(hn).

In 1987, Brown was able to prove that every hyponormal operator whose spec-
trum has non-empty interior has a non trivial invariant subspace. In 1990, Aluthge
considered the possibility of extending this result to p-hyponormal operator and
defined what is now called Aluthge transform. The first result that caught the
attention on this transformation is summarized in the following statement:

Theorem 2.1 (Aluthge [1]). Let T ∈ L(H) be p-hyponormal. Then

• If p ≥ 1
2 , then ∆(T ) is hn,

• If p < 1
2 , then ∆(T ) is (p + 1

2 )-hn,

• It holds that ∆
(
∆(T )

)
is hn. �

Later on, Jung, Ko and Pearcy proved the next result that allowed to extend
Brown’s result to p-hyponormal operators:

Theorem 2.2 (Jung-Ko-Pearcy [15]). If Lat(T ) denotes the lattice of invariant
subspaces of a given operator T ∈ L(H), then Lat(T ) ≃ Lat(∆ (T )). �

This result led to the first version of Jung-Ko-Pearcy conjecture on the iterated
Aluthge transform sequence: The sequence of iterates {∆n (T )}n∈N converges to a
normal operator for every T ∈ L(H). As soon as they raised this conjecture, many
results supporting this conjecture appeared. The following formula for the spectral
radius due to Yamazaki (see also Wang [19]) was one of the most important:

Theorem 2.3 (Yamazaki [21]). Given T ∈ L(H), then ρ(T ) = lim
n→∞

‖∆n (T ) ‖. �

However, after several positive partial results, some counterexamples appeared.
One of the most interesting was found by Yanahida’s [20]. Using a smart selection
of weights, Yanahida defines a weighted shift operator whose sequence of iterated
Aluthge transforms does not converge, even with respect to the weak operator
topology! . Let us briefly describe it: let {ek}k∈N be the canonical basis of ℓ2(N),
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and T ∈ L(ℓ2(N)) the weighted shift operator defined by Tek = akek+1 where

a0, k = ak =

{
1 if k ∈ [42n−1 + 1, 42n]

e if k ∈ [0, 4] or k ∈ [42n + 1, 42n+1]
.

Straightforward computations show that ∆m (T ) is also a weighted shift with

weights: am, k =
k+m∏
j=k

a

“

m
j

”

1/2m

j , k ∈ N. Then, using some tricky estimates, it

can be proved that the sequence {〈∆m (T ) e1, e2〉}m∈N does not converge, which
implies that the sequence of iterates does not converge in the weak operator topol-
ogy. After these counterexamples, the conjecture was restricted to matrices and
takes the form stated in the introduction. Although the ISP has no sense for ma-
trices, several authors have kept working on the conjecture in this setting because
of the following reasons:

(1) Despite the positive computational evidence, it was surprisingly difficult.
For example, very complicated computations were needed to prove the 2×2
case (see [3]).

(2) It would be considered as a first step in order to get a characterization of
the operators T ∈ L(H) for which the sequence ∆n (T ) converges (see [14]
and the references therein).

(3) The conjecture remains open in the context of finite von Neumann factors
(i.e. II1 factors), where the ISP has growing interest (see [10]).

We conclude this section with some results that have been very useful in order to
study Conjecture 1. The first result is on the limit points of the iterated sequence.
Note that, by Theorem 2.3, the sequence {∆n (T )}n∈N is bounded. Hence, if we
restrict our attention to matrices, it has limit points. The following result, inde-
pendently proved by Ando [2] and Jung, Ko and Pearcy [16], gives more details on
them:

Proposition 2.4 (Ando, Jung-Ko-Pearcy). If T ∈ Mr(C), the limit points of the
sequence {∆n (T )}n∈N are normal. Moreover, if L is a limit point, then σ (L) =
σ (T ) with the same algebraic multiplicity. �

Then, studying the Jordan structure of ∆ (T ) with respect with the Jordan struc-
ture of T , the next reduction of the conjecture was proved in [5]:

Proposition 2.5. If the Aluthge transform sequence converges for every invertible
matrix (resp. invertible diagonalizable matrix), then it does for every matrix (resp.
diagonalizable matrix). �

These two results motivate us to consider the dynamical approach that will be
described in the next section. In the next proposition we summarize some easy
properties of the Aluthge transform which are necessary to understand this ap-
proach.

Proposition 2.6. Let T ∈ Mr(C). Then:

(1) ∆ (T ) = T if and only if T is normal.
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(2) ∆ (λT ) = λ∆(T ) for every λ ∈ C.
(3) ∆ (V TV ∗) = V ∆(T )V ∗ for every V ∈ U(r).
(4) ‖∆(T ) ‖2 6 ‖T ‖2 . In [5] it is proved that equality holds only if T ∈ N (r).
(5) T and ∆ (T ) have the same spectrum and characteristic polynomial.
(6) If T = T1 ⊕T2 then ∆ (T ) = ∆ (T1)⊕∆(T2) (orthogonal decompositions).

�

We will also use systematically the following result on the regularity properties of
∆ (·) on Mr(C) (see [10] or [6]):

Theorem 2.7. The map ∆ is continuous in Mr(C) and it is of class C∞ in Gl r(C).
�

Remark 2.8. The map ∆ fails to be differentiable at several non invertible ma-
trices. △

3. Convergence results

Throughout this section, we fixe a matrix T ∈ Gl r(C). We denote by λ =
λ(T ) ∈ Cr, the vector of eigenvalues of T (counted with multiplicity). In the
following subsections (3.1 and 3.2) we shall describe briefly the proof of Conjecture
1, following the articles [6], for the diagonalizable case, and [8], for the general case.
Let D(r) denote the set of diagonalizable matrices of Mr(C).

3.1. The diagonalizable case. As we mentioned in the previous section, Con-
jecture 1 can be reduced to the invertible case. Since T ∈ Gl r(C), it holds that
∆ (T ) = |T |1/2 T |T |−1/2. So,

∆ (T ) ∈ S (T ) = { STS−1 : S ∈ Gl r(C) } ,

the similarity orbit of T . This suggests that we can study the Aluthge transform
restricted to S (T ), which has a rich geometric structure. In particular, it is a
riemannian submanifold of Mr(C) (see Appendix B for more details).

If the Aluthge transform is studied restricted to the similarity orbit, the diag-
onalizable case has some advantages. Note that, if T ∈ D(r), then S (T ) contains
a compact submanifold of fixed points, and the sequence {∆n (T )}n∈N goes to this
submanifold as n → ∞. In fact, since T ∈ D(r), then S (T ) = S (D) for some di-
agonal matrix D which has the same characteristic polynomial as T . The unitary
orbit U (D) = { UDU−1 : U ∈ U(r) } of D, is a compact submanifold of S (D)
that consists of all normal matrices in S (D). By Proposition 2.4, U (D) is fixed by
the Aluthge transform and every limit points of the sequence {∆n (T )}n∈N belongs
to U (D). In contrast, if T /∈ D(r), then S (T ) does not have fixed points, and the
sequence of iterated Aluthge transforms still goes to U (D), which is not contained
in S (T ), but in its boundary. The key result in order to perform the dynamical
approach to this problem is the following:

Theorem 3.1. Let D = diag(d1, . . . , dr) ∈ Mr(C) be an invertible diagonal ma-
trix. For every N ∈ U (D), there exists a subspace Es

N of the tangent space TNS (D)
such that
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(1) TNS (D) = Es
N ⊕ TNU (D);

(2) Both, Es
N and TNU (D), are T ∆-invariant;

(3) TN ∆
∣∣
TNU(D)

= ITNU(D) and
∥∥∥TN ∆

∣∣
Es

N

∥∥∥ ≤ kD, where

kD = max
i, j : di 6=dj

|1 + ei(arg(dj)−arg(di))| |di|1/2|dj |1/2

|di| + |dj |
< 1 ;

(4) If U ∈ U(r) satisfies N = UDU∗, then Es
N = U(Es

D)U∗.

In particular, the map U (D) ∋ N 7→ Es
N is smooth. This fact can be formulated in

terms of the projections PN onto Es
N parallel to TNU (D), N ∈ U (D). �

The basic idea of the proof is that TDS (D) has an easy description in terms of
coordinates (see Eq (4) in Appendix B). By a sequence of steps, one can describe
T ∆D(X), for X ∈ TDS (D), as a Hadamard multiplication H ◦ X , for a matrix
H ∈ Mr(C). These facts allow to find the subspace Es

D as well as bounds for∥∥∥T ∆D

∣∣
Es

D

∥∥∥. The general case (N ∈ U (D) ) follows by unitary conjugations.

The idea behind Theorem 3.1 is the following: when we iterate the derivative
of the Aluthge transform on an element of the tangent space of TNS (D), for some
N ∈ U (D), the sequence of iterates converge exponentially to TNU (D). This is
the behavior that one expects the Aluthge transform (instead of its derivative) to
have. In order to extrapolate this result to the non-linear setting, we used the stable
manifold theorem, which is a well known result of dynamical systems introduced
independently by Hadamard and Perron (see Appendix). Under the conditions
which Theorem 3.1 assures for the Aluthge transform, this theorem states that
there exists a local submanifold Ws

N through each N ∈ U (D) such that:

(1) TN (Ws
N ) = Es

N , in particular Ws
N is transversal to U (D).

(2) The submanifold Ws
N is characterized as the set of matrices near U (D) that

converge exponentially to N by the iteration of the Aluthge transform.

Since the problem of the convergence of the

Figure

1. Union of
stable manifolds

iterates of the Aluthge transform has a symme-
try due to the invariance by unitary conjuga-
tion, the size of the submanifolds Ws

N as well as
the exponential rate of convergence is uniform
along the unitary orbit U (D). These fact allow
to prove, using arguments that involve the in-
verse mapping theorem, that the union of the
submanifolds Ws

N form an open neighborhood
of U (D) (see Fig. 1). Thus, as the sequence
{∆n (T )}n∈N goes toward U (D), for some n0

large enough the sequence of iterated Aluthge
transforms enters into this open neighborhood,
and, from that n0 on, the sequence converges

exponentially. Moreover, standard computations also show that the functional se-
quence {∆n (·)}n∈N converges uniformly on S (D) to a limit function, denoted by
∆∞ (·), which is a strong (continuous) retraction from S (D) onto U (D).
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From the above mentioned facts, we can only deduce that ∆∞ (·) is contin-
uous. However, better regularity properties can be proved. Let W(D) be an
open neighborhood of U (D) contained in the union of the submanifolds Ws

N .
As Ws

N1
∩ Ws

N2
= ∅ by the uniqueness of the limit, we can define a projection

p : W(D) → U (D) by:

p(T ) = N if T ∈ Ws
N .

It is not difficult to prove that this map is of class C∞. Moreover, the limit
function ∆∞ (·) can be locally written as the composition of ∆n0 (·) with p. Since
both functions are C∞ on S (D), ∆∞ (·) is also of class C∞ on S (D).

Similar arguments, which involve a more specific version of the stable manifold
theorem, allow to prove that the limit function ∆∞ (·) is also C∞ when it is re-
stricted to the open dense set consisting of those matrices have all their eigenvalues
different.

3.2. The nondiagonalizable case. The non-diagonalizable case is different, since
the geometry context of the problem is more complicated. Let T be non diago-
nalizable and D ∈ D(r) such that λ(D) = λ(T ). Then U (D) is contained in the
boundary of S (T ), which also contains the orbits of matrices with smaller Jordan
forms than the Jordan form of T . The boundary of S (T ) can be thought as a
sort of lattice of boundaries. Therefore, in order to prove Conjecture 1, the prob-
lem is set in a more appropriate context so that both cases, diagonalizable and
non-diagonalizable can be analyzed together. In this new approach, the Aluthge
transform is thought as an endomorphism of the open set Gl r(C), and all the orbits
mentioned before are considered, not as a manifold, but as the basin of attraction
B∆(U (D) ) of U (D). By definition, in this case, the basin of attraction consists of
those matrices T such that the sequence {∆n (T )}n∈N goes to U (D) as n −−−→

n→∞

∞.

Note that, by Proposition 2.4, the basin B∆(U (D) ) can also be characterized as
the set of those matrices that have the same characteristic polynomial as D.

Since the Aluthge transform is thought as an endomorphism on the open set
Gl r(C), the descomposition of Theorem 3.1 has to be extended to a decomposition
of Mr(C) in TN∆-invariant subspaces, for each N ∈ U (D). This extension follows
using that,

if AN = TNS (N)
⊥

, then TN∆|AN
= IAN

. (2)

This fact can be proved by the standard properties of ∆, since AN can be char-
acterized as the commutant of N . Hence, just take the decomposition Mr(C) =
Es

N ⊕
(
TNU (D)⊕AN

)
. The stable manifold theorem used in this context is a stan-

dard extension to B∆(U (D) ) (see Remark A.4), and no differential structure is
required in the basin. This theorem implies the existence of ∆-invariant manifolds
Wss

T through each T in the basin close enough to U (D). One of the most important
properties of these manifold is that

Wss
T ⊆ {S : ‖∆n (T ) − ∆n (S) ‖ < Cγn for every n ∈ N} , (3)
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where C and γ < 1 are constants that only depend on the distance among different
eigenvalues of D. Hence, if the sequence ∆∞ (S) converges for some S ∈ Wss

T ,
then the same must happen for T (with the same limit).

In the diagonalizable case, we have considered only the stable manifolds Wss
N

for points N ∈ U (D) and it was proved that the union of these manifolds contains
an open neighborhood of U (D) in S (D).

That approach fails in the general case, because the basin in not a manifold. So,
a different idea is used. Inside the basin, there is a distinguished subset of matrices
which satisfy Conjecture 1. This set, denoted by OD consists of those matrices,
in the basin, with orthogonal spectral projections. Indeed, given M ∈ OD , let
σ(M) = {µ1 , . . . , µk} be the spectrum of M , Ei(M) the spectral projection of M

associated to each µi , and N = ΠE(M) :=
k∑

i=1

µi Ei(M) ∈ N (r). Observe that N

is uniquely determined (as a normal matrix) by its vector λ(N) = λ(M) and the
spectral projections E(N) = E(M). But Proposition 2.4 assures that all the limit
points of the sequence ∆n(M) must be normal matrices with this vector, and item
6 of Proposition 2.6 assures that they must have the same spectral projections as
M (because they are orthogonal). Hence N is the unique possible limit point, so
that ∆n(M) −−−→

n→∞

N .

Having identified this set in the basin, the strategy is to prove that, for every
T in the basin near U (D), the stable manifolds Wss

T intersect the set OD . This
fact would be enough by the remark which follows Eq. (3), and the previous study
about OD .

However, OD does not have a differen-

Figure 2. The pro-
jection argument

tial structure, which is an important tech-
nical obstacle. To avoid this problem, the
stable manifolds Wss

T as well as OD are
projected onto the orbit S (D), using the
above mentioned function ΠE , which is smooth
(see Kato’s book [17]). Observe that M ∈
OD if and only if ΠE(M) ∈ U (D). On the
other hand, the derivative of ΠE at N ∈
U (D) is an orthogonal projection with range
equal to TNS (D). By a continuity argu-
ment, this implies that, for every T close
enough to U (D), the nullspace of the de-
rivative of ΠE at the different points of Wss

T

is transversal to the corresponding tangent
spaces of Wss

T . This implies that the pro-
jection onto S (D) of the manifolds Wss

T are submanifolds of S (D). Moreover, it
can be proved that ΠE(Wss

T ) is “close” in some sense to Wss
N , where N is certain

normal operator close to T . Observe that Wss
N is one of the stable manifolds stud-

ied in the diagonalizable case. Therefore Wss
N intersects transversally U (D). These

facts imply, by some well known results about transversal intersections (see [11]),
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that ΠE(Wss
T ) also intersects U (D). Finnaly, if N ′ ∈ ΠE(Wss

T ) ∩ U (D), then N ′

is the projection of a matrix M ∈ Wss
T ∩OD (see Fig. 2).

Similar (but slightly more complicated) arguments show that the limit map ∆∞(·)
is continuous on Gl r(C). Nevertheless, the previous techniques are not useful to
study continuity outside of Gl r(C) because the map ∆ fails to be differentiable
there.

Rate of convergence. In [6] it was proved that, if T ∈ Mr(C) is diagonalizable,
then after some iterations the rate of convergence of the sequence ∆n (T ) becomes
exponential. More precisely, for some n0 ∈ N and every n ≥ n0 , there exist C > 0
and 0 < γ < 1 such that ‖∆n (T ) − ∆∞ (T ) ‖ < Cγn. This exponential rate
depends on the spectrum of T . Actually, if λ(T ) = λ(D) for some diagonal matrix
D, then γ = kD , the constant which appears in Theorem 3.1. Using the formula
for kD , one can see that it is closer to 1 (so that the rate of convergence becomes
slower) if the different eigenvalues are closer one to each other.

These facts are no longer true if T is not diagonalizable, since the rate of con-
vergence for such a T depends on the rate of convergence for some M ∈ Wss

T ∩OD,
which can be much slower (and not exponential). Observe that the proof of the
convergence of the sequence {∆n (M)}, does not study the rate of convergence. It
only shows that there exists an unique possible limit point for the sequence.

Nevertheless, if one denotes by E(A) the system of spectral projections of a
matrix A ∈ Mr(C) associated to its different eigenvalues, the previous approach
shows that E(∆n (T ) ) converges to E(∆∞ (T ) ) exponentially, because E(M) =
E(∆∞ (T ) ). As in the case of diagonalizable matrices the rate of convergence of the
spectral projections depends on the spectrum of T , which agree with the spectrum
of M . Note that the spectrum of T and the spectral projections of M completely
characterize the limit ∆∞ (T ). Indeed, if σ(T ) = {µ1, . . . , µk}, then

∆∞ (T ) = ∆∞ (M) = ΠE(M) :=

k∑

j=1

µj Ej(M) .

λ-Aluthge transform. Given λ ∈ (0, 1) and a matrix T ∈ Mr(C) whose polar
decomposition is T = U |T |, the λ-Aluthge transform of T is defined by

∆λ (T ) = |T |λU |T |1−λ .

All the results stated in this paper are also true for the λ-Aluthge transform for
every λ ∈ (0, 1), with almost the same proofs. Indeed, note that the basic results
about Aluthge transform used throughout sections 3 and 4 are Theorem 3.1 and
those stated in subsection 2.1. All these results were extended to every λ-Aluthge
transform (see [5] and [7]). The unique difference is that the constant kD of Theo-
rem 3.1 now depends on λ (see Theorem 3.2.1 of [7]). Anyway, the new constants
are still lower than one for every λ ∈ (0, 1). Moreover, they are uniformly lower
than one on compact subsets of (0, 1).

Another result which depends particularly on the Aluthge transform is Eq. (2),
and the extended decomposition Mr(C). Nevertheless, it is easy to see that both
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results are still true for every λ ∈ (0, 1). On the other hand, the proof of the
continuity of the map T 7→ ∆∞ (T ) on Gl r(C) uses the same facts about the
Aluthge transform. So that, it also remains true for ∆λ , for every λ ∈ (0, 1). We
resume all these remarks in the following statement:

Theorem 3.2. For every T ∈ Mr(C) and λ ∈ (0, 1), the sequence ∆n
λ (T ) con-

verges to a normal matrix ∆∞
λ (T ). The map T 7→ ∆∞

λ (T ) is continuous on Gl r(C).
�

3.3. Some open problems. Concerning the convergence of iterated Aluthge se-
quences, the following problems are of great interest, and they still remain unsolved:

(1) The continuity of the map (0, 1) × Mr(C) ∋ (λ, T ) 7→ ∆∞
λ (T ). Using

the techniques mentioned in this survey, it can be proved that this map is
continuous in (0, 1)×Gl r(C). But, as ∆λ is not globally C1 outside Gl r(C),
new methods should be developed in order to prove the continuity of ∆∞

λ in
Mr(C) \ Gl r(C). We remark that this fact is supported by computational
evidence.

(2) If H is a separable Hilbert space, to get a characterization of those T ∈
L(H) such that the sequence ∆n (T ) converges. The first step might be to
study compact operators, using the convergence for matrices.

(3) To prove that, if M is a II1 factor (i.e. an infinite dimensional finite von
Neumann algebra with trivial center), then the sequence ∆n (T ) converges
to a normal element of M, for every T ∈ M. This fact might be very
important in order to get an affirmative answer of the ISP for these alge-
bras, a problem which has great interest in operator theory and remains
open. As in the case of compact operators, the finite dimensional case could
be useful to prove Conjecture 1 in this setting, because there exist good
finite dimensional methods of approximation for these particular class of
von Neumann algebras.

Appendix A. The stable manifold theorem

As a general reference of this theory, we refer to the books [12] and [18]. Let
M be a smooth Riemann manifold and N ⊆ M a submanifold (not necessarily
compact). Throughout this subsection TNM denotes the tangent bundle of M
restricted to N .

Definition A.1. A Cr pre-lamination indexed by N is a continuous choice of a
Cr embedded disc Bx through each x ∈ N . Continuity means that N is covered by
open sets U in which x → Bx is given by Bx = σ(x)((−ε, ε)k) where σ : U ∩ N →
Embr((−ε, ε)k, M) is a continuous section. Note that Embr((−ε, ε)k, M) is a Cr

fiber bundle over M whose projection is β → β(0). Thus σ(x)(0) = x. If the
sections mentioned above are Cs, 1 ≤ s ≤ r, we say that the Cr pre-lamination is
of class Cs. A pre-lamination is called self coherent if the interiors of each pair of
its discs meet in a relatively open subset of each one. △

Theorem A.2 (Stable manifold theorem). Let f be a Ck endomorphism of M
and let N be a compact subset of M consisting of fixed points of f . Assume that
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there exist two continuous subbundles of TNM , denoted by Es and F , such that,
for every x ∈ N ,

(1) TNM = Es ⊕F .
(2) Es

x is Txf -invariant.
(3) There exists ρ ∈ (0, 1) such that

∥∥Txf |Es
x

∥∥ < ρ.

Then, there is a continuous, f -invariant and self coherent C0-pre-lamination Ws :
N → Embk((−1, 1)m, M) (endowed with the Ck-topology) such that, for every
x ∈ N ,

(1) Ws(x)(0) = x,
(2) Ws

x = Ws(x)((−1, 1)m) is tangent to Es
x ,

(3) Ws
x ⊆

{
y ∈ M : dist(x, fn(y)) < dist(x, y)ρn

}
. �

Remark A.3. As N is compact and Txf |Fx
= IFx

, using the so-called Cr-
prelamination theorem, it can be proved that the prelamination Ws is of class
Ck. △

Remark A.4. Under the hypothesis of Theorem A.2, recall that the basin of
attraction of N is the set Bf (N) = {y ∈ M : dist(fn(y), N) −−−→

n→∞

0}. Also recall

that, for every ε > 0, a local basin of N is the set

Bf (N)ε = {y ∈ Bf (N) : dist(fn(y), N) < ε , for every n ∈ N} .

Using standard arguments of dinamical systems, the distribution of subspaces Es
x

and Fx of Theorem A.2 can be extended to a local basin Bf (N)ε, for some ε > 0

small enough, so that the extended distribution of subspaces Ẽs
x and F̃x satisfy:

(1) TBf (N)ε
M = Ẽs ⊕ F̃ .

(2) Ẽs
x is Txf -invariant in the sense that Txf(Ẽs

x) ⊆ Ẽs
f(x) .

(3) There exists ρ ∈ (0, 1) such that Tx f restricted to F̃x expand it by a factor

greater than ρ, and Txf : Ẽs
x → Ẽs

f(x) has norm lower than ρ.

In this case, an extended version of the stable manifold theorem assures that there

is a Ck-pre-lamination W̃s : Bf (N)ε → Embk((−1, 1)m, M) which is continu-
ous, f -invariant, self coherent and satisfies for every x ∈ Bf (N)ε (1) and (2)
of Theorem A.2 and the following modified version of (3): Ws

x ⊆
{
y ∈ M :

dist(fn(x), fn(y)) < dist(x, y)ρn
}
. △

Appendix B. Similarity orbit of a diagonal matrix

Let D ∈ Mr(C) be diagonal, with Dii = di , 1 ≤ i ≤ r. By means of S (D)
we denote the similarity orbit of D, i.e., S (D) = { SDS−1 : S ∈ Gl r(C) }.
On the other hand, U (D) = { UDU∗ : U ∈ U(r) } denotes the unitary orbit
of D. We denote by πD : Gl r(C) → S (D) ⊆ Mr(C) the C∞ map defined by
πD(S) = SDS−1. With the same name we note its restriction to the unitary
group: πD : U(r) → U (D).
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Proposition B.1 (See [9] or [4]). The similarity orbit S (D) is a C∞ submanifold of
Mr(C), and the projection πD : Gl r(C) → S (D) becomes a submersion. Moreover,
U (D) is a compact submanifold of S (D), which consists of the normal elements of
S (D), and πD : U(r) → U (D) is a submersion. �

As a consequence of this result, it is not difficult to see that:

TD S (D) = {X ∈ Mr(C) : Xij = 0 for every (i, j) such that di = dj .} (4)

Straightforward computations also show that, TN S (D) = U
(
TD U (D)

)
U∗ pro-

vided that N = UDU∗ ∈ U (D). We consider on S (D) (and on U (D) ) the
Riemannian structure inherited from Mr(C) (using the usual inner product on
their tangent spaces). For S, T ∈ S (D), we denote by dist(S, T ) the Riemannian
distance between S and T (in S (D) ). Observe that, for every U ∈ U(r), one has
that US (D) U∗ = S (D) and the map T 7→ UTU∗ is isometric, on S (D), with
respect to the Riemannian metric as well as with respect to the ‖ · ‖2 metric of
Mr(C).
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