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Abstract

In this paper we analyze the frequency response of a distributed parameters non-linear circuit. This circuit is a fractal
model of an electrode–electrolyte interface. The results show that the series equivalent resistance Req decreases as the
number of fractal levels rises. Its frequency behavior is similar to the results described by other authors that used a con-
stant phase angle element. At low frequency range, the series equivalent reactance Xeq decreases with frequency and Req

shows a flat response in this range. The model also explains how interface geometry modifies the values of some elec-
trochemical parameters. As roughness increases the Argand diagram shows smaller semicircles. The model behavior is
like a single dispersion system with its central frequency increasing with the electrode roughness.
� 2005 Published by Elsevier Ltd.
1. Introduction

Frequency dependence of an electrode impedance is not a new phenomenon. The electrode–electrolyte interface
(EEI) was studied at low [1–10] and at high current density [7,11–13]. In non-linear dielectric spectroscopy of biological
suspensions, the way EEI distorts the biological non-linearities was poorly studied [14–16].

A new EEI model which integrate in the same electrical circuit, electrochemical and geometrical features of an elec-
trode, was presented previously in one of our papers. [13]. This model allows to predict qualitatively the EEI behavior at
high and low current density and at constant frequency. The frequency response of the model above is presented in this
paper.

Our results show that the series equivalent resistance Req of the circuit decreases when the number of fractal levels
considered increases, and its frequency behavior is qualitatively similar to those reported by other authors [4,6,17]
within the frequency ranges analyzed.

There is a significant similarity between our results and those presented by authors who used a constant phase angle
(CPA) element [4,5,7,10,11] in their models.

The series equivalent reactance Xeq shows a bell-like behavior when the frequency decreases within the range ana-
lyzed, whereas Req shows a typical sigmoid curve. The model behave as if it were a single dispersion system. This also
explains how the interface roughness might affect the quantification of pure electrochemical parameters.
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2. Interfaces modelling

2.1. EEI fractal model

EEI was modeled as an electrical circuit originated in the geometrical structure of a fractal net, which includes two
electrochemical parameters, the double layer capacity Cdl and the charge transfer resistance Rct in parallel with Cdl as it
is shown in Fig. 1 [13].

It is supposed that the charge transfer process is controlled by activation (neither the diffusion effects nor the mass
transport by migration or convection are considered), in each electrochemical reaction one electron is transferred, and
the corrosion or superficial adsorption processes are not considered either in order to simplify the procedure.

In Fig. 1 the value of the capacity and the charge transfer resistance of each level is obtained with the following
equations:
Fig. 1
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where J0 is the exchange current density, F is the Faraday constant, R is the universal gas constant, T is the absolute
temperature, bc is the cathodic transfer coefficient and j is the fractal level. If j is the 0 (fractal level 0) correspond to a
flat electrode.
3. Series equivalent resistance and reactance for an EEI model of two fractal levels

The equivalent impedance for an EEI geometric model of two fractal levels is shown in Eq. (3),
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where Zj is a parallel between Rctj and Cdlj and it is supposed that the apparent area of the working electrode is 1 cm2,
and i ¼

ffiffiffiffiffiffiffi
�1
p

. The qualitative behavior with more levels is similar, and it does not contribute significantly to the under-
standing of the subject.

Finally,
Req ¼ ReðZeqÞ ð4Þ
X eq ¼ ImðZeqÞ ð5Þ
4. Temporal evolution of Req and Xeq for an altern overpotential

When an altern overpotential gin is applied on the interface (Eq. (6)), the overpotentials gj, as well as Rctj and Cdlj,
with j = 0,1 and 2, will also show periodical temporal behavior.
gin ¼ g0
in sinð2pftÞ ð6Þ
. Simplified fractal net of four branches showing the first fractals levels. R: electrolytical resistance, a: scale factor, g0,1,2,3:
tentials at different fractal levels.
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In order to study the temporal evolution of Req and Xeq, the second Kirchoff�s Law is applied (Eq. (7)) to the first
node of the net in Fig. 1.
I0 ¼ I1 þ IRct0
þ ICdl0

ð7Þ
Given that
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ð8Þ
It is obtained
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By repeating the procedure on the next two nodes in the Fig. 1, the following expressions are obtained:
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Since Rctj depend on the overpontentials gj, Eqs. (9)–(11) are a differential equations system, which can not be solved
analytically. Therefore, numerical method was applied and a simple algorithm was implemented in Mathematica.
5. Algorithm to obtain Req and Xeq

We started setting the values for J0, K ¼ F =ðRT Þ, bc, a, R, Dt, f, fmax, Df, Cdl and g0
in, and setting zero time t and

overpotentials g0, g1 y g2. Besides, at t = 0, gin = 0 and gj = 0 where j = 0,1 and 2. With the previously defined values,
Rctj was calculated using Eq. (2), and dgj/dt using Eqs. (9)–(11). Req and Xeq were computed with the Eqs. (4) and (5)
and they were saved into a data file including the initial values of gj , Rctj, dgj/dt, Req and Ceq, at t = 0. A new iteration
begins when time t and overpotential gj are increased, and it is repeated until one period of the input signal is completed.

Once the cycles are completed, the Discrete Fourier Transform of Req and Ceq is calculated from the saved data, and
another data file is created where the values of TDF(Req) and TDF(Ceq) are also saved, with the corresponding values
of f and g0

in. Then the program increase the frequency in Df and it repeats the process above. Afterthat, the process is
carried out again for other g0

in values.
For the simulation typical values of the parameters were used: bc = 0.5, T = 298 K, f = 1 · 10�3 Hz, fmax = 104 Hz,

g0
in ¼ 22 mV, R = 100 X, a = 4, Cdl = 1 · 10�5 F, J0 = 2.1 · 10�5 A/cm2.

The Df value chosen produced an uniform distribution of points in a logarithm scale.
With these values, the charge time of the capacitors is in the order of 10�3 s. For frequencies lower than 102 Hz

the transient is negligible and a single input cycle is enough for the analysis. For frequencies higher than 104 Hz, the
transient last 5 cycles, that is why 30 cycles were used for the averaging.
6. Materials and methods

In order to validate the proposed model, several experiments were carried out so as to study the ZIEE behavior with
the frequency, at constant overpotential and using polished electrodes with sandpaper of different granulations.

The measurement cell (Fig. 2) is made of acrylic and it allows us to carry out tripolar measurements. The three elec-
trodes are made of stainless steel DENTAURUM�. The working electrode (WE) is a solid cylinder (1.5 cm long), and
only 1 cm2 of its transversal section is exposed, the rest was insulated with grilon.

The counter electrode (CE) is semi circular and it was made with an area larger than the working electrode in order
to minimize its impedance (70 cm2). The reference electrode is 1 mm in diameter and only 1 mm is exposed at its
end, the rest is covered with a glass sealed capillary. The measurements were carried out with the Solartron� sys-
tem 12508 W which includes a Frequency Response Analyzer 1250 and an electrochemical interface 1287. The data



Table 1
Steps for polishing electrodes

Step 1 Step 2 Step 3 Final roughness (lm)

Electrode 1 sandpaper # 180 sandpaper # 240 sandpaper # 600 25.80
AcquaFlex� Carbimet� Carbimet�

Electrode 2 sandpaper # 180 sandpaper # 240 58.50
AcquaFlex� Carbimet�

Electrode 3 sandpaper # 180 78.00
AcquaFlex�

The size of the grain matches the European standards FEPA standard 43-GB-1984 (R1993).

Fig. 2. Lateral view of the measurement cell. A = 10.0 mm, B = 11.8 mm, h = 8.4 mm, S = 1 cm2.
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visualization and processing were carried out with the commercial systems Zplot� and Zview� of Solartron. The elec-
trodes were polished in gradual steps and with different roughness degrees according to the diagram indicated in Table 1.

Overpotentials with frequencies within the interval of 0.01 to 65,000 Hz were applied with the Solartron system.
The sampling frequency was such that the measurements points were equally spaced in a logarithmic scale taking 10

points per decade. The integration time of the measurements was of 1 cycle for frequencies lower than 1 Hz and 16
cycles for the rest.

In every case, the potential was stabilized in open circuit until the voltage shift was lower than 0.05 mV/seg; then the
equivalent series resistance and reactance measurements were carried out. The overpotentials used were 5, 20 and
50 mV. The working solution used was NaCl 0.9%.
7. Results

7.1. Theoretical

7.1.1. Req and Xeq as a function of the ac overpotential frequency

Fig. 3 shows the average temporal value of Req (a) and Xeq (b) as a function of the frequency of the overpotential
applied, for three nets and each one corresponding to a different fractal level (j = 0,1,2). These values are evaluated
through the DC components of the Fourier spectrum DFT(dc) of the Req and Xeq, curves for each frequency. Fig. 3
also shows a single frequency dispersion f0, where Xeq presents a maximum, and this frequency f0 increases with the
increment of the interface roughness.

Another way to show the results of Fig. 3 is to represent –iXeq as a function of Req for each one of the frequencies
(Argand diagram). This is shown in Fig. 4. The circular fitting of the rough electrodes, produces depressed semi-circular
arc whose center lies below the real axis.

These fitting are not shown in order to clarify the figure. The flat electrode does not show any depression in the
center of the circle, this event is well described in the literature of disperse systems [4,5]. When the roughness increases,



Fig. 3. Req and Xeq as a function of the frequency for three different fractal nets: a flat electrode and two rough electrodes. bc = 0.5,
T = 298 K, R = 100 X, a = 4, Cdl = 1 · 10�5 F.

Fig. 4. Argand Diagram of the EEI for flat, one and two fractal levels electrodes. bc = 0.5, T = 298 K, R = 100 X, a = 4,
Cdl = 1 · 10�5 F. Overpotential = 50 mV.
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the semicircles get distorted and become smaller. When rough electrodes are used, at high frequencies, the points can be
adjusted to a depressed semi-circular arc equivalent to the fractal circuit without Rctj. This may be appreciated in the
inset of Fig. 4.
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7.2. Experimental

The behavior of the resistance and the reactance as a function of the frequency of the three roughnesses is presented
in Figs. 6 and 7. These diagrams are parametric in roughness. Fig. 6 shows the behavior of XR of the different elec-
trodes. The inset shows a detail of the curve at high frequencies. It is observed that the semicircle is much smaller
for the electrode with a higher roughness.

It is possible to define an apparent charge transfer resistance Rcta, and a double layer apparent capacity Cdla, similar
to the ones of a flat electrode. Rcta is calculated from the XR diagram as the diameter of the semicircle. Cdla is deduced
using Rcta and f0 from Eq. (12).
Fig. 5.
R0

eq is
Cdl =
Cdla ¼
1

2pf0Rcta

ð12Þ
Fig. 7a shows the behavior of Req versus frequency and Fig. 7b shows the one of Xeq versus frequency. The results
show that we have only reached the beginning of the low frequency plateau only in the case of the electrode of higher
roughness. The peak of Xeq curve matches the 50% of the maximum amplitude of the corresponding Req curve, for the
electrode polished at 78 lm.

The data obtained were not enough to reach the plateau for the rest of the electrodes, but we can deduce from the
curves, that the plateau will be placed in a lower frequency range.
8. Discussion and conclusions

A phenomenological circuit model has been used instead of black box model, because it allows us to interpret better
the physical processes involved in the system. Therefore, each component has its specific physical interpretation.

The double layer charge can be interpreted as a molecular capacitor, where one plate is represented by the charges on
the metal and the other by the ions at a minimum distance in the solution. The charge transfer process can be modu-
lated as a variable electrical resistance, which depends on the overpotential applied to the interface.

The electrolytical channels of the fractal structure can be modulated according to several authors [13,19–25,20,26] as
resistive elements.

The electrical model analysed is simple, it does not use idealized components without an specific physical interpre-
tation as the constant phase angle element (CPA), and it reflects qualitatively the experimental results of other authors.

An important and well known aspect is that the geometry and the electrochemical processes are not independent.
The current flow through the interface produces a potential drop which depends of the fractal level depth [26]. This
Normalized Req and Xeq versus frequency for rough electrode modeled with two fractal levels. R1eq is the value of Req for f!1,
the value of Req for f! 0 and f0 is the frequency where Xeq presents a maximum. bc = 0.5, T = 298 K, R = 100 X, a = 4,
1 · 10�5 F and g0

in ¼ 50 mV.
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fact is also evident in this paper since it affects the Rct behavior, because it has different values depending on the fractal
level analysed, as it is shown in Fig. 5 of the reference [13].
Fig. 6. Argand diagram of the EEI for AISI 304 stainless steel electrodes polished at different roughness degrees. Frequency range:
0.01 Hz–65 kHz.

Fig. 7. Resistance (a) and reactance series equivalents (b) of the EEI versus frequency for three roughness degrees. The overpotential
applied was 50 mV.
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Regarding the dependence with the roughness of the impedance interface, the model predicts that, when the number
of fractal levels increases (higher roughness) Req and Xeq decrease as it is shown in Figs. 3 and 4. It is observed qual-
itatively a coincidence between the behavior predicted and the experimental results (Fig. 7).

Fig. 5 shows that Xeq reaches the peak and Req the 50% of the maximum value when the dispersion frequency f0

occurs. This behavior could only be obtained in our experiments for the electrode polished at 78 lm. Data at frequen-
cies lower than 2 Hz were very hard to obtain, due to a great increase of the noise and the excessive time of the mea-
surement which made the experimental conditions highly unstable.

The measurement noise increased particularly at low frequencies, because the integration time of each measurement
had to be decreased at one cycle. When the roughness of the electrode was increased, the semicircles became smaller and
Rcta decreased as it is shown in Fig. 4 (prediction of the model) and Fig. 6 (experimental data).

The inset of Fig. 4 shows a detail of the XR curves at high frequencies. It is possible to fit a depressed semi-circular
arc in the case of rough electrodes which differs from the one made at low frequencies. This difference can be appreci-
ated from the fact that at low frequencies, 1

2pfCdlj
� Rctj. Therefore the original circuit can be replaced by another one

without Rctj.
Finally, it has to be made clear that, although this model predicts qualitatively the behaviors observed, it is still

incomplete. As an example, a mass transport phenomena such as diffusion [18] which is significant at low frequencies
and at high overpotentials, must be incorporated.

A quantitative prediction will be attempted in further research steps. This will also involve a deeper analysis and
experimentation, because the connections between some electrochemical factors such as the current density exchange
and the roughness, remain still ignored.
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