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Two widely employed antimicrobials, benzoic and sorbic acids, were simultaneously determined in
commercial orange juices employing a combination of a flow injection system with pH gradient
generation, diode array spectrophotometric detection, and chemometric processing of the recorded
second-order data. Parallel factor analysis and multivariate curve resolution-alternating least-squares
were used for obtaining the spectral profiles of sample components and concentration profiles as a
function of pH, including provisions for managing rank-deficient data sets. An appropriately designed
calibration with a nine-sample set of binary mixtures of standards, coupled to the use of the second-
order advantage offered by the applied chemometric techniques, allowed quantitation of the analytes
in synthetic test samples and also in commercial orange juices, even in the presence of unmodeled
interferents (with relative prediction errors of 8.7% for benzoic acid and 2.5% for sorbic acid). No
prior separation or sample pretreatment steps were required. The comparison of results concerning
commercial samples with a laborious reference technique yielded satisfactory statistical indicators
(recoveries were 99.0% for benzoic acid and 101.4% for sorbic acid).

KEYWORDS: Flow injection analysis; pH gradient; parallel factor analysis; multivariate curve resolution;

benzoic acid; sorbic acid; food analysis

INTRODUCTION

Benzoic acid (BEN) and sorbic acid (SOR) are regularly
employed as antimicrobials in a great variety of foods, namely,
fruit products, jams, relishes, beverages, dressings, salads, pie
and pastry fillings, icings, olives, and sauerkraut. They are
indicated against yeasts and some molds and bacteria (foodborne
pathogens but not spoilage bacteria) (1-3).

Several methods have been reported for the quantitative
determination of BEN and SOR in foods: high-performance
liquid and thin-layer chromatographies (3-6), capillary elec-
trophoresis (with the micellar electrokinetic capillary variant
being the most usually applied) (3, 7-10), second-order
derivative spectrophotometry after solvent extraction (11),

chemometrics-enhanced spectrophotometry (12), polarography
(13), and enzymatic determination (14). The AOAC official
methods for analyzing sorbic acid in beverages involve (1) steam
distillation followed by UV absorption at 260 nm or (2) reaction
with thiobarbituric acid and colorimetry at 532 nm (15, 16).

Although most of the above-cited determinations are accurate
and sensitive, sample derivatization or extraction is usually
required, making the analytical procedures complex and time-
consuming. Therefore, there is a constant need to improve these
methods, to obtain better analytical figures of merit and/or to
shorten the time required for the analysis.

Multivariate calibration is gaining popularity for the simul-
taneous determination of multicomponent mixtures in several
fields (17). It is mainly based on spectroscopic data, although
any kind of first-order data may be used (first-order refers to
data presented in vectorized format, i.e., a spectrum per sample).
Full-spectrum multivariate calibration methods offer the ad-
vantage of speed in the determination of the components of
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interest, avoiding separation steps in the analytical procedures.
Partial least-squares (PLS) has become the usual first-order
multivariate tool because of the quality of the obtained calibra-
tion models, the ease of its implementation, and the availability
of software (18). An interesting characteristics of these multi-
variate methods is that calibration can be performed by ignoring
the concentrations of all other components except the analyte
of interest. In the food analysis field, a recent study employed
PLS and other first-order multivariate methods for the spectro-
photometric determination of colorants in a soft drink powder
(19).

However, all first-order methods, of which PLS is no
exception, are sensitive to the presence of unmodeled interfer-
ents, that is, compounds occurring in new samples which have
not been included during the training step of the multivariate
model. This situation is encountered when natural samples of
complex composition, such as the presently studied orange
juices, are examined. The problem can be alleviated, in part,
thanks to the implementation of wavelength selection proce-
dures, which are able to “filter”, to some extent, the spectral
regions where serious interferences occur, leaving adequate
spectral windows for successful application of multivariate
models (20). A good example is the previous determinations
of BEN and SOR in juices by employing a net-analyte-based
methodology (12). In general, however, no first-order multi-
variate model can be made immune to unexpected interferents
with spectral overlap over the whole useful spectral region where
the analyte absorbs.

A good alternative to the above-discussed problem is to move
to high-order data, which are particularly useful for the
quantitative analysis of complex multicomponent samples.
Specifically, second-order data, in which each sample produces
a data matrix, are gaining widespread analytical acceptance (21,
22).

In this paper, we discuss the simultaneous determination of
BEN and SOR in real juice samples using second-order data
provided by diode array spectrophotometric detection in a flow
injection system with an imposed double-pH gradient, analyzed
by both parallel factor analysis (PARAFAC) and multivariate
curve resolution-alternating least-squares (MCR-ALS) models.
A comparison with the official method was performed.

EXPERIMENTAL PROCEDURES

Apparatus. Spectrophotometric measurements were performed on
a Hewlett-Packard 8452A spectrophotometer with a diode array detector
and a Hellma 178-010-QS flow cell with an inner volume of 18µL. A
Gilson Minipuls 3 peristaltic pump was used as propulsion device. A
Rheodyne 5041 injection valve was used. The coil, loop, and transmis-
sion lines were made with i.d 0.5 mm PTFE tubing.

Reagents. All solutions were prepared from analytical grade
chemicals and purified water (18 mΩ) by using a B-pure system. The
acid Britton-Robinson solution (BRH) was prepared by mixing 0.0400
mol L-1 phosphoric acid (Mallinckrodt), 0.0400 mol L-1 boric acid
(Anedra, Buenos Aires, Argentina), and 0.0400 mol L-1 acetic acid
(Mallinckrodt). The basic Britton-Robinson solution (BROH) was 0.2
mol L-1 NaOH (Merck, Darmstadt, Germany). Sodium benzoate and
sorbate stock solutions were prepared by dissolving 100.0 mg of each
compound (both purchased from Sigma, Milwaukee, WI) in water,
completing to 1000.00 mL in a volumetric flask. Working standard
solutions of benzoic and sorbic acids in the range of 0.00-12.0 mg
L-1 were prepared by diluting the above-mentioned stock solution with
the BRH solution. Bromocresol green (BCG) purchased from Sigma
was employed for the optimization of the flow injection analysis (FIA)
system.

For application of the official method of determination, the following
reagents were employed: tartaric acid, magnesium sulfate heptahydrate,

0.1 N hydrochloric acid, and copper sulfate (alkaline solution prepared
from 1 mL of 0.1% copper sulfate heptahydrate, 0.5 g of sodium
carbonate, and distilled water to complete a 1000 mL flask to the mark).
All reagents were obtained from Merck.

Flow Injection Methodology. A simple FIA system with a single
channel was designed to generate the pH gradients (Figure 1A), with
a carrier stream of BRH pumped continuously into the system. When
an appropriate volume of BROH is injected, the FIA signal recorded
at 270 nm has a shape that is pictorially shown inFigure 1B. The
baseline pH before the peak appears is acid, and the injected volume
of BROH is responsible for the generation of a double-pH gradient
(23). The pH increases from the front of the flow injection peak,
reaching its maximum value at the center of the peak, and then
progressively decreases to reach its baseline value.

Samples were prepared in BRH, introduced into the FIA system as
a carrier stream, and BROH was injected, creating the necessary pH
gradient close to the center of the sample. For each FIA peak registered,
spectra were collected in the range of 200-300 nm each 2 nm, and
the pH gradient produced 33 equally spaced data points, making a total
of 51 × 33 ) 1683 data points for each sample matrix.

Calibration and Test Sets. A nine-sample set was built for
calibration with the employed multivariate models. The analyte
concentrations corresponded to a central composite design (samples
C1-C9 in Table 1). The extreme concentrations for the design were
0.00 and 12.00 mg L-1 for both BEN and SOR. They were obtained
starting from the stock solutions (see above). Their total spectral-pH
evolutions were measured in random order, after injection into the above
FIA system.

Additionally, nine binary samples (T1-T9, Table 1) were built with
analyte concentrations different from those employed for calibration,
but within their corresponding calibration ranges and following a full-

Figure 1. (A) Flow injection system used for the generation of a double-
pH gradient: BRH, acid Britton−Robinson solution; IV, injection valve; R,
reactor; DAD, diode array detector; W, waste; q, 0.56 mL min-1. (B)
Scheme of the pH gradient profile.

Table 1. Composition of the Calibration and Test Samples for
Application of the PARAFAC and MCR-ALS Models

calibration (mg L-1) test (mg L-1)

sample BEN SOR sample BEN SOR

C1 1.80 1.80 T1 2.00 2.00
C2 1.80 10.00 T2 6.70 2.00
C3 10.00 1.80 T3 10.70 2.00
C4 10.00 10.00 T4 2.00 6.70
C5 6.00 0.00 T5 6.70 6.70
C6 6.00 12.00 T6 10.70 6.70
C7 0.00 6.00 T7 2.00 10.70
C8 12.00 6.00 T8 6.70 10.70
C9 6.00 6.00 T9 10.70 10.70
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factorial design. All of these samples contained freshly squeezed orange
juice, obtained from different fruits for each sample, keeping the
proportion between juice and the analytes at a level compatible with
that present in commercial samples. Total spectral evolutions were
measured in random order and on different days from those corre-
sponding to calibration.

Real Juice Samples.Real juice samples were M1, Mocoreta
(concentrated orange juice with added vitamin C); M2, Cotti (orange
juice); M3, Miju (concentrated orange juice); and M4, Hi-C (orange
juice with added vitamin C). The samples were prepared by placing
0.25 mL of commercial juice in a 25.00 mL flask and completing to
the mark with distilled water, so that the final analyte concentrations
were within the calibration ranges (commercial juices are known to
contain∼0.5 g L-1 of the analytes). Their total spectral evolutions were
registered in random order and on different days from the calibration/
test samples.

Official Method. Details on the implementation of the official
methodology for the determination of BEN and SOR in juices can be
found in the literature (15, 16). Briefly, 20.00 mL of sample is placed
in a flask together with tartaric acid (2 g) and magnesium sulfate
heptahydrate (50 g). Steam distillation is performed until 350-400 mL
is obtained, diluted to 500.00 mL, and filtered. To a volume of 5.00
mL of the filtrate is added 25.00 mL of the alkaline copper sulfate
solution, and the resulting mixture is shaken and treated with 5.00 mL
of HCl solution. The absorbances of the final solution are measured at
230 and 263 nm using distilled water as blank. The concentrations of
sorbic and benzoic acids are then calculated through

whereA1 is the absorbance measured at 230 nm,A2 is that recorded at
263 nm,C1 is the concentration of sorbic acid, andV is the sample
volume.

RESULTS AND DISCUSSION

Multivariate Analysis. Interestingly, the decomposition of
a three-way data array (obtained when second-order data for a
set of samples are grouped) is often unique, allowing relative
concentrations and spectral profiles of individual sample
components to be extracted directly. This permits correction
for uncalibrated sample constituents, a property that has been
named the “second-order advantage” (22, 24). Three-way data
are currently available to the analyst thanks to the implementa-
tion of hyphenated analytical techniques, although they can also
be produced in a single instrument, such as excitation-emission
fluorescence matrices in a spectrofluorometer and absorbance-
time measurements in a diode array detector (21). In the latter
case, time variations of the analytical signal may be produced
by a chemical reaction or by changes in the pH of the solution
with time.

When pH is selected as modulation for the second data
dimension, advantage is taken of the acid-base properties of
the analyte, assuming that an observable change in spectra with
the pH takes place. FIA systems are well-suited for generating
reproducible pH gradients and, combined with diode array UV-
visible detection, they provide valuable second-order data. A
peculiar characteristic of the data produced in this way is that
they are classified, from a mathematical point of view, as “rank-
deficient”, meaning that the overall rank of the measured data
is not equal to the sum of the ranks of the individual species
contributions. This phenomenon is the consequence of the
correlation of the species concentrations related by proton
transfer reactions along the dimension of the pH gradient. Rank-
deficient systems have been extensively analyzed with methods
such as MCR-ALS (25-28) and also, to a lesser extent, by

constrained PARAFAC (29) and residual bilinearization (RBL)
(30). From the analytical point of view, the interesting fact is
that they conveniently exploit the second-order advantage.
Finally, the multiway partial least-squares (N-PLS) method is
also available for application to second-order data (31). Although
it maintains the matrix structure of the employed data and is
able to handle rank-deficient systems, it does not share the
second-order advantage.

Spectral and pH Behavior of Analytes. Figure 2shows
the absorption spectra of BEN and SOR at pH values where
they are known to exist in their acid and basic forms, together
with the spectrum of a typical freshly prepared orange juice at
the same pH values. As can be seen, intense overlap occurs
among all spectra, a fact that complicates direct analysis by
first-order multivariate techniques, unless appropriate wave-
length regions are selected where the effect of background
components is minimal.

To circumvent these difficulties, a suitable methodology for
producing second-order data was designed, combining a flow
injection system in which a double-pH gradient is created and
diode array spectrophotometric detection (see below). This type
of data permits quantitation even in the presence of unexpected
interferents, thanks to the implementation of the powerful
second-order advantage. Consideration of the spectra shown in
Figure 2 allows setting approximate pH functions for inserting
into both PARAFAC and MCR-ALS programs, to provide
profile estimations for the initialization of the multivariate
programs.

Optimization of the FIA System. The optimization of the
FIA system was done using BCG. This reagent has a pKa value
(4.66) similar to those of the analytes (sorbic acid, 4.76; and
benzoic acid, 4.19). BCG was prepared in buffer solutions of
different pH values, and the FIA signals were obtained at the
wavelength at which the basic form of the BCG shows
maximum absorbance. Then, BCG prepared in BRH solution
was pumped into the system, and a volume of BROH was
injected. In this manner, a calibration of the different pH values
along the FIA signal was performed, implying that a cor-
respondence could be established between different times along
the FIA peak and the different pH values. This procedure helped
to ensure that a pH gradient was created in the range from 2.5
to 6.0, which is known to include the pKa values for both
analytes.

All of the variables were optimized as a compromise between
the width and height of the FIA peak, because the dispersion

sorbic acid (g L-1) ) 500(A2 - 0.0827A1)/(32V) (1)

benzoic acid (g L-1) ) 500(A1 - 0.0060C1)/(13.4V) (2)

Figure 2. Absorption spectra of the studied analytes and the background
signal produced by a freshly squeezed orange juice at two pH values:
(A, B) benzoic acid, 10 mg L-1; (C, D) sorbic acid, 10 mg L-1; (E, F)
orange juice. The pH values were 2.0 for spectra A, C, and E and 6.0 for
spectra B, D, and F.
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of the injected volume was responsible for the generation of
the pH gradient. The volume of the alkaline solution was tested
between 50 and 150µL, and the selected value was 50µL.
The length of the reactor was checked between 1300 and 1900
mm, and no substantial differences were noticed; hence, a reactor
of 1300 mm was selected. The flow rate was varied in the range
of 0.35-0.84 mL min-1, and the optimum value was 0.56 mL
min-1.

In Figure 3 the spectral-pH evolution of one of the
calibration mixtures is shown, as obtained from the correspond-
ing FIA peak. As can be seen in this figure, changes in
absorption spectra are observed that are the expected ones when
the pH of the sample is increased close to its center.

Synthetic Samples.Analysis of the set of synthetic samples
was first carried out byN-PLS. Leave-one-out cross-validation
was first applied to obtain the optimum number of factors for
the calibration set of samples. Application of Haaland’s criterion
(18) led to the conclusion that this number is three. Subsequent
prediction on the synthetic set with this three-factorN-PLS
model yielded the prediction results quoted inTable 2. The
results indicate rather large errors for benzoic acid, presumably
due to the effect of unmodeled background juice, which is not
taken into account by the calibration set.

The PARAFAC and MCR-ALS methodologies were imple-
mented for the synthetic set of samples in the manner described
in Table 1 of the Supporting Information. In both cases, the
construction of five-component models proved to be satisfactory
for all synthetic samples: these five components were sorbic
acid, sorbate, benzoic acid, benzoate, and an average background
contribution from the fruit juice. PARAFAC processing of
sample T1, for example, furnishes the spectral profiles shown
in Figure 4A and the pH profiles plotted inFigure 4B.
Agreement between spectral profiles of the calibrated compo-
nents and pure spectra of standards is seen to be satisfactory.
Indeed, comparison with the spectra shown inFigure 2 allows
one to match component 1 inFigure 4A with benzoic acid,
component 2 with benzoate, component 3 with sorbic acid, and
component 4 with sorbate, leaving component 5 to be identified
as the average background stemming from the fruit juice. The
pH profiles shown inFigure 4B are the expected ones on the
basis of the known spectral-pH behavior of the analytes; notice
that the intersection between the profiles for benzoic acid and
benzoate (components 1 and 2) occurs at a higher pH as
compared with that for sorbic acid and sorbate (components 3
and 4), in agreement with the order of the pKa values for these
components. Similar spectral and pH profiles were obtained
when MCR-ALS was applied to the synthetic set.

PARAFAC and MCR-ALS were applied to the set of
calibration samples and each of the test samples using the five-
component model described above, providing the prediction
results shown inTable 2. As can be seen, better statistical
indicators are obtained with these two multivariate strategies,
in agreement with the above discussion concerning the useful-
ness of the second-order advantage in the case of PARAFAC
and MCR-ALS, which is not exploited byN-PLS. However,

Figure 3. Three-dimensional plot of the spectral−pH evolution for the
calibration sample C4, after injection into the FIA system.

Table 2. Prediction Results in the Set of Synthetic Samples

N-PLSa PARAFACa MCR-ALSa

sampleb BEN SOR BEN SOR BEN SOR

T1 4.50 (3) 1.91 (2) 2.75 (2) 2.10 (3) 3.70 (3) 2.71 (2)
T2 6.81 (2) 1.92 (3) 5.95 (2) 2.01 (2) 4.93 (3) 1.83 (2)
T3 9.03 (2) 2.02 (2) 9.66 (4) 1.95 (3) 8.61 (3) 1.75 (2)
T4 4.65 (2) 6.04 (2) 2.13 (2) 6.93 (3) 1.15 (2) 7.52 (4)
T5 7.04 (3) 6.57 (4) 7.02 (3) 6.82 (3) 6.03 (4) 6.73 (3)
T6 9.13 (3) 7.33 (5) 11.15 (3) 6.74 (3) 10.12 (4) 6.71 (3)
T7 4.83 (4) 10.75 (4) 1.93 (2) 11.03 (4) 1.84 (2) 10.84 (3)
T8 6.85 (3) 10.12 (5) 6.74 (2) 10.81 (3) 6.71 (3) 10.46 (3)
T9 9.01 (4) 10.04 (5) 10.82 (3) 10.61 (3) 10.85 (4) 10.23 (3)

RMSE 1.92 0.45 0.56 0.16 1.22 0.44
REP 29.7 7.0 8.7 2.5 18.9 6.84

a Values are expressed in mg L-1 and correspond to mean of three replicates.
Values in parentheses correspond to standard deviations × 102. b See nominal
concentrations in Table 1. RMSE ) root-mean-square error (mg L-1); REP )
relative error of prediction (%).

Figure 4. (A) Normalized spectral profiles provided by the five-component
PARAFAC model when processing a synthetic test sample. (B) Normalized
pH profiles. In both cases, the numbering corresponds to the order
assigned by the model in terms of the contribution to the overall spectral
variance. Normalization is carried out to unit length. The numbers
correspond to the following compounds: 1, benzoic acid; 2, benzoate; 3,
sorbic acid; 4, sorbate; 5, average background stemming from the fruit
juice.
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the results provided by PARAFAC appear to be better than those
furnished by MCR-ALS, indicating that there are no serious
deviations from the trilinearity condition required by the former
technique.

Real Samples.The analysis of real samples was made in
the manner described above for the synthetic set, usingN-PLS,
PARAFAC, and MCR-ALS, and the results were compared with
those provided by the official methodology (Table 3). N-PLS
is seen to yield unsatisfactory results, for reasons explained
above concerning the second-order advantage, which is unavail-
able for this methodology. On the other hand, the values
obtained with PARAFAC and MCR-ALS are close to those
obtained by the official method. Indeed, a pairedt test indicates
no significant difference between the official and the presently
proposed methodology: all experimentalt values are below the
critical one (seeTable 3). This strongly suggests that multi-
variate analysis using suitable chemometric modeling techniques
is a useful alternative for the analysis of commercial juices.

Method Comparison. In comparing the above-employed
multivariate methodologies, one should take into account the
following characteristics: (1) analytical performance, (2) ease
and speed of program operation, and (3) model interpretability.

N-PLS is definitely the easiest of the three multivariate
methods, requiring almost no knowledge of the spectral proper-
ties of the analytes. However, it provides no discernible physical
interpretation as to the chemical components. Perhaps more
important is the fact that it does not exploit the second-order
advantage and, therefore, from a purely analytical point of view,
can be regarded as the weakest methodology.

On the other hand, both PARAFAC and MCR-ALS are able
to handle the occurrence of interferences not modeled in the
calibration set, a property of immense utility in the analytical
context. The main difference lies in the trilinearity requirement
for PARAFAC, which is relaxed in the case of MCR-ALS.
These two methods also yield a wealth of system properties of
useful physical meaning. However, in cases such as the presently
studied one, where rank deficiency occurs, the price paid is a
somewhat complex program operation, requiring the introduction
of initial guesses of component spectra for successful data
decomposition. A variety of tools is available to help the analyst
in this regard.

Supporting Information Available: Theory of PARAFAC,
MCR-ALS, andN-PLS methods. This material is available free
of charge via the Internet at http://pubs.acs.org.

LITERATURE CITED

(1) Venture, The Newsletter of the New York State Food Venture
Center.Chemical Food PreserVatiVes: Benzoate and Sorbate;
http://www.nysaes.cornell.edu/fst/fvc/Venture/venture2_chemi-
cal.html.

(2) Welling, P. L. M.; Van Duyvenbode, M. C.; Kaandorp, B. H.
Liquid chromatographic analysis of dehydroacetic acid and its
application to wines.J. Assoc. Off. Anal. Chem.1985, 68, 650-
652.

(3) Xie, Y.; Chen, P.; Wei, W. Rapid Analysis of Preservatives in
Beverages by Ion Chromatography with Series Piezoelectric
Quartz Crystal as Detector.Microchem. J.1999, 61, 58-68.

(4) Marengo, E.; Genaro, M. C.; Gianotti, V. A Simplex-optimized
chromatographic separation of fourteen cosmetic preservatives:
analysis of commercial products.J. Chromatogr. Sci.2001, 39,
339-344.

(5) Pylypiw, H. M.; Grether, M. T. Rapid high-performance liquid
chromatography method for the analysis of sodium benzoate and
potassium sorbate in foods.J. Chromatogr. A2000, 883, 299-
304.

(6) Mihyar, G. F.; Yousif, A. K.; Yamani, M. I. Determination of
Benzoic and Sorbic Acids in Labaneh by High-Performance
Liquid Chromatography.J. Food Compos. Anal.1999, 12, 53-
61.

(7) Lin, Y. H.; Chou, S. S.; Sheu, F.; Shyu, Y. T. Simultaneous
determination of sweeteners and preservatives in preserved fruits
by micellar electrokinetic capillary chromatography.J. Chro-
matogr. Sci.2000, 38, 345-352.

(8) Frazier, R. A.; Inns, E. L.; Dosis, N.; Ames, J. M.; Nursten, H.
E. Development of a capillary electrophoresis method for the
simultaneous analysis of artificial sweeteners, preservatives and
colours in soft drinks.J. Chromatogr. A2000, 876, 213-220.

(9) Boyce, M. C. Simultaneous determination of antioxidants,
preservatives and sweeteners permitted as additives in food by
mixed micellar electrokinetic chromatography.J. Chromatogr.
A 1999, 847, 369-375.

(10) Pant, I.; Trenerry, V. C. The determination of sorbic acid and
benzoic acid in a variety of beverages and foods by micellar
electrokinetic capillary chromatography.Food Chem.1995, 53,
219-226.

(11) Garcı´a Castro, J. C.; Rodrı´guez Delgado, M. A.; Sa´nchez, M.
J.; Garcı´a Montelongo, F. Simultaneous 2nd order derivative
spectrophotometric determination of sorbic and benzoic acids
in soft drinks.Anal. Lett.1992, 25, 2367-2376.

(12) Marsili, N. R.; Sobrero, M. S.; Goicoechea, H. C. Spectropho-
tometric determination of sorbic and benzoic acids in fruit juices
by a net analyte signal based method with selection of the
wavelength range to avoid non modelled interferences.Anal.
Bioanal. Chem.2003, 376, 126-133.

(13) Fung, Y.; Luk, S. Polarographic determination of sorbic acid in
fruit juices and soft drinks.Analyst1990, 115, 1219-1221.

(14) Hamano, T.; Mitsuhashi, Y.; Aoki, N.; Semma, M.; Ito, Y.
Enzymic Method for the Spectrophotometric Determination of
Benzoic Acid in Soy Sauce and Pickles.Analyst1997, 122, 259-
262.

(15) Caputi, A.; Slinkard, K. Collaborative study of the determination
of sorbic acid in wine.J. Assoc. Off. Anal. Chem.1975, 58, 133-
135.

(16) Caputi, A.; Ueda, M.; Trombella, B. Determination of sorbic
acid in wine.J. Assoc. Off. Anal. Chem.1974, 57, 951-953.

(17) Martens, H.; Naes, T.MultiVariate Calibration; Wiley: Chich-
ester, U.K., 1989.

(18) Haaland, D. M.; Thomas, E. V. Partial least-squares methods
for spectral analyses. 1. Relation to other quantitative calibration
methods and the extraction of qualitative information.Anal.
Chem.1988, 60, 1193-1202.

(19) Dinc, E.; Baydan, E.; Kanbur, M.; Onur, F. Spectrophotometric
multicomponent determination of sunset yellow, tartrazine and
allura red in soft drink powder by double divisor-ratio spectra
derivative, inverse least-squares and principal component regres-
sion methods.Talanta2002, 58, 579-594.

(20) Goicoechea, H. C.; Olivieri, A. C. Wavelength selection by net
analyte signal calculation with multivariate factor-based hybrid
linear analysis (HLA). A theoretical and experimental comparison
with partial least-squares (PLS).Analyst1999, 124, 725-731.

Table 3. Prediction Results in the Set of Synthetic Samples

official methoda,b N-PLSa,b PARAFACa MCR-ALSa,b

samplec BEN SOR BEN SOR BEN SOR BEN SOR

M1 0.69 0.24 0.95 0.17 0.71 0.27 0.64 0.22
M2 0.57 ND 1.10 ND 0.62 0.03 0.62 0.02
M3 0.71 0.24 1.05 0.41 0.70 0.24 0.76 0.23
M4 0.28 0.18 0.12 0.24 0.24 0.25 0.24 0.21

a All results are expressed in g L-1. For a paired t test between methods,
average standard error (SE), 0.03 g L-1; degrees of freedom (DOF), 4; confidence
level, 95%; critical t value, 2.79. Only for PARAFAC and MCR-ALS were the values
of (∆×DOF/SE) smaller than the critical t (∆ is the difference between the results
under comparison). b ND ) not detected. c See text for correspondence between
sample code and manufacturer.
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