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ABSTRACT: There is currently no well-defined procedure
for providing the limit of detection (LOD) in multivariate
calibration. Defining an estimator for the LOD in this scenario
has shown to be more complex than intuitively extending the
traditional univariate definition. For these reasons, although
many attempts have been made to arrive at a reasonable
convention, additional effort is required to achieve full
agreement between the univariate and multivariate LOD
definitions. In this work, a novel approach is presented to
estimate the LOD in partial least-squares (PLS) calibration.
Instead of a single LOD value, an interval of LODs is provided, which depends on the variation of the background composition
in the calibration space. This is in contrast with previously proposed univariate extensions of the LOD concept. With the present
definition, the LOD interval becomes a parameter characterizing the overall PLS calibration model, and not each test sample in
particular, as has been proposed in the past. The new approach takes into account IUPAC official recommendations, and also the
latest developments in error-in-variables theory for PLS calibration. Both simulated and real analytical systems have been studied
for illustrating the properties of the new LOD concept.

Analytical chemistry is the science of chemical measure-
ments, and thus it is of fundamental importance to

develop appropriate estimators for the figures of merit which
are conventionally used to evaluate the quality of the
measurements.1−3 Among these figures of merit, one of the
most controversial ones has been the limit of detection
(LOD).4−7 Its importance lies in the fact that it is a good
measure of the quality of a calibration model, because its
definition brings together two important analytical concepts:
the sensitivity and the precision in the analytical determi-
nations.
Currently, the International Union of Pure and Applied

Chemistry (IUPAC) adopts the definition given by the
International Standardization Organization (document ISO
11843)8 for the capability (or limit) of detection as “the lowest
quantity of a substance that can be distinguished from the
absence of that substance (a blank value) within a stated
confidence limit”.9−11 This implies that the LOD is the
minimum quantity detectable with a preset probability of false
positives (Type I errors) and false negatives (Type II
errors).9−11

Regarding LOD estimators, when the analytical signal is
univariate and analyte-specific, the recommended detection rule
is based on a Neyman-Pearson test that considers false-positive
and false-negative errors for the null hypothesis “there is no
analyte” and the alternative hypothesis “there is analyte”.9 The
LOD can be directly estimated from the univariate calibration
line, as a simple alternative to the original recommendation, in
which the LOD is estimated from the average signal level and

standard deviations for repeated measurements of a blank
sample and for one or more samples at concentrations near the
detection limit.12

However, when dealing with multivariate calibration, as is the
case of partial least-squares (PLS) regression analysis, the
application of the above definition is not entirely clear, and
some aspects which remain outside the field of application of
the ISO norm need to be considered.13 In fact, there is still no
generally accepted LOD estimator for PLS studies. Never-
theless, there is a high interest in the topic,2 undoubtedly tied
to the inclusion of PLS regression in many commercial
instruments, particularly those based on near-infrared spectral
(NIR) measurements,14 in addition to the continuous
emergence of new and more sensitive analytical techniques,
and the release of regulations on human or environmental
exposure to low levels of chemical health hazards.
The main difficulty in estimating a multivariate limit of

detection is that the instrumental signals are not specific for a
particular analyte. In response to this, Lorber et al. developed
an approach based on the concept of net analyte signal.15

However, the main drawback of this estimator is that it only
considers the uncertainty in the signal measurements, making
its real application rather limited, because other important
sources of uncertainty are the calibration concentrations and
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signals. Additional strategies, which rely on the standard
deviation of the blank based on spectral residuals, suffer from
the same drawback.16

Rius et al. suggested a multivariate LOD based on the
calculation of a response detection which is specific for the
analyte of interest, with evaluation of the probabilities of errors
of both Types I and II.7 They presented the interesting idea
that an LOD value should be calculated for each test sample,
implicitly suggesting the possibility of considering the multi-
variate LOD as a concentration range rather than as a single
concentration value. Nonetheless, the authors exposed the need
for further research aimed at the calculation of a nonambiguous
detection response. A similar method, based on a simplified
formula for the sample-specific standard error in concentration
for PLS regression,17 has been applied in several literature
works.18,19 However, in all of these approaches, the leverage (a
dimensionless parameter measuring the position of the sample
in the calibration space) of each sample at zero analyte
concentration is only an approximation, and there is no well-
established procedure to calculate it.
Finally, Ortiz et al. proposed an LOD estimator which can be

directly generated by extending the IUPAC recommendations
for univariate methods to multivariate calibration.13,20 This
generalization is based on the mathematical proof that the
capability of detection, as defined by ISO and IUPAC for
univariate calibration, is invariant for linear transformations of
the response. As a consequence, the same capability of
detection is obtained using the regression of estimated
concentration versus calibration concentrations. The latter
values can be either measured by a reference technique, or
nominally assigned when prepared in the laboratory from
analyte standards. Although this “pseudounivariate” approach
sounds valid, it is not in complete agreement with the latest
advances in uncertainty propagation in PLS calibration, based
on the so-called error-in-variables (EIV) models.21 In particular,
it is not consistent with the idea of a sample-specific LOD
value.2,3

In this work, a new methodology to estimate the LOD is
proposed for PLS multivariate calibration. It is based on several
complementary ideas: (1) each test sample has in principle a
specifically associated LOD value, (2) the universe of test
samples is well-represented by the calibration set of samples,
(3) the leverages for the calibration samples can be extrapolated
to zero analyte concentration, and (4) a range of LOD values
can be easily estimated for the PLS model as a whole. The
lower and upper limits of the LOD interval (LODmin and
LODmax, respectively) correspond to the calibration samples
with the lowest and largest extrapolated leverages to zero
analyte concentration. These results allow the mutual relation-
ship between LODmin, LODmax, and the pseudounivariate value
(LODpu) to be uncovered. Finally, the proposal is tested in
several simulated and experimental systems.

■ THEORY
PLS Regression. Partial least-squares has gained popularity

in analytical chemistry, as has been extensively described in the
literature.22−24 The PLS model can be interpreted as the result
of merging principal component regression (PCR) and
multivariate linear regression (MLR). PCR finds factors that
capture the greatest amount of variance in the matrix of
predictor (X) variables (e.g., spectra, matrix size J × I, where J is
the number of wavelengths and I the number of samples). MLR
seeks to find a single factor that best correlates predictor (X)

variables with predicted (y) variables (e.g., concentrations, of
size I × 1). In PLS, on the other hand, the information
contained in both X and y is actively used for the definition of
the latent variable space, in such a way that latent factors both
capture variance and achieve correlation, maximizing the
covariance between the predictor and the variable to be
predicted.
The PLS calibration stage requires, as a first step, the

estimation of the optimum number of latent variables A, which
is usually done by a technique known as leave-one-out cross
validation.25 The main result of the calibration is the vector of
latent regression coefficients v (size A × 1), and two matrices of
loading vectors P andW (both of size J × A). In the subsequent
prediction phase, these parameters are employed to estimate
the analyte concentration in a test sample (y,̂ with the “hat”
over the symbol meaning that the parameter is estimated) from
its spectrum x:

̂ = −t W P W x( )T 1 T
(1)

̂ = + ̅y yv tT
cal (2)

where t ̂ is vector of the so-called scores for the test sample (size
A × 1), the superscript “T” indicates transposition, and yc̅al is
the mean calibration concentration. The latter term appears in
eq 2 for mean-centered data, which is the default option in PLS
studies.
Equation 2 is defined in the space of the latent variables,

although an analogous expression exists in the real variable
space, as

̂ = + ̅y yb xT
cal (3)

where b is the vector of regression coefficients in the real space.
In the remainder of this work, the hats will be avoided for
clarity.

Multivariate LOD. According to the latest IUPAC
recommendations, the estimation of the limit of detection
should comply with two conditions: (1) it should be based on
the theory of hypothesis testing, taking into account the
probabilities of false-positive and false-negative decision, and
(2) it should include all the different sources of error, both in
calibration and prediction steps which could affect the final
result.
Considering the first condition, the multivariate LOD should

be based on the same expression as the one used for univariate
calibration:3

= +α ν β νt t yLOD ( ) var( ), , 0
1/2

(4)

where var(y0) is the concentration variance for a blank sample,
and tα,ν and tβ,ν are coefficients for a Student’s t distribution
with ν degrees of freedom. The latter two parameters take into
account the probability of making Type I errors (assuming that
the analyte is present when it is absent) with a probability α,
and Type II errors (assuming that the analyte is absent when it
is present) with a probability β. Typically, α and β are assigned
a value of 0.05 (i.e., a confidence level of 95%), ν is usually large
for a multisample calibration set, and therefore in practice the
factor (tα,ν + tβ,ν) in eq 4 takes the approximate value of 3.3.
It is important to notice that in eq 4 the distance from the

blank to the LOD is approximated by the sum of two
confidence intervals. A more rigorous approach suggests the use
of a noncentrality parameter of a noncentral t distribution
instead of a sum of t-coefficients.26 However, the values
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provided by these alternative statistical approaches do not
significantly differ.27 In any case, a thorough analysis of the
LOD estimators based on prediction intervals has been
performed.28,29

A key point in regard to eq 4 is the criterion adopted for
estimating the variance of the predicted concentration, which
concerns the second of the above conditions. In this sense, the
basic assumption throughout this work is that the variance in
the predicted analyte concentration by a PLS model is given by
the well-known expression:3,16,19,30−32

= + +− −y x h x h yvar( ) SEN var( ) SEN var( ) var( )2 2
cal

(5)

where SEN is the sensitivity [given in PLS by the inverse of the
length of the regression coefficients, i.e., by 1/|| b ||, where b is
from eq 3 and || || implies the Euclidean norm of a vector],21,33

var(x) is the variance in instrumental signals, h is the sample
leverage, and var(ycal) the variance in the calibration
concentrations. The three terms in the right-hand side of eq
4 account for the propagation of uncertainties derived from (1)
instrumental signals in the test sample data, (2) instrumental
signals in the calibration data, and (3) calibration concen-
trations. The first and probably the most relevant contribution
is transmitted directly via the inverse squared sensitivity. The
second and third terms arise from calibration uncertainties and
are both scaled by the sample leverage. The latter is
proportional to the Mahalanobis distance of a sample from
the center of the calibration space (for mean-centered data),
and it can be expressed as a function of concentrations,
instrumental variables, or latent variables. In the latter case, an
appropriate expression for h is21

= −h t T T t( )T T 1
(6)

where T is the matrix of scores for the calibration samples,
which is obtained by projecting the calibration matrix of signals
X onto the PLS loadings, analogously to eq 1. Appropriate
values of var(x) and var(ycal) are usually available from sample
replicate analysis or estimated from other sources.17

Notice that when both signals and concentrations are mean-
centered prior to PLS modeling, two additional terms are
required in the right-hand side of eq 5, having the same form as
the current last two terms in this equation, with the leverage h
replaced by (1/I), where I is the number of calibration
samples.21 One simple way of taking this fact into account is to
define a new, “effective” leverage, as (h + 1/I) to be used
instead of h in eq 5 and in all equations requiring to estimate
var(y) for mean-centered data.

To be able to estimate the LOD, eq 4 requires the value of
var(y0), that is, the concentration variance for a blank sample
[the value of var(y) when y = 0], which would in principle be
available from eq 5. In this regard, the leverage when the
analyte concentration is zero (h0) plays a fundamental role.
Surprisingly, though, to the best of our knowledge there are no
consistent proposals for estimating this latter parameter.
Approximations to h0 have been suggested, involving the
study of samples which are supposed to be near the detection
limit.18,19

As an extension of the LOD univariate concept, one tends to
intuitively think on a single LOD value for the multivariate case,
although a deeper analysis indicates that this is not the case. In
univariate calibration, a single value of h0 exists, which can be
confidently estimated from the calibration parameters.1

However, in multivariate calibration, h0 assumes different
values depending on the sample composition. According to
eqs 1 and 6, each test sample with zero analyte concentration,
but having different levels of other concomitant components,
all contributing to the sample spectrum, will generate a specific
set of scores, and thus a specific value of the leverage h0.

2

Therefore, in the framework of PLS calibration, it is more
reasonable to consider the existence of an LOD interval, whose
values depend on the variability of the background
composition, rather than a single LOD value.

■ DATA SETS
Simulated Data. Synthetic data sets were created by

mimicking a three-component analytical system, with compo-
nent 1 being the analyte of interest. Each calibration and test
spectrum (x) was built using the following expression:

= + +y y yx s s s1 1 2 2 3 3 (7)

where s1, s2, and s3 are the pure component spectra at unit
concentration defined in a range of 100 data points (see Figure
1A), and y1, y2, and y3 are the component concentrations in a
specific sample. The pure component signals s1, s2, and s3 are
Gaussian shaped functions, centered at sensors 50, 40, and 20,
respectively, with full widths at half-maximum of 24 sensors in
the three cases. All constituents are present in the calibration
set, composed of 100 samples with randomly chosen
concentrations ranging from 0 to 1. Two types of test samples
were created, where (1) all components have random
concentrations in the range from 0 to 1 in 100 different
samples, and (2) the analyte of interest (component 1) is
absent, and the remaining two components have random
concentrations in the range 0−1 in additional 100 different
samples.

Figure 1. (A) Pure component spectra employed to build the synthetic data sets: blue line, analyte of interest; green and red lines, additional sample
components. (B) Representative calibration spectra created from the noiseless profiles shown in (A), including random instrumental noise.
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Gaussian independent and identically distributed noise was
added in three different manners: (1) only in calibration
concentrations, (2) only in calibration and test sample signals,
(3) in all concentrations and signals. Figure 1B shows some
typical calibration signals including signal noise. For each of
these noise addition modes, the PLS calibration/prediction
process was repeated 1000 times (both signal and concen-
tration data were mean-centered), and a pseudounivariate
calibration line was obtained by regressing predicted analyte
concentration values against nominal concentrations for the
calibration set. The statistical parameters of the calibration lines
were employed to estimate LODpu in each Monte Carlo cycle,
as proposed by Ortiz et al. for estimating the LOD (see
below).13 The mean LODpu value was then compared with the
extremes of the presently proposed LOD, estimated from eqs
12 and 13 using in both cases the “effective” leverages (h0min +
1/I) and (h0max + 1/I).
Experimental Data. Several experimental data sets,

previously analyzed using PLS regression, were employed to
assess the detection limit with the newly proposed approach,
and also with univariate extensions of the LOD. They comprise
the following analytes of interest and sample types: (1) fluoride
ion in natural waters containing sulfate as potential
interferent,34 (2) 2-s-butyl-4,6-dinitrophenol (DINOSEB) in a
complex reacting mixture containing aromatic hydrocarbons,35

(3) bromhexine in anticoughing syrups,36 (4) the antibiotic
tetracycline in human sera,37 (5) biodiesel in mixtures with
diesel oil,38 and (6) humidity in corn seeds.39 The spectral data
measured for these systems were as follows: (1), (2), and (3),
UV−visible spectra, (4), synchronous fluorescence spectra, and
(5) and (6), NIR spectra. Experimental details on the
preparation of calibration standards and test samples, measure-
ment of instrumental signals, and PLS modeling can be found
in refs 34−37. Data set no. (6) is available on the Internet at
http://www.eigenvector.com/data/Corn/. In all cases, both
signal and concentration data were mean-centered prior to PLS
modeling. All these data sets have been included as Supporting
Information.

■ RESULTS AND DISCUSSION
LOD Interval for PLS Calibration. For the simulated

ternary system consisting of one analyte to be quantitated, in
the presence of two additional components, the number of
calibration latent variables for constructing a PLS model is
three. This means that each sample has an associated score
vector t of size 3 × 1, and can thus be plotted as a point in
three-dimensional score space. Figure 2 shows the location of a
number of test samples, where it can be seen that (1) the
samples with zero analyte concentration (red circles) lie in a
definite region H0 of the π0 plane, and (2) the projections of
the positions of the remaining test samples (yellow circles),
perpendicular to π0, also lie within H0. This suggests that the
latter region embraces all possible blank samples (from the
point of view of component 1 as the analyte of interest) which
are represented by the chosen calibration set. The overall idea
of the present work is to find the limits of H0 in score space,
even if blank samples were not included in the calibration set.
In general, a hyperplane π0 exists for every calibration set,

representing the scores of the samples for which the analyte of
interest is absent (i.e., the specific background for each sample).
Resorting to eq 2, the hyperplane in A-dimensional score space
can be defined by the following equation (signal and
concentration mean-centering is assumed):

π + ̅ =yv t: 00
T

cal (8)

Because the LOD is a function of the variance in the
predicted analyte concentration for a blank sample, which is in
turn a function of h0, estimating the LOD interval consists on
finding the minimum (h0min) and the maximum (h0max) value of
this parameter for a certain calibration set. From a geometrical
point of view, h0min is the minimum distance between π0 and
the center of a normalized calibration score space (see
Appendix), that is, the perpendicular distance from π0 to the
center. Interestingly, the Appendix shows that h0min is simply
given by

= ̅
∑ =

h
y

yi
I

i
0min

cal
2

1
2

(9)

where yi is the centered concentration for the ith calibration
sample. The leverage in eq 9 corresponds to the value obtained
in univariate calibration with a given calibration set, provided
other sample components are absent.1 On the other hand, the
upper limit h0max can be estimated by first computing the
leverages for the projections (h0cal) of all calibration samples
onto π0 (see Appendix):

= + −
̅

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥h h h

y

y
10cal cal 0min

cal

cal

2

(10)

where hcal and ycal are the leverage and (centered) analyte
concentration of a generic calibration sample. Then the
maximum of all possible h0cal values is found:

=h hmax( )0max 0cal (11)

The values of h0min and h0max [or the “effective” leverages
(h0min +1/I) and (h0max +1/I) for mean-centered data] can
subsequently be inserted in eqs 4 and 5 to obtain the lower and
upper limits of the LOD interval:

= + +− −x h x h yLOD 3.3[SEN var( ) SEN var( ) var( )]min
2

0min
2

0min cal
1/2

(12)

= + +− −x h x h yLOD 3.3[SEN var( ) SEN var( ) var( )]max
2

0max
2

0max cal
1/2

(13)

Figure 2. Location of samples in PLS score space for the ternary
synthetic data set: yellow circles, samples having random concen-
trations of the three components (in the range from 0 to 1); red
circles, samples having zero analyte concentration and random
concentrations of the two additional components (in the same range
of values).
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These limits can be reported for a PLS calibration based on a
given set of samples and characterize the overall model and not
a specific test sample.
It should be noticed that LODmin and LODmax depend on the

leverage, which is a function of the calibration score matrix T.
Because this matrix depends on the calibration design, that is,
the set of samples selected for calibration and the number of
calibration latent variables, the limits of the LOD interval will
also be dependent on these two factors. The importance of
methodologies to determine a number of factors that avoid
overfitting, and to choose a set of samples with spectral features
which span most of the expected variability of future samples in
spectral space, has been treated in detail in the literature.25,40

This implies that the assumption throughout this work is that
the correct design of the calibrations leads to an unbiased
prediction.
Decision Rules for Detection. Once the limits of the

LOD interval are set, the analyst may declare that the analyte is
not detected in a given test sample if its predicted
concentration is below LODmin, or that it is present if its
predicted concentration is above LODmax. In principle, the
question remains unsolved for samples whose predicted analyte
concentrations lie within both LOD interval limits. Figure 3
provides a schematic representation of the three possible
situations that can be found in practice.

In the concentration range LODmin < y < LODmax, the
question can be solved by estimating a specific LOD value for
the test sample, approximating its real leverage h to the leverage
h0 which would correspond to its background components (i.e.,
in the absence of analyte). This is equivalent to taking the
sample as if it were a blank, which is conceivable because its
analyte concentration is most probably very low. The obtained
LOD value can then be employed to check whether the
predicted concentration is below (analyte absent) or above
(analyte present) the sample-specific LOD.
Pseudounivariate LOD. In this approach, the analyte

concentrations estimated for the calibration set of samples by
the PLS model are plotted against their nominal or measured
concentrations.13 The result is a pseudounivariate calibration

graph in which the vertical scale is the estimated analyte
concentration instead of either instrumental or latent variables.
The graph is processed as in univariate calibration, assuming
that the detection limit is insensitive to any linear trans-
formation applied to the signal.13 This leads to an LODpu value,
estimated from the classical univariate equation:4

= + +−s h ILOD 3.3 [(1 1/ ) var ]pu pu
1

0min pu
1/2

(14)

where spu is the slope of the pseudounivariate line and varpu is
the variance of the regression residuals. Equation 14 does not
include a term accounting for calibration concentration
uncertainties, as is customary in univariate calibration.
The parameter LODpu has the advantage of being a single

figure of merit characterizing the overall PLS calibration model.
However, the underlying idea is not consistent with the LOD
interval described above, and it is not clear which is the
relationship among LODpu and the lower and upper interval
values LODmin and LODmax. One of the purposes of the present
work was to uncover such a relationship, which will be
discussed in the next sections.

Simulated Data. The simulated data set was employed to
calculate and compare the pseudounivariate PLS detection limit
defined by Ortiz et al. (LODpu),

13 with the LOD interval
proposed in this work (from LODmin to LODmax). Monte Carlo
simulations allowed to study the behavior of both estimators
under the effect of different noise sources. The simulations
were performed in the following way: After creating a data set
with a predefined sensitivity given by the relative position of the
analyte peak with respect to the interfering agents, noise was
added in the three different manners described in the relevant
section. Mean-centered (both in signal and concentration) PLS
models were built using three calibration latent variables, and
analyte concentrations were predicted in the calibration and in
the test samples. The calibration/prediction process was
repeated 1000 times using different random seeds for the
signal and/or concentration uncertainties, depending on the
manner in which noise was added to the synthetic data. In each
of these cycles, predicted analyte concentrations in the
calibration samples were regressed against their nominal
concentrations, estimating the LODpu value with eq 14 as
described by Ortiz et al., considering the latter regression as a
true univariate calibration.13

Although LODmin and LODmax did not significantly change
from run to run, the Monte Carlo LODpu values follow a
Gaussian behavior, as shown in Figure 4 in two typical cases.
The means of the LODpu distributions are compared in Table 1
with the lower and upper limits of the LOD interval (LODmin
and LODmax) in several different cases. It is interesting to note
that the LODpu distribution is centered at the lower limit
LODmin of the presently proposed LOD interval, provided the
noise in calibration concentrations is negligible compared to
the level of noise in instrumental signals (Table 1 and Figure
4A). This result can be explained on the following facts
regarding the estimation of LODpu: (1) the variance of the
pseudounivariate regression residuals varpu approaches [SEN

−2

var(x)],41 and (2) the regression slope spu is expected to be
close to 1. Introduction of these parameters in eq 14 leads to an
LODpu identical to LODmin [eq 12 with var(ycal) ≈ 0 and
“effective” leverage (h0min + 1/I)].
In contrast, when concentration uncertainties compete with

the instrumental noise in relative size, the mutual relationship
among LODpu, LODmin, and LODmax is less clear. As shown in

Figure 3. Schematic representation of the minimum and maximum
LOD values proposed in the present report and the decisions
concerning the presence or absence of the analyte in different
concentration ranges. The blue-shaded region corresponds to Type I
errors for the minimum LOD, whereas the red-shaded region
corresponds to Type II errors for the maximum LOD.
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Table 1 and also illustrated in Figure 4B, the LODpu value can
be even larger than the upper limit LODmax. This can be
explained on the basis of how the errors in calibration
concentrations var(ycal) are incorporated into the LOD
definitions. In the estimation of both LODmin and LODmax,
the latter contribution is scaled by the leverage, but in LODpu, it
is directly incorporated into the first, test-sample-dependent
term of the LOD expression. In the latter case, the “signal” is
replaced by the estimated concentrations, and therefore,
concentration errors are directly propagated to the standard
error in predicted concentration. In any case, the conceptual

approach to LODpu is radically different than the presently
proposed range of LOD values, which should in principle lead
to a better insight into the PLS detection capabilities.

Experimental Data. In all the experimental systems, the
PLS models were built as already reported in the literature,34−37

using a number of calibration samples and latent variables as
summarized in Table 2. The values of LODpu were estimated as
described above, from the pseudounivariate plot of estimated vs
nominal (or measured, depending on the system) analyte
concentrations in the calibration set of samples. For the
estimation of the LOD interval proposed in the present work,
eqs 12 and 13 were employed, inserting appropriate values of
the following parameters: (1) sensitivity, as the inverse of the
length of the vector of regression coefficients computed with
the PLS model, (2) the minimum and maximum “effective”
leverage values (h0min + 1/I) and (h0max + 1/I), because mean-
centering was employed. The variance in spectral signals was
estimated from the consideration of the average spectral
residuals when modeling the test set of samples (Table 2).
Regarding the variance in concentrations, when the calibration
samples are prepared starting from analyte standards, the
uncertainties are usually known by the analyst from uncertainty
propagation analysis. This occurs in the first five examples of
Table 2. In the last entry of this table, on the other hand,
humidity values were measured by a reference technique, and

Figure 4. Distribution histograms of LODpu values after repeated Monte Carlo calculations in a typical simulated data set, for negligible (A) and
finite (B) uncertainties in calibration concentrations. The mutual relationship among the mean LODpu value, LODmin and LODmax are shown.
Specific uncertainties employed in (A) and (B) are concentration, 0 and 0.01, signal, 0.01 and 0.01 units, respectively.

Table 1. Comparison of LOD Values in the Simulated
Systema

uncertainty in
instrumental

signals

uncertainty in
calibration

concentrations mean LODpu LODmin/LODmax

0.005 0 0.0067 0.0067/0.0069
0 0.005 0.017 0.0033/0.0052

0.005 0.005 0.018 0.0075/0.0086
0.01 0 0.013 0.013/0.014
0 0.01 0.033 0.0047/0.0073

0.01 0.01 0.036 0.014/0.016
0.008 0.001 0.0111 0.0106/0.0108

aAll values are given in arbitrary signal and concentration units.

Table 2. Comparison of LOD Values in Experimental Systemsa

system
fluoride in natural

waters
DINOSEB in a reacting

mixture bromhexine in syrups tetracycline in sera
biodiesel in
diesel oil

humidity in
corn

spectra UV−vis UV−vis UV−vis
synchronous
fluorescence NIR NIR

concentration
range

0−1.4 mg L−1 0−261 mg L−1 1.55−2.66 × 10−4 mol L−1 0−4 mg L−1 0−20% 9.4−10.9%

I 36 10 12 50 48 50
A 4 2 3 4 11 13
[var(x)]1/2 0.001 0.001 0.006 3 0.001 0.001
[var(ycal)]

1/2 0.01 0.3 1 × 10−6 0.15 0.01 0.005
LODpu 0.18 1.7 0.065 0.30 2.8 0.080
LODmin 0.028 0.47 0.053 0.16 0.74 0.080
LODmax 0.040 0.77 0.057 0.27 1.1 0.081

aI = number of calibration samples. A = number of PLS latent variables. All LOD values are given in the same units as the corresponding
concentration range. Signal uncertainties [var(x)]1/2 are given in absorbance units, except for tetracycline in sera, which are in arbitrary fluorescence
intensity units. Concentration uncertainties [var(ycal)]

1/2 are given in the same units as the corresponding concentration ranges.
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hence the uncertainty can in principle be estimated from
replicate analysis. In the absence of this information, we have
employed the average uncertainty when predicting the
calibration concentrations by the PLS model. This discussion
highlights the need of estimating the calibration concentration
uncertainties in a reliable manner (either from replicate
reference measurements or from error propagation consid-
erations), because they constitute a key aspect in the present
LOD calculations.
As can be appreciated in the first five cases of Table 2, the

LODpu values are larger than the maximum values LODmax of
the presently proposed LOD range. This is probably due to the
fact that in these cases the calibration concentration errors are
relevant, as in most analytical systems, and agrees with the
conclusions reached during the simulation study. In the case of
the calibration for humidity in seeds (last entry in Table 2), the
reference values were measured by a very precise gravimetric
method. Under very small concentration uncertainties, the
LODpu approaches LODmin, in agreement with the simulation
results.
The example where tetracycline was detected in human sera

(Table 2) deserves a special attention. In ref 37, a rather
cumbersome experimental procedure was employed to
approximate the detection limit, preparing a large set of
experimental samples having various analyte concentration
levels near the expected LOD value. A detailed statistical
analysis was then undertaken to detect the analyte concen-
tration for which the predicted concentration was statistically
different than zero. The reported LOD value was of ca. 0.30 mg
L−1,37 which can now be favorably compared with the limits of
the LOD interval quoted in Table 2. This implies that the LOD
for this PLS model could have been adequately estimated from
the calibration set, without the need of preparing an additional
set of low analyte concentration samples.

■ CONCLUSIONS

A new way of calculating the limit of detection in partial least-
squares regression was investigated, together with the
corresponding results toward both simulated and experimental
data sets. The method is based on a geometrical analysis of the
multivariate leverage definition in the latent space, and
combines mathematical and analytical criteria, leading to a
new LOD estimator which adopts the form of a detection
interval. This proposal represents an adequate trade-off
between the two main current trends regarding the multivariate
LOD definition: one aiming to calculate a sample-dependent
LOD based on the EIV model, and the other one extending the
ISO/IUPAC univariate definition to ascribe a unique LOD
value to a given calibration model. The presently proposed
estimator can be easily extended to other inverse multivariate
models, although further studies should be made to apply it to
more complex multiway data.

■ APPENDIX

In this Appendix, some relevant results concerning the
presently proposed LOD interval for PLS calibration are
derived. It is first important to recognize that the leverages are
squared distances in score space, once the latter ones are
properly normalized [cf. eq 6]; that is, each score element ta is
multiplied by the factor fa, which is the ath diagonal element of
the A × A square matrix (TT T)−1/2 (T is the calibration score
matrix). In what follows, we will call the normalized score

vectors as tN for a generic sample, tNcal for a calibration sample,
and tN0 cal for the projection of a calibration sample
perpendicular to the π0 hyperplane defined by zero analyte
concentration. Specific ath elements of these vectors will be
called taN, taNcal, and taN0 cal, respectively.
The expression defining π0 in score space is (mean-centered

signal and concentration data are assumed):

π + ̅ =yv t: 00
T

cal (A-1)

which can be written in terms of normalized scores as follows:

∑
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= −
=

v t
f y
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A calibration sample located at tNcal can be projected
perpendicular to π0 along the parametric straight line:

= −
̅

+t
v

f y
k ta

a

a
aN

cal
Ncal

(A-3)

where k is a variable parameter. The intersection of the latter
line with π0 occurs at the following point:
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from which k can be calculated as
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Thus, a generic coordinate of the intersecting point is
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Because the value of (Σa = 1
A (vataNcal/fa)) is equal to the

centered concentration of a given calibration sample (ycal), eq
A-6 can be rearranged to
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In eq A-7, Σa = 1
A ((va)/( fa))

2 can be converted to calibration
concentrations by noting that the ta columns of the T matrix
are orthogonal (i.e., ta

Tta′ = Σi = 1
I tiatia′ = 0 if a ≠ a′), which

implies the following result:

∑ ∑ ∑ ∑ ∑ ∑ ∑= = = ≈
= = = = = = =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

v
f

v v t v t yt t ( ) ( )
a

A
a

a a

A

a a a
a

A

a
i

I

ia
i

I

a

A

a ia
i

I

i
1

2

1

2 T

1 1

2

1 1

2

1

2

(A-8)

where yi is the centered concentration for the ith calibration
sample, estimated from the product of regression coefficients va
and sample scores tia.
We now define the minimum projected leverage h0min as the

known expression for the pseudounivariate leverage for a blank
sample:

≈ ̅
∑ =

h
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i
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cal
2

1
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(A-9)

Analytical Chemistry Article

dx.doi.org/10.1021/ac501786u | Anal. Chem. 2014, 86, 7858−78667864



From these results, it is possible to transform eq A-7 in the
following simple expression:

= − ̅ +

̅
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v y y
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cal cal

cal
2 0min Ncal
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The squared length of the vector tN0cal [with coordinates
given in eq A-10] is the leverage (h0cal) of a sample of zero
analyte concentration, hypothetically projected perpendicular
to π0. From the above expressions, it can be shown that
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where hcal is the leverage for the calibration sample and ycal is
centered. It can easily be seen that at the calibration center,
where both hcal and ycal are zero, the minimum projection to π0
is obtained (i.e., h0cal = h0min), hence the name h0min in eq A-9.
Interestingly, eq A-11 can be derived from simple

trigonometric arguments:

= + = + −h h Q h h M( )0cal 0min
2

0min cal
2

(A-12)

where the segments M and Q are defined in Figure 5. From this
figure, if the leverages are interpreted as squared distances

proportional to concentration, then M2 = h0min ((ycal − yc̅al)/
(yc̅al))

2, and eq A-11 immediately follows from eq A-12.
The conclusion is that at zero analyte level, a range of sample

leverages occur, which depend on the variability of the
background composition, with two extreme values: the
minimum (h0min) given by eq A-9 and the maximum of all
h0cal values, which are provided by eq A-11.
It should be noticed that all the leverage expressions

discussed above correspond to mean-centered data (both
signals and concentrations). Before inserting any of these
leverages, particularly the minimum and maximum h0min and
h0max values, in the corresponding expression for the
concentration uncertainty, they have to be converted into
“effective” leverages, that is, (h0min + 1/I) and h0max + 1/I).
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project no. PICT-2010-0084) are gratefully acknowledged for
financial support. F.A. thanks CONICET for a doctoral
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(23) Wold, S.; Sjöström, M.; Eriksson, L. Chemom. Intell. Lab. Syst.
2001, 58, 109−130.
(24) Massart, D. L.; Vandeginste, B. G. M.; Buydens, L. M. C.; De
Jong, S.; Lewi, P. J.; Smeyers-Verbeke, J. Handbook of Chemometrics
and Qualimetrics; Elsevier: Amsterdam, 1997.
(25) Haaland, D. M.; Thomas, E. V. Anal. Chem. 1988, 60, 1193−
1202.

Figure 5. Schematic representation of the leverage parameters relevant
to the present work. The thick black line implies the projection of the
π0 plane, the black circles indicate the location of the calibration center
(analyte concentration = yc̅al) and a given calibration sample (analyte
concentration = ycal). Additional distances in score space (square roots
of leverage values) are noted.

Analytical Chemistry Article

dx.doi.org/10.1021/ac501786u | Anal. Chem. 2014, 86, 7858−78667865

http://pubs.acs.org
mailto:olivieri@iquir-conicet.gov.ar


(26) Clayton, C. A.; Hines, J. W.; Elkins, P. D. Anal. Chem. 1987, 59,
2506−2514.
(27) Del Río Bocio, F. J.; Riu, J.; Boque,́ R.; Rius, F. X. J. Chemom.
2003, 17, 413−421.
(28) Voigtman, E. Spectrochim. Acta, Part B 2008, 63, 129−141.
(29) Voigtman, E. Spectrochim. Acta, Part B 2008, 63, 115−128.
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