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a  b  s  t  r  a  c  t

Quantitative  analytical  works  developed  by  processing  second-  and  third-order  chromatographic  data
are reviewed.  The  various  modes  in  which  data  of  complex  structure  can  be  measured  are  discussed,  with
chromatographic  separation  providing  either  one  or two  of  the  data  dimensions.  This  produces  second-
order data  (matrices  from  uni-dimensional  chromatography  with  multivariate  detection  or from  two-
dimensional  chromatography)  or third-order  data  (three-dimensional  data  arrays  from  two-dimensional
chromatography  with  multivariate  detection).  The  available  algorithms  for  processing  these  data  are
classified  and  discussed,  regarding  their  ability  to  cope  with  the  ubiquitous  phenomenon  of retention
time  shifts  from  run  to  run.  A  summary  of  relevant  works  applying  this  combination  of techniques  is
presented,  with  focus  on quantitative  analytical  results.  Special  attention  is paid  to works  achieving  the
full  potentiality  of  the  multidimensional  data,  i.e.,  the  second-order  advantage.
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1. Introduction

The quality of modern life has notably improved due to sev-
eral key factors such as significant advances in medicine and

� “This paper belongs to the Special Issue Chemometrics in Chromatography,
Edited by Pedro Araujo and Bjørn Grung”.
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E-mail address: olivieri@iquir-conicet.gov.ar (A.C. Olivieri).

pharmacology, emphasis on the nutritional properties of food,
and awareness of the need to protect the environment in which
we  live. From the perspective of the analytical laboratory, the
direct consequence of this social consciousness is the marked
progress in techniques that allow quantitative analysis of chem-
ical compounds (either beneficial or harmful) at widely different
concentrations, and in samples of ever increasing complexity.
Most of the applied analytical methodologies when the analytes
are organic molecules include chromatographic separations with
different detection modes. In general, the sophistication of the

1570-0232/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.jchromb.2012.02.004
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detector is directly related to the complexity of the sample and to
the number and concentrations of the constituents to be analyzed.

For samples of complex composition, fully resolved chromato-
graphic bands are not always achieved. The traditional approach
to this ubiquitous problem is to vary the available experimental
chromatographic parameters, separation materials and detecting
systems in order to increase the resolving power and selectivity.
This may  however be prohibitive in terms of cost, or simply because
the complexity of the sample is such that it resists all known sep-
arating efforts. In these cases, multivariate data analysis can be
used for increasing the selectivity by mathematical means [1].  The
coupling of chromatographic analysis with chemometric tools is
an economical alternative to resolving this problematic situation
without using sophisticated instruments, and represents an inter-
esting strategy which is increasingly used in modern laboratories.
In certain cases, this approach allows one to shorten the working
time and/or to employ the isocratic mode, with the concomitant
benefit of saving toxic solvents. The terms ‘chromametrics’ [2] and
‘chromathography’ [3] have been suggested to describe the combi-
nation of chromatography and chemometrics/mathematics.

Regarding the specific data to be recorded and analyzed, second-
and third-order data processed with suitable algorithms constitute
the most useful approach to chromametrics, because it possesses
the intrinsic advantage of dealing with the presence of interfer-
ences in real samples, in contrast to both zeroth- and first-order
approaches [4]. The chemometric literature has coined the expres-
sion ‘second-order advantage’ to describe this interesting property
of second- and higher-order multivariate calibration methodolo-
gies [1].

Chromatographic second-order data can be measured by cou-
pling or ‘hyphenating’ two first-order instruments, each of which
provides a given dimension or mode to the recorded data. For
example, chromatography can be followed by detection based on
UV–visible/infrared absorption, fluorescence excitation/emission
or nuclear-magnetic resonance spectroscopies, mass spectrometry
or voltammetry. In these cases, the chromatograph itself provides
the first data dimension (the retention time), while the detector
provides the second one (spectral wavelength or wavenumber,
chemical shift, mass/charge ratio, electric voltage). Another possi-
bility is two-dimensional liquid (LC–LC) [5] or gas chromatography
(GC–GC) [6] with univariate detection, where each separating
element provides an individual retention time dimension to the
recorded second-order data. All these data can be arranged into a
data table or matrix, where columns and rows correspond to each
of the data dimensions. Some information about the application
of multivariate calibrations and algorithms applied to quantitative
chromatographic analysis can be found in recent reviews [7–15].

Higher complexity can be achieved by adding an extra
dimension to the recorded data, for example, by performing two-
dimensional chromatography (either LC–LC or GC–GC) followed by
multivariate detection based on: (1) UV–visible absorption with a
diode array detector (DAD) or (2) mass spectrometry (MS). This type
of data, when measured for a single sample, can be arranged into a
three-dimensional array, and suitable third-order multivariate cal-
ibration strategies can be applied to process them. In principle, an
increasing number of multiple measurements, arranged in a math-
ematical object of more complex structure, should provide more
selectivity and sensitivity to the analysis [4].  However, there may  be
additional analytical advantages in recording these complex data,
which are still waiting to be uncovered by theoreticians [4].

In the present report, we briefly describe the available algo-
rithms for processing second- and third-order chromatographic
data, with focus on an important phenomenon which should be
studied before some of these algorithms are applied: retention
time shifts which may  occur from run to run in chromatography.
We then summarize the recent work on second- and higher-order

chromametrics, particularly in what concerns quantitative analyti-
cal determinations in complex samples achieving the second-order
advantage.

2. Higher-order analytical calibration

2.1. Calibration scenarios

Various calibration schemes are possible depending on the
recorded instrumental data. In univariate calibration, a single
numerical value (scalar or zeroth-order datum) is measured per
sample, whereas in multivariate calibration increasingly complex
data arrays are measured per sample, allowing analytical quantita-
tive estimations in systems of low intrinsic selectivity [1,4,11]. In
first-order calibration methods, the analyzed response is a vector
of numerical values (first-order data) per sample [1,4,11,13]. The
use of this information provides the so-called first-order advan-
tage, i.e., the possibility to quantify an analyte in the presence of
interferences, as long as the interfering compounds are present in
the calibration samples during the establishment of the calibration
model. In second-order calibration methods, the analyzed response
is a data matrix per sample (second-order data, e.g., a liquid chro-
matogram with diode array detection) [1,4,11,13].  The so-called
second-order advantage is achieved, which implies that the analyte
contribution can be appropriately modeled, quantitatively esti-
mated and resolved in the presence of unknown interferences,
absent in the calibration samples [1,4,11]. Higher-order data sets
(e.g. two-dimensional gas chromatography with mass spectromet-
ric detection) and their related calibration strategies (higher-order
multivariate calibration methods) are possible and improve reso-
lution power and quantitative estimations [1,4,11].

2.2. Nomenclature

In multivariate calibration the term ‘order’ is usually employed
to denote the number of modes for the data array which is recorded
for a single sample.  The term ‘way’, on the other hand, is reserved for
the number of modes of the mathematical object which is built by
joining data arrays measured for a group of samples.  In this sense,
the classical univariate calibration, which operates using a single
datum per sample, is a zeroth-order and also a one-way method.
Correspondingly, first-order data per sample leads to two-way data
sets, second-order data per sample to three-way data sets, third-
order data per sample to four-way data sets, fourth-order data per
sample to five-way data sets, etc.

The analytical community seems to prefer ‘order’ for distin-
guishing the various calibration scenarios, focusing on the data
dimensions collected for each sample. This is also linked to the
expression ‘second-order advantage’, which is popular in analytical
chemistry works. On the other hand, in the context of multivariate
data modeling, in non-analytical applications and in many basic
chemometric works, the preferred expression is ‘way’. However,
this latter terminology should strictly be applied to truly multi-way
algorithms, because in some multivariate calibration algorithms a
multi-way data array is never built.

2.3. Data multi-linearity

Before applying a specific multivariate algorithm to second-
and third-order chromatographic data, it is necessary to assess if
the sample constituent profiles in the retention time dimension
are constant or not. In chemometric terms, constancy of retention
time profiles implies that the recorded data are multi-linear. In
general, multi-linearity can be defined as the possibility of mathe-
matically expressing a generic element of a multi-way data array as
a linear function of component concentrations and profiles in the
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data modes. When second- and third-order data fulfil this require-
ment, they are called ‘trilinear’ and ‘quadrilinear’ respectively. In
the chromatographic field, multi-linearity implies that the shape
of the profiles in the relevant retention time dimension(s) for a
given component is the same.

There are basically two strategies for dealing with the phe-
nomenon of varying retention times: (1) to restore the data
multi-linearity, removing the effect introduced by sample-to-
sample retention time shifts with a suitable algorithm for aligning
or synchronizing the chromatograms, or (2) to process the data with
algorithms allowing for varying retention time profiles across sam-
ples. For recent reviews on retention time shifts and their correction
before chemometric processing see Refs. [3,10,12,14].

It may  be noticed that, in general, additional causes of multi-
linearity losses exist, as has been recently reviewed [15].

2.4. Second-order calibration algorithms

Second-order chromatographic data can be processed by a
variety of algorithms for analyte quantitation. Those classified as
trilinear are: (1) parallel factor analysis (PARAFAC) [16], (2) dif-
ferent versions of alternating trilinear decomposition (ATLD) [17],
such as self-weighted ATLD (SWATLD) [18] and penalized ATLD
(APTLD) [19], (3) generalized rank annihilation (GRAM) [20], (4)
direct trilinear decomposition (DTLD) [21], and (5) bilinear least-
squares combined with residual bilinearization (BLLS/RBL) [22,23].
All of these methods assume an intrinsic mathematical model in
which the profiles of all components are the same in all sam-
ples, and thus they require that: (1) the retention time profiles
are constant from sample to sample, or (2) the chromatograms
are appropriately aligned before data processing. Each of these
algorithms achieves the decomposition of an array of data built
with second-order data for a group of samples in a specific way.
In general, the consensus is that alternating least-squares (ALS)
is the most efficient method for trilinear decomposition [11]. It
is thus understandable that the most employed trilinear algo-
rithm is PARAFAC, because of its recognized ALS efficiency and
robustness, and also of its ability to process multiple calibration

samples. The available PARAFAC software permits a variety of con-
straints to be imposed during the ALS fit, which ensure reaching
physically interpretable results [16]. Eigenvalue methods are less
precise than PARAFAC [4],  and hence GRAM and DTLD are less
employed methodologies. Some authors, however, advocate for
SWATLD and APTLD, claiming that they are faster and less sensi-
tive to the tuning of some parameters in comparison with PARAFAC
[18].

One common aspect to these trilinear algorithms is that they
provide useful qualitative information, in the form of spectral (or
other detection dimensions) and chromatographic profiles for indi-
vidual sample components, whether they are calibrated or not. Each
profile corresponds to the one which would have been recorded by
physically isolating the constituent, hence the name ‘virtual chro-
matography’ to this property of second-order algorithms. Fig. 1
pictorially shows the construction of a three-dimensional data
array from second-order chromatograms for several samples, and
its decomposition with a trilinear model such as PARAFAC, ren-
dering retention time and spectral profiles for individual sample
components, as well as relative concentrations or scores. The three-
way array is composed of the data matrices for all calibration
samples and also for the unknown sample.

Usually both profiles shown in Fig. 1 are normalized to unit
length, but the concentration scale is saved in the so-called scores or
relative concentrations of each analyte in all samples (both calibra-
tion and unknown). The analyte scores for the calibration samples
are then employed to construct a pseudo-univariate calibration
plot, from which the concentration is predicted after interpola-
tion of the analyte score in the unknown sample. Table 1 briefly
describes the PARAFAC modeling of a multi-way data array col-
lected for a group of samples, and the process of analyte calibration
and prediction. Additional details can be found in the Supplemen-
tary Material.

On the other hand, there are algorithms allowing for deviations
of multi-linearity, which may  be able to model retention time shifts,
such as: (1) multivariate curve resolution coupled to ALS (MCR-ALS)
[24] and (2) PARAFAC2, a variant of PARAFAC which allows profile
variations in one of the data dimensions from sample to sample

Fig. 1. Pictorial representation of second-order PARAFAC analysis. A three-way data array is built with matrix data for a set of samples (only three representative samples
are  shown). PARAFAC decomposition of the three-way array leads to retention time profiles, spectra and scores (relative concentrations) of all sample components. The time
and  spectral profiles are normalized, but the concentration information is retained in the scores, which are employed for analyte quantitation.
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Table 1
Description of three types of algorithms employed for processing second-order data.

Algorithm Commentsa

PARAFAC Assumes the data array built with second-order data for a
group of samples follows a trilinear model, i.e., an element
(i,j,k) is the sum of contributions of the form (xi × yj × zk),
where xi is the relative concentration of a component in
the ith. sample, and yj , zk are the values of the time and
spectral profiles at the jth, kth channel in each data
dimension. Values of xi are employed for analyte
quantitation using a pseudo-univariate calibration graph.

MCR-ALS Places second-order data for a group of samples adjacent
to each other along the time dimension, and assumes that
the augmented matrix follows a bilinear model, i.e., a
matrix element (m,j) is the sum of contributions of the
form (xm × yj), where xm describes the profile for each
sample in the augmented dimension, and yj in the spectral
dimension (m ranges from 1 to I × K). For analyte
quantitation, areas under each of the sample profiles in the
augmented dimension are computed, and employed to
build a pseudo-univariate calibration graph.

PLS/RBL Calibrates a PLS model, and assumes the signals from the
interferents in the test sample follow a bilinear model, i.e.,
an  element (j,k) of the interferent array is the sum of
contributions of the form (yj × zk), where yj , zk are abstract
loadings in the spectral and time dimension. Analyte
scores are produced by modeling the residuals of the fit of
the test sample data array to the bilinear model, hence the
name residual bilinearization.

a A three-way data array to be decomposed has a size I × J × K, and contains data
for I samples, each as a J × K matrix. In MCR-ALS, this array is unfolded into a J × IK
matrix.

[25]. In MCR-ALS, the basis of the successful data resolution is the
building of an augmented matrix, placing all calibration and test
data matrices adjacent to each other in the retention time direc-
tion. In this way, the time profile for a given component is allowed
to vary from sample to sample. Fig. 2 shows how an augmented
data matrix is created in the time dimension from individual sam-
ple matrices (both calibration and unknown), and how MCR-ALS

decomposition leads to individual component spectra and reten-
tion time profiles. The latter correspond to the augmented retention
time dimension, with profiles for the various samples concatenated
into single vectors. The area under a given component peak in
a given sample defines the analyte score, which is employed for
quantitative purposes in the same manner as in PARAFAC. This is
also briefly explained in Table 1 and in the Supplementary Mate-
rial. In comparison with PARAFAC, MCR-ALS needs initial estimates
of either spectral or time profiles, while PARAFAC is usually auto-
matically initialized. However, initial estimates for MCR-ALS can
be efficiently computed by a variety of methods, such the compu-
tation of the so-called purest variables [26], or through evolving
factor analysis (EFA) [27], which is particularly useful for chro-
matographic data. Most importantly, MCR-ALS does not require
time synchronization of the chromatograms, which in practice may
constitute a significant algorithmic advantage.

In the case of PARAFAC2, a relaxed PARAFAC model is employed
which allows profiles to vary in one of the data dimensions (the
retention time) from sample to sample. PARAFAC2 provides simi-
lar information to its trilinear counterpart, except that the retention
time profile is not common to all samples (see Supplementary
Material). What is important, however, is that it renders ana-
lyte scores which are also used to predict its concentration in
the unknowns by pseudo-univariate calibration. PARAFAC2 admits
lesser constraints to be imposed during the least-squares fit in com-
parison with the full range of constraints which are available for
MCR-ALS in both data dimensions [25]. Thus, in certain complex
cases the latter methodology may  produce results which are better
from the point of view of their physical interpretability, analytical
accuracy and precision.

Other potentially useful second-order calibration methods are
unfolded partial least-squares (U-PLS) [28] and multi-way PLS (N-
PLS) [29], both of which should be combined with RBL if the
second-order advantage is to be achieved [30–35].  These PLS algo-
rithms intend to model the profile variations by incorporating a
flexible latent structure in regressing the data (see Supplementary

Fig. 2. Graphical representation of second-order MCR-ALS analysis. An augmented matrix is created with matrix data for a set of samples, placed adjacent to each other in
the  time dimension (only three representative samples are shown). MCR-ALS decomposition leads to spectra and retention time profiles of all sample components. These
latter  profiles describe the retention behavior in all samples. The area under each component peak defines the score, which is proportional to the component concentration.
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Material). However, their full potentiality regarding the model-
ing of retention time variations is still a matter of debate. In any
case, PLS models do not provide chemical recognizable informa-
tion, because they internally work with abstract loadings, which
are linear combinations of true profiles.

Table 1 intends to briefly describe the general manner in which
three of the most employed data processing algorithms work on
second-order data. The Supplementary Material provides detailed
discussions concerning most of the above discussed algorithms for
second-order multivariate calibration.

2.5. Third-order calibration algorithms

Third-order data are experimentally available from two-
dimensional GC–GC or LC–LC chromatography with multivariate
detection, requiring adequate third-order calibration models to be
processed. They can also be classified according to whether the
underlying models are quadrilinear or not [15].

Quadrilinear third-order models are: (1) PARAFAC, which is
indeed suitable for any data order, (2) trilinear least-squares
(TLLS) with residual trilinearization (RTL) [36], (3) alternating
penalty quadrilinear decomposition (APQLD) [37] and (4) alter-
nating weighted residue constraint quadrilinear decomposition
(AWRCQLD) [38]. All of them require that the profiles of the sam-
ple components in both time dimensions remain constant from run
to run, or are adequately corrected using a separate algorithm. As
for second-order calibration, PARAFAC appears to be the model
of choice in terms of efficiency, multiple-sample processing and
accuracy in comparison with the remaining quadrilinear models
[4]. However, since it is a multi-linear model, PARAFAC requires
chromatographic synchronization, which may  be a complex task
in two-dimensional chromatography. Further details on the use of
quadrilinear models for chromatographic data can be found in the
Supplementary Material.

Fig. 3 shows the building of a four-way data array from a series
of third-order arrays for a group of samples (both calibration and
unknown), and the application of the PARAFAC model to retrieve

the constituent spectra, the retention time profiles of the sample
components in both separation dimensions, and the relative con-
centrations or scores. As with second-order PARAFAC, profiles in
the three dimensions are normalized, while the scores allow for
analyte quantitation.

Flexible third-order multivariate models which may allow for
temporal variation in profiles are those based on PLS regression
combined with RTL [36] (i.e., U-PLS/RTL and N-PLS/RTL), although
their applicability has not been tested to date in this regard.

A final data processing possibility for third-order data is to
unfold them into matrices, concatenating the separation dimen-
sions into a single mode, and applying a non-trilinear second-order
methodology such as MCR-ALS or PARAFAC2 to the resulting
second-order data. As mentioned above, MCR-ALS usually provides
profiles with improved physical interpretability in comparison
with PARAFAC2, due to the possibility of applying a variety of
restrictions during the least-squares fit. Thus the MCR-ALS strategy
is able to efficiently cope with the problem of retention time shifts.
However, the price paid may  be lower sensitivity and selectivity
[39].

3. Discussion

3.1. Chromatographic alignment

Alignment or synchronization of chromatograms is an impor-
tant chemometric activity which should be conducted before the
application of multi-linear data processing algorithms. The basis
of these techniques involves digitally moving (and/or stretching
or compressing) a chromatogram until it matches a reference one,
with certain objective function indicating the quality of the match
(correlation coefficient, residual fit, similarity index, etc.). Some
of the main differences among them are: (1) whether alignment
is performed using the continuous signal or individually detected
peaks, (2) whether or not signal intensity is used, and (3) whether
or not scale changes are corrected. Most algorithms require a previ-
ously selected reference chromatogram, to which all the remaining

Fig. 3. Pictorial representation of third-order PARAFAC analysis. Third-order data for a set of samples (only three representative samples are shown) are joined to build a
four-way  data array, represented by the three-dimensional projection of a four-dimensional cube. PARAFAC decomposition leads to retention time profiles in both separation
dimensions, spectra and scores (relative concentrations) of all sample components. The time and spectral profiles are normalized, but the concentration information is
retained in the scores, as for second-order analysis.
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ones are aligned. Suboptimal choice of the template could affect
the alignment results, and thus it would be desirable to avoid this
selection [40].

Two important alignment methods which have been employed
for correcting retention time shifts prior to multivariate calibration
analysis are: (1) rank alignment, based on principal component
analysis of an augmented data matrix [41,42] and (2) correlation
optimized warping (COW), based on piecewise linear stretching
and compression of the time axis of the profiles [43]. Using artificial
chromatograms, COW has been shown to be robust to varying peak
numbers, heights and widths. Several refinements were imple-
mented in COW and demonstrated to be useful for synchronizing
both simulated and real LC–MS data before PARAFAC analysis [44].
In the presence of moderate time shifts, pre-processing with this
COW-modified algorithm yielded reasonably trilinear data. Closely
related to COW is dynamic time warping (DTW), which aligns a time
profile to a specified reference one, except that every data point of
a chromatographic-spectral data matrix can be moved [45]. In a
specific case, COW and DTW subjected to some constraints were
found to be superior to unconstrained DTW, which was  unsuitable
because it overcompensated the observed shifts [45].

In two-dimensional GC–GC or LC–LC separations, time shifts
may occur in any of both time dimensions, creating the need
for new alignment methods [46–48].  Results for the processing
of time-shifted GC–GC–MS data were compared using PARAFAC
on aligned data and PARAFAC2 on individual sample three-way
GC–GC–MS arrays [49].

In the presence of uncalibrated interferences, the alignment
of chromatograms becomes more difficult, and special methods
have been developed to cope with this problem: (1) iterative target
transformation factor analysis (ITTFA) [50], in which the calibration
and test data matrices are independently decomposed into profiles
and spectra using curve resolution techniques, and these profiles
are digitally aligned before multivariate calibration is applied, and
(2) decomposing a three-way array built with a test and a reference
data matrix, using a suitably initialized and constrained PARAFAC
model [51].

In this context, it should be mentioned that chromatographic
alignment is profusely used as a pre-processing of GC–MS and
LC–MS data in the framework of proteomic and metabolomic analy-
sis, in order to facilitate the identification of proteins or metabolites
within these data, which usually contain many individual signals
[52,53]. Different algorithms for aligning GC–MS/LC–MS data for
proteomic purposes have been developed [54–59].  ChromA, for
example, provides useful visual representations of the synchroniza-
tion process, with focus on differences and similarities between
the chromatograms [60]. Although an initial selection of peaks
for alignment is not strictly required, a priori knowledge can be
used to improve and speedup the process. DTW has been success-
fully applied to LC–MS data to correct for chromatographic time
shifts between replicate runs [61–63].  A variant of DTW has been
employed to align multiple LC–MS analyses to a common template,
allowing to detect differences between samples even with minimal
chromatographic separation [64].

In the next sections, works on second- and third-order calibra-
tion of chromatographic data will be reviewed, indicating whether
they were carried with previous time synchronization, or ana-
lyzed with algorithms modeling retention time shifts (MCR-ALS or
PARAFAC2).

3.2. Second-order data

3.2.1. Liquid chromatography
Two pesticides (oxamyl and methomyl), resorcinol and phenol

were determined in river and wastewater samples by processing
LC–DAD data with GRAM, PARAFAC and MCR-ALS [65]. Before data

processing with the trilinear models (GRAM and PARAFAC), time-
shift correction was performed using ITTFA. Although the three
algorithms provided similar figures of merit, MCR-ALS appeared to
be more robust concerning the presence of chromatographic time
shifts.

Synthetic mixtures of p-chlorobenzoic acid and benzoic acid,
uracil and pyruvic acid, and fumaric, maleic and phenyl phos-
phoric acid were analyzed in the standard addition mode by
two-dimensional LC–LC data (including an anion-exchange and a
reverse-phase column with single-wavelength UV detection) [66].
The overlapping analyte signals were then processed by PARAFAC,
after time shift correction using rank alignment and a new align-
ment method introduced by the authors, involving incrementally
shifting the LC–LC matrices until the PARAFAC fit was optimal.

Pesticides such as simazine, carbaryl, carbendazim, methyl thio-
phanate and dimethoate, and two  metabolites (phthalimide and
3,5-dichloroaniline) were determined in wine samples by LC–DAD
data processed by both PARAFAC and BLLS [67]. The synchroniza-
tion of the chromatographic matrices was  done by rank alignment.
BLLS presents some advantages such as not requiring initializa-
tion or constraints, but demands knowledge of all components
in the calibration samples. Overall, the analytical performance of
PARAFAC was  superior.

LC–DAD data were processed with ATLD to simultaneously
determine levodopa, carbidopa and methyldopa in human plasma
[68], and with PARAFAC for the simultaneous determination of four
aflatoxins in a set of spiked and naturally contaminated pistachio
nuts in the presence of matrix interferences [69]. In both cases the
effect of retention time shifts was  corrected by rank alignment.

In certain LC experiments no significant shifts were detected,
probably due to the small time window employed for data pro-
cessing. This appeared to be the case in the quantitation of
sulfamethoxypyridazine, sulfamethoxazole and sulfadimethoxine
in porcine kidney by PARAFAC processing of LC–DAD data [70].
In the analysis of LC–DAD data for binary mixtures of lidocaine
and prilocaine, however, the trilinear PARAFAC model was directly
employed [71], but some of the analytical results were biased, and
additional components to those expected were required to model
the data. This was apparently due to retention time shifts, although
no attempts were made to correct them.

Several agrochemicals were determined in environmental
wastewaters and sediments in the presence of coelution phenom-
ena and matrix interferences, processing LC–DAD [72], LC–MS [73]
and fused LC–DAD–MS data [74]. The analytical results improved
in going from DAD to MS  to DAD–MS data, with final quantitation
errors below 12% using MCR-ALS as chemometric algorithm.

The same MCR-ALS strategy was  employed to process LC–DAD
data for the quantitation of nine phenolic acids in both synthetic
samples and strawberry samples [75], three synthetic dyes in non
alcoholic beverages [76], seven non steroidal anti-inflammatory
drugs and the anticonvulsant carbamazepine in river and wastew-
ater [77], nine �-blockers and two  analgesics (paracetamol and
phenazone) in river water [78], pesticides in water samples [79],
seven organic UV filters in effluent wastewaters [80] and four phe-
nolic acids in olive oils [81]. In some of the above mentioned cases,
MCR-ALS showed better predictive ability than other second-order
algorithms such as U-PLS/RBL [76] or PARAFAC2 [81]. MCR-ALS
was  also employed to process data from LC with attenuated total
reflection-FTIR detection for the determination of carbohydrates,
alcohols and organic acids in red wine [82].

PARAFAC2 was used as an alternative for processing LC–DAD
data aimed at the determination of six sulfamides after extraction
from kidney [83].

Ten polycyclic aromatic hydrocarbons (PAHs) were determined
in aqueous samples in the presence of interferences, processing
second-order LC-fluorescence detection data [84]. Short analysis
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times were achieved under isocratic conditions. Both MCR-ALS
and PARAFAC2 were found to be useful to overcome the presence
of uncalibrated interferences and retention time shifts. However,
MCR-ALS was found to provide better recoveries.

Both aligned and unaligned LC-fluorescence emission data
matrices were studied for the determination of eight fluoro-
quinolones in samples with and without interferences [85].
PARAFAC and N-PLS/RBL yielded good results for all the inves-
tigated systems, provided they were fed with suitably aligned
chromatographic profiles using rank alignment. MCR-ALS did
also produce reasonably accurate results, even if raw data were
processed. However, serious spectral overlapping affected the
MCR-ALS predictions in one of the analyzed cases.

Similar LC-fluorescence emission data matrices were processed
using MCR-ALS, allowing for the determination of the marker
pteridins neopterin, biopterin, pterin, xanthopterin and isoxan-
thopterin in urine samples in the presence of interferences, and
the monitoring of the pteridine/creatinine ratio in pathological chil-
dren urines [86].

As mentioned above, the latent structured PLS models have been
scarcely applied to LC data with multivariate detection, and thus
only few examples exist on the subject. In one of them, U-PLS/RBL
was applied to LC–DAD data for the simultaneous determination
of eight tetracyclines in wastewaters [87], with predictive results
which were comparable to those from MCR-ALS. In the second,
MCR-ALS and PLS were compared for the resolution of coeluted
peaks of pyrocatechol, dopamine and epinephrine in LC with elec-
trochemical detection [88]. Voltammetric detection coupled to
MCR-ALS was preferred for high analyte concentrations, whereas
amperometric detection combined with PLS was more adequate at
lower levels.

3.2.2. Gas chromatography
Six essential oil markers were quantitated in perfumes

using two-dimensional gas chromatography (GC–GC) with flame-
ionization detection [89]. The results of PARAFAC, PARAFAC2 and
N-PLS were compared. For correcting retention time shifts, COW
was applied.

Fraga developed a chemometric approach for the determination
of triethyl phosphate and 1,4-dithiacyclohexane in environmental
samples, in a GC-selected ion monitoring (GC-SIM) mass spectrom-
eter [90], which collects only the signals for ions having masses of
interest rather than masses that span a wide range as in full scan
mode. Run-to-run retention-time differences between GC-SIM data
matrices for a sample and a standard addition were corrected
using rank alignment. The trilinear GRAM model was subsequently
applied to quantify the target analytes.

Clenbuterol was analyzed in several biological matrices by
GC–MS using DTLD, PARAFAC, PARAFAC2 and N-PLS as process-
ing algorithms [91], and non-steroidal anti-inflammatory drugs
in bovine milk were determined by GC–MS data processed by
PARAFAC or PARAFAC2, depending on whether the data were tri-
linear or not [92]. Several works have been published processing
GC–GC data with flame ionization detection (FID) with N-PLS:
determination of naphthene [93] and kerosene in gasolines [94],
identification of gasoline adulteration [95], prediction of physic-
ochemical properties of gasoline [96], and allergens in perfumes
[97]. The same type of data were processed with MCR-ALS for the
analysis of essential oils in perfumes [98].

GRAM and MCR-ALS were used to process GC–MS data for the
quantitation of four unsaturated fatty acids in the presence of inter-
fering components [99]. Unlike MCR-ALS, a retention time shift
correction on GC profiles was necessary for GRAM [41]. Amigo et al.
have shown the potential of PARAFAC2 for solving common GC–MS
problems, using data from wine samples to illustrate the solutions
[100].

3.3. Third-order data

Several published examples of third-order chromatographic
data comprise two-dimensional chromatography (either GC–GC or
LC–LC) with multivariate detection. When detection proceeds by
time-of-flight mass spectrometry (TOFMS), the trilinear algorithms
retrieve retention time profiles on both chromatographic columns,
and a complete mass spectrum for each component. Examples
of third-order GC–GC–TOFMS data processed by PARAFAC have
been described for the resolution of four isomers (iso-butyl, sec-
butyl, tert-butyl and n-butyl benzenes) [101], for the study of
environmental samples containing fuel components, pesticides and
natural products [102], for the determination of a neurodegenera-
tive biomarker in human tissue [103] and impurities in a chemical
weapon precursor [104].

An analytical procedure based on MCR-ALS processing of
GC–GC–TOFMS for the simultaneous determination of 97 organic
contaminants at trace concentration in river water was presented,
including 13 pharmaceuticals, 18 plasticizers, 8 personal care
products, 9 acid herbicides, 8 triazines, 10 organophosphorous
compounds, 5 phenylureas, 12 organochlorine biocides, 9 PAHs
and 5 benzothiazoles and benzotriazoles [105]. In the latter case,
and in a recent analysis of mixtures of polycyclic aromatic hydro-
carbons from GC–GC–MS data [106], the original third-order data
were unfolded into matrices by concatenating the GC–GC chro-
matographic matrices into vectors at each detection channel. The
resulting matrix data were processed using MCR-ALS.

In order to predict the composition of biodiesels and conven-
tional diesels, PLS models were applied to data of varying degrees
of complexity, obtained by GC with MS  detection: (1) unidimen-
sional GC data with single ion detection (first-order data), (2)
two-dimensional GC–MS and GC–GC with single ion detection
(second-order data) and (3) fully three-dimensional GC–GC–MS
(third-order data) [107]. The analytical figures of merit significantly
improved in going from first- to second-order calibration, but third-
order data did not appear to produce further improvements.

In some cases, retention time corrections were found to be nec-
essary. When studying metabolite extracts isolated from yeast cells
with PARAFAC [108], an algorithm for retention time alignment was
applied, based on peak matching at a single m/z value [109].

As an interesting development in this field, a comprehen-
sive three-dimensional gas chromatograph (GC–GC–GC) has been
described [110]. The resulting third-order data were shown to be
adequately modeled by quadrilinear PARAFAC, providing consider-
ably higher sensitivity in comparison with third-order GC–GC–MS
data.

In the case of two-dimensional LC–LC, the problem of retention
time shifts can be overcome by dividing the entire chromatogram in
small regions, allowing for decomposition of data which are appar-
ently quadrilinear. This has been done, for example, in metabolomic
analysis carried out by processing third-order LC–LC–DAD data
with PARAFAC, leading to the quantitative analysis of a number
of indolic compounds in maize seedlings [111].

In a recent LC–LC–DAD metabolic study, the original third-order
data were unfolded into second-order data, by concatenating the
LC–LC matrices into vectors at each detection wavelength. The
resulting matrices were processed by applying MCR-ALS, elim-
inating the problem caused by retention time shifts [112]. For
initialization of MCR-ALS, it was found that iterative key set factor
analysis (IKSFA) was  better than other methods for finding initial
estimates of component spectra.

It should be noticed that unfolding from third- to second-order
data may  lead to decreased sensitivity in comparison with the pro-
cessing of the original data with a truly multivariate third-order
methodology. The latter would require synchronization of two-
dimensional chromatograms in both separation dimensions before
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data processing. Clearly the field needs some additional research in
the time alignment of multi-dimensional chromatograms.

4. Conclusions and outlook

Chromatographic separations followed by multivariate detec-
tion are producing increasingly complex data structures, whose
appropriate chemometric processing opens new dimensions in
analytical studies. Improved sensitivity and selectivity, and the
possibility of analyte quantitation in the presence of uncalibrated
interferents, are some of the advantages which can be achieved.
Future work will certainly lead to data of even higher dimen-
sions on the instrumental side, and to the development of new
data processing tools on the chemometric one. Specifically, as
the instrumentation produces data arrays of increasing number of
dimensions and complex structures, it will be necessary to actively
research in the following areas: (1) efficient synchronization meth-
ods for two-dimensional chromatographic data, in order to provide
suitable multi-linear data for robust algorithms such as PARAFAC,
(2) theoretical developments in sensitivity and other multi-way
figures of merit, in order to be able to compare the relative per-
formances of PARAFAC processing of the original (synchronized)
multi-way data and MCR-ALS processing of the data unfolded to
arrays of lower dimensions (matrices), (3) development, testing
and comparison with classical methods of new latent-structured
methods based on PLS/residual multi-linearization, which are capa-
ble of handling non-multilinear chromatographic data.
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