
Split clique graph complexity

L. Alcón1, L. Faria2, C. M. H. de Figueiredo3, and M. Gutierrez1

1 Universidad Nacional of La Plata, La Plata, Argentina
2 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

3 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Abstract. A complete set of a graph G is a subset of vertices inducing a
complete subgraph. A clique is a maximal complete set. Denote by C(G)
the clique family of G. The clique graph of G, denoted by K(G), is the
intersection graph of C(G). Say that G is a clique graph if there exists a
graph H such that G = K(H). The clique graph recognition problem, a
long-standing open question posed in 1971, asks whether a given graph
is a clique graph and it was recently proved to be NP-complete even for
a graph G with maximum degree 14 and maximum clique size 12. Hence,
if P6=NP, the study of graph classes where the problem can be proved
to be polynomial, or of more restricted graph classes where the problem
remains NP-complete is justified. We present a proof that given a split
graph G = (V, E) with partition (K, S) for V , where K is a complete set
and S is a stable set, deciding whether there is a graph H such that G is
the clique graph of H is NP-complete. As a byproduct, we prove that a
problem about the Helly property on a family of sets is NP-complete. Our
result is optimum in the sense that each vertex of the independent set of
our split instance has degree at most 3, whereas when each vertex of the
independent set has degree at most 2 the problem is polynomial, since
it is reduced to check whether the clique family of the graph satisfies
the Helly property. Additionally, we show three split graph subclasses
for which the problem is polynomially solvable: the subclass where each
vertex of S has a private neighbor, the subclass where |S| ≤ 3, and the
subclass where |K| ≤ 4.
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1 Introduction

Consider finite, simple and undirected graphs. V and E denote the vertex set
and the edge set of the graph G, respectively. A complete set of G is a subset of
V inducing a complete subgraph. A clique is a maximal complete set. The clique
family of G is denoted by C(G). The clique graph of G is the intersection graph
of C(G).

The clique operator, K, assigns to each graph G its clique graph which is
denoted by K(G). On the other hand, say that G is a clique graph if G belongs



to the image of the clique operator, i.e. if there exists a graph H such that
G = K(H).

Clique operator and its image were widely studied. First articles focused on
recognizing clique graphs [8, 18]. Graphs fixed under the operator K or fixed un-
der the iterated clique operator, Kn, for some positive integer n; and the behavior
under these operators of parameters such as number of vertices or diameter were
studied in [4, 9, 10]. For several classes of graphs, the image of the class under
the clique operator was characterized [5, 11, 16, 19]; and, in some cases, also the
inverse image of the class [14, 17]. Results of the previous bibliography can be
found in the survey [21]. Clique graphs have been much studied as intersection
graphs and are included in several books [6, 12, 15].

The characterization of clique graphs given in [18] proposed the computa-
tional complexity of the recognition of clique graphs, a long-standing open ques-
tion [6, 15, 18, 21] just recently settled as NP-complete [1, 2].

A graph is split if its vertex set can be partitioned into a complete set and
a stable set. In this paper, we are concerned with the time complexity of the
problem of recognizing split clique graphs, for which we establish NP-complete
and polynomial results.

split clique graph

instance: A split graph G = (V, E).
question: Is there a graph H such that G = K(H)?

We prove that split clique graph is NP-complete. As a byproduct, we
prove that a problem about the Helly property is NP-complete. Given a set
family F = (Fi)i∈I , the sets Fi are called members of the family. F ∈ F means
that F is a member of F . The family is pairwise intersecting if the intersection of
any two members is not the empty set. The intersection or total intersection of
F is the set

⋂

F =
⋂

i∈I Fi. The family F has the Helly property, if any pairwise
intersecting subfamily has nonempty total intersection. Besides the theoretical
interest, the Helly property has applications in many different areas such as
optimization and location problems, semantics, coding, computational biology,
data bases, image processing and, in special, graph theory where it has been a
useful and a natural tool. Please refere to [7] for a survey on the Helly property
and its complexity aspects.

Given a family of sets F , say that a family F ′ is a spanning family for F if:
⋃

F ′∈F ′ F ′ =
⋃

F∈F F ; for each F ′ ∈ F ′, |F ′| > 1; for each F ′ ∈ F ′, there exists
F ∈ F such that F ′ ⊆ F ; and for each F ∈ F ,

⋃

F ′⊆F,F ′∈F ′ F ′ = F .

spanning Helly family

instance: A family of sets F .
question: Does F admit a spanning family F ′ that satisfies the Helly property?

Our NP-completeness result yields that spanning Helly family is NP-
complete even when restricted to the members of the input family F having
cardinality 2 or 3. Note that the problem is polynomial when all members of
F have cardinality 2, and we leave as open the problem when all members of
F have cardinality exactly 3. Note that the problem 3sat

3
when restricted to

having exactly three literals per clause is polynomial [13].
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2 NP-complete split clique graph classes

Theorem 1 is a well known characterization of Clique Graphs. The edge with
end vertices u and v is represented by uv. We say that the complete set C covers
the edge uv when u and v belong to C. A complete set edge cover of a graph G
is a family of complete sets of G covering all edges of G.

Theorem 1 (Roberts and Spencer [18]). G is a clique graph if and only if
there exists a complete set edge cover of G satisfying the Helly property.

Notice that for any graph G the clique family C(G) is a complete set edge
cover of G, but, in general, this family does not satisfy the Helly property. Graphs
such that C(G) satisfies the Helly property are called clique-Helly graphs. It
follows from Theorem 1 that every clique-Helly graph is a clique graph. In [20],
clique-Helly graphs are characterized and a polynomial-time algorithm for their
recognition is presented. Lemma 2 extends that result and leads to a polynomial-
time algorithm to check if a given complete set edge cover of a graph satisfies
the Helly property which in turn yields that clique graph is in NP [1, 2].

A triangle is a complete set with exactly 3 vertices. The set of triangles of G
is denoted T (G). Let F be a complete set edge cover of G and T a triangle, and
denote by FT the subfamily of F formed by all the members containing at least
two vertices of T .

Lemma 2 (Alcón and Gutierrez [3]). Let F be a complete set edge cover of
G. The following conditions are equivalent:
i) F has the Helly property.
ii) For every T ∈ T (G), the subfamily FT has the Helly property.
iii) For every T ∈ T (G), the subfamily FT has nonempty intersection, this means
⋂

FT 6= ∅.

A graph admits a complete set edge cover with the Helly property if and
only if the graph admits a complete set edge cover with the Helly property such
that no member is contained in another; such cover is called an RS-family of the
graph. Thus Theorem 1 is equivalent to the following simpler statement: G is a
clique graph if and only if G admits an RS-family. The following properties are
stated and proved by Roberts and Spencer [18].

Lemma 3 (Lemma 1 and Theorem 3 of [18]). Let F be an RS-family of a
graph G. Then F contains a complete set of size 2 if and only if this complete
set is a clique of G. If a triangle T is a clique of G, then T is a member of F .

We show that split clique graph is NP-complete by a reduction from the
following version of the 3–satisfiability problem with at most 3 occurrences per
variable [13]. Let U = {ui, 1 ≤ i ≤ n} be a set of boolean variables. A literal is
either a variable ui or its complement ui. A clause over U is a set of literals of L.
Let C = {cj , 1 ≤ j ≤ m} be a collection of clauses over U . We say that variable
ui occurs in clause cj (and then in C) if ui or ui ∈ cj . We say that variable ui
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occurs in clause cj as literal ui (or that literal ui occurs in cj) if ui ∈ cj , and as
literal ui (or that literal ui occurs in cj) if ui ∈ cj .
3sat

3

instance: I = (U, C), where U = {ui, 1 ≤ i ≤ n} is a set of boolean variables,
and C = {cj , 1 ≤ j ≤ m} a set of clauses over U such that each clause has two
or three variables, each variable occurs at most three times in C.
question: Is there a truth assignment for U such that each clause in C has at
least one true literal?

In order to reduce 3sat
3

to split clique graph, we need to construct in
polynomial time a particular instance GI of split clique graph from a generic
instance I = (U, C) of 3sat3, in such a way that the constructed graph GI is a
clique graph if and only if C is satisfiable. The particular instance GI is a 3-split
graph and we first characterize 3-split clique graphs.

3-split graphs

A split graph admits a split partition of its vertex set into a complete set K and
a stable set S. The family of cliques of a split graph with split partition (K, S) is
composed by the closed neighbourhood N [s], for each s ∈ S, and the complete
set K if it is not contained in N [s], for s ∈ S. An `-cone is an ` + 1-clique
containing a vertex of S that is called its extreme vertex and the remaining `
vertices are in K composing the basis of the cone. The triangles of an `-cone
are its ` triangles that contain the extreme vertex of the cone. The set of the
remaining vertices of a triangle of an `-cone are the basis of the triangle. Note
that a 2-cone is a triangle that is a clique and so by Lemma 3 forced to belong
to any RS-family of a split clique graph.

A 3-split graph admits a split partition where each vertex of the stable set S
has degree 2 or 3, in this case (K, S) is called a 3-split partition.

Theorem 4. Let G be a 3-split graph with 3-split partition (K, S). The following
are equivalent:

1. G is a clique graph;
2. There exists an RS-family F of G composed by K, each 2-cone and exactly

two triangles of each 3-cone;
3. There exists a family of complete sets of G containing each basis of a 2-cone

and the bases of exactly two triangles of each 3-cone that satisfies the Helly
property;

4. There exists a family of edges containing all the edges corresponding to the
bases of the 2-cones and the edges of the bases of exactly two triangles of
each 3-cone that induces a triangle-free subgraph of G[K].

Proof. 1. implies 2.: Let G be a 3-split graph with 3-split partition (K, S) and
let F be an RS-family of G. Assume K is not a member of F and consider F ′

the family obtained from F by the addition of member K. Suppose there exists
a pairwise intersecting subfamily of F ′ without a common vertex. It is clear
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this subfamily must contain K, since the original RS-family F has the Helly
property. Let F1, F2, ..., F`, K be the pairwise intersecting subfamily without a
common vertex. Observe that ` ≥ 2. Since F1, F2, ..., F` are members of F ,
they have a common vertex s. It is clear s is not in K, and so s ∈ S. In case
N(s) = {x, y}, then F1 = {s, x} and F2 = {s, y} but this contradicts Lemma 3
since F1 and F2 are not cliques of G. Hence, N(s) = {x, y, z} and the assumption
that F1, F2, ..., F` have no common vertex in K forces ` = 3, F1 = {s, y, z},
F2 = {x, s, z} and F3 = {x, y, s}, Note that F1, F2 and F3 are the three triangles
containing vertex s. Now we can eliminate one of these three triangles from F ′,
the remaining two triangles have a common vertex in K and cover the same set
of edges as F ′. Observe that in case we have another intersecting subfamily in
F ′ without a common vertex, it must be the three triangles of another 3-cone.
We repeat the same reasoning for each such pairwise intersecting subfamily to
obtain an RS-family containing K.

So we may assume that K is a member of the RS-family F . Observe that
each 2-cone is a clique and must be a member of F . Let Cs = {s, x, y, z} be a 3-
cone with extreme s and basis T = {x, y, z}. In order to cover the edges incident
to s, note that F must contain exactly two triangles of Cs or must contain the
3-cone Cs itself. Suppose Cs ∈ F . Note that no other member of F contains
s. By Lemma 2, let uT ∈

⋂

FT . Since uT ∈ K ∩ T , we may assume uT = y.
Consider F ′ obtained from F by the removal of cone Cs and the addition of
triangles {y, x, s} and {y, z, s}. Now suppose F1, F2, ..., F`, {y, x, s} is a pairwise
intersecting subfamily of F ′ without a common vertex. Since Fi ∩ {y, x, s} 6=
∅ and Fi ∩ {y, x, s} 6= s, we may assume x ∈ F1 and y 6∈ F1, x 6∈ F2 and
y ∈ F2. Since F1, F2, Cs are pairwise intersecting members of F , we must have
z = F1 ∩ F2 ∩ Cs. Now z, x ∈ F1 implies F1 ∈ FT , so y ∈ F1, a contradiction.
Suppose F1, F2, ..., F`, {y, x, s}, {y, z, s} is a pairwise intersecting subfamily of
F ′ without a common vertex. We have y 6∈ F1 but F1 ∩ {y, x, s} 6= ∅ and
F1 ∩ {y, z, s} 6= ∅, which implies F1 ∈ FT , again leading to a contradiction.

4. implies 1.: Let E be a family of edges containing all the edges corresponding
to the bases of the 2-cones and the edges of the bases of exactly two triangles
of each 3-cone that induces a triangle-free subgraph of G[K]. Let e = xy be an
edge of the family E . Call Se = {s ∈ S|{x, y} ⊆ N(s)}. Observe that: (1) if s is
the extreme vertex of a 2-cone then s belongs to exactly one set Se; (2) if s is
the extreme vertex of a 3-cone then s belongs to exactly two sets Se. Consider
the complete set family F whose members are K and the triangles Te,s, where
e ∈ E ans s ∈ Se. By (1) and (2) if a subfamily of triangles Te,s is pairwise
intersecting then the corresponding family of edges e is pairwise intersecting.
Since by hypothesis the family of edges do not contain a triangle, then they have
a common vertex in K, which implies F is an RS-family.

The remaining implications are simpler to establish and omitted in the ex-
tended abstract. ut

The family of edges defined in Theorem 4.4 is called an RS-basis of a 3-split
clique graph.
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Construction of GI from I = (U, C)

Let I = (U, C) be any instance of 3sat
3
. We assume with no loss of generality

that each variable occurs two or three times in C, and no variable occurs twice
in the same clause. In addition, if variable ui occurs twice in C, then we assume
it is once as literal ui and once as literal ui; and if variable ui occurs three times
in C, then we assume it is once as literal ui and twice as literal ui.

For each variable ui, let ji be the subindex of the unique clause where variable
ui occurs as literal ui; and J i = {j | literal ui occurs in cj}.

For each clause cj with |cj | = 3, let Ij = {i | variable ui occurs in cj}; and
for each clause cj with |cj | = 2, let Ij = {i | variable ui occurs in cj}∪ {n + 1}.
Notice that in any case |Ij | = 3. Given Ij = {i1, i2, i3}, with i1 < i2 < i3, let
i∗1 = i2, i∗2 = i3 and i∗3 = i1.

From instance I = (U, C), we construct a graph GI = (V, E) as follows.
The vertex set V is the union:

V =
⋃

1≤i≤n

{ai
ji

, bi
ji

, ci
ji

, di
ji

, ei
ji

, f i
ji

, gi
ji

, hi
ji
}∪

⋃

1≤i≤n

⋃

j∈Ji

{ai
j , b

i
j , c

i
j , d

i
j , e

i
j , f

i
j , p

i
j , q

i
j}∪

⋃

1≤j≤m,|cj |=2

{an+1

j , cn+1

j , dn+1

j }.

In order to have the property that GI = (V, E) is a split graph, the edge set
E is composed so that:

K =
⋃

1≤i≤n

{ai
ji

, di
ji

, gi
ji

, hi
ji
} ∪

⋃

1≤i≤n

⋃

j∈Ji

{ai
j , d

i
j} ∪

⋃

1≤j≤m,|cj |=2

{an+1

j , dn+1

j }.

is a complete set and the remaining vertices S = V \ K compose the set:

S =
⋃

1≤i≤n

{bi
ji

, ci
ji

, ei
ji

, f i
ji
} ∪

⋃

1≤i≤n

⋃

j∈Ji

{bi
j , c

i
j , e

i
j , f

i
j , p

i
j , q

i
j} ∪

⋃

1≤j≤m,|cj |=2

{cn+1

j }.

and is a stable set.
We finish the definition of the edge set by defining the edges incident to

the vertices of the stable set S: For 1 ≤ i ≤ n, N(bi
ji

) = {ai∗

ji
, di

ji
}, N(ci

ji
) =

{ai∗

ji
, ai

ji
, di

ji
}, N(ei

ji
) = {di

ji
, hi

ji
}, N(f i

ji
) = {ai∗

ji
, gi

ji
}. For 1 ≤ i ≤ n, j ∈ J i,

N(bi
j) = {ai∗

j , di
j}, N(ci

j) = {ai∗

j , ai
j , d

i
j}, N(ei

j) = {di
j , h

i
ji
}, N(f i

j) = {{ai∗

j , gi
ji
},

N(pi
j) = {ai

ji
, gi

ji
, ai

j}, N(qi
j) = {ai

ji
, hi

ji
, ai

j}. For 1 ≤ j ≤ m, | cj |= 2, N(cn+1

j ) =

{an+1

j , an+1
∗

j }.
Note that the constructed instance GI is a 3-split graph. Notice that for each

variable ui, graph GI contains as induced subgraph, Truth Setting component
Ti, the graph depicted in Figure 1 for the case variable ui has 3 occurrences.
Throughout the paper, we shall use the convention in the figures: vertices of K
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are black, vertices of S are white; only edges between vertices of the same cone
are drawn which means all other edges between black vertices are omitted. For
the convenience of the reader, we offer in the Appendix an example of the whole
graph GI obtained from an instance I of 3sat

3
.

a j
i
i

* f j
i
i

ej
i
i

aji

cj
i
i

g j
i
i

f r
i

er
i

ar
i*

ar
i

cr
i

f l
i

el
i

a l
i*

a l
i

cl
i

hj
i
i

i

qi

pr
i

qr
i

l
i

pi
l
i

dj
i
i dr

i

j
i
i br

ib

d l
i

bl
i

Fig. 1. Graph Ti corresponding to a variable ui, with J i = {r, l}.

Please refer to Figure 2 for the proof of Lemma 5.

Lemma 5. (True edge–False edge) Suppose F be an RS-basis of the constructed
graph GI . For each j, 1 ≤ j ≤ m, and for each i ∈ Ij , i 6= n + 1, exactly one of
the edges ai

ja
i∗

j , ai
jd

i
j belongs to F . For each i, 1 ≤ i ≤ n, and for each j ∈ J i, if

ai
jd

i
j ∈ F then ai

ji
ai∗

ji
∈ F , and if ai

ja
i∗

j ∈ F then ai
ji

di
ji
∈ F .

Proof. Consider any j, 1 ≤ j ≤ m, and i ∈ Ij , i 6= n + 1. Assume with no loss
of generality, j = ji. By considering the 2-cone N [bi

ji
], notice that edge ai∗

ji
di

ji

must belong to the RS-basis F which implies that both edges ai
ji

ai∗

ji
and ai

ji
di

ji

cannot belong to F , which implies that exactly one of the edges ai
ji

ai∗

ji
, ai

ji
di

ji

belongs to F .
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i
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i
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i

i
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(a)

* *
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iaj
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i

cj
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i
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i

gji
iaj

i

i
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i

i

dji
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i
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i
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i

ar
i

br
i
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i
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i
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i

er
i

*fl
i

al
i

bl
i

dl
i

al
iel

i
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i

ql
i
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i

(b)

Fig. 2. (a) RS-basis for Ti containing edge ai

rd
i

r is depicted in bold edges. Dashed edges
are the edges of the bases of the 3-cones that are not members of the RS-basis. (b)
Respectively for edge ai

ra
i
∗

r .

Consider any i, 1 ≤ i ≤ n, and j ∈ J i = {r, l}. Say j = r and refer to
Figure 2(a). Notice that, edge hi

ji
di

r must belong to the RS-basis F . Assume

that ai
rd

i
r ∈ F . Then ai

rh
i
ji

6∈ F , and so by considering the 3-cone N [qi
r], edges

ai
ra

i
ji

, hi
ji

ai
ji
∈ F . Notice that edge hi

ji
di

ji
must belong to the RS-basis F . Hence

ai
ji

di
ji

6∈ F , and so by the first statement, ai
ji

ai∗

ji
∈ F . Assume that ai

ra
i∗

r ∈ F
and refer to Figure 2(b) to obtain an analogous reasoning. ut

Lemma 5 is the key for the NP-completeness result. Given any variable ui

and any clause cj where ui occurs, any RS-basis of GI is forced to choose exactly
one of the edges ai

ja
i∗

j , ai
jd

i
j . If r ∈ J i, then any RS-basis of GI is forced to choose

different types of edges incident to vertices ai
r and ai

ji
, respectively. If r, ` ∈ J i,

then any RS-basis of GI is forced to choose the same type of edges incident to
vertices ai

r and ai
`, respectively. The correspondence between the two possible

truth assignments of variable ui and the two possible edges incident to vertex
ai

ji
is clear.

Theorem 6. split clique graph is NP-complete.

Proof. As mentioned in the Introduction, split clique graph belongs to NP.
Let G be the constructed 3-split graph obtained from an instance I = (U, C)

of 3sat
3
. Suppose G is a clique graph, and we exhibit a truth assignment for U

such that C is satisfied. By Theorem 4, let F be an RS-basis for G. Let ui ∈ U
be a variable. Set ui equal to true if and only if edge ai

ji
di

ji
∈ F . To see that

this truth assignment for U satisfies C consider a clause cj and its corresponding
triangle {ai

j , a
i∗

j , ai∗∗

j }. Since F induces a triangle-free subgraph of G[K], there

exists i ∈ Ij such that the edge ai
ja

i∗

j is not a member of F . Notice that i 6= n+1.

By Lemma 5, edge ai
ja

i∗

j 6∈ F implies that edge ai
jd

i
j ∈ F . If j = ji then variable
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ui is true and clause cj is satisfied. If j 6= ji, then j ∈ J i, by Lemma 5 edge
ai

jd
i
j ∈ F implies edge ai

ji
ai∗

ji
∈ F , and edge ai

ji
di

ji
6∈ F . It follows that ui is false,

and then cj is satisfied.
Conversely, given a truth assignment of U that satisfies C, by Theorem 4, it

suffices to exhibit an RS-basis F in order to prove that G is a clique graph.
For each j, 1 ≤ j ≤ m, for each i ∈ Ij , the edges ai∗

j gi
j , di

jh
i
j , ai∗

j di
j .

For each j, 1 ≤ j ≤ m, for i = n + 1, the edges an+1
∗

j an+1

j .

For each i, 1 ≤ i ≤ n, such that variable ui is true, the edges di
ji

ai
ji

, ai
ji

gi
ji

;

and for each j ∈ J i, the edges hi
ji

ai
j , ai

ja
i∗

j .

For each i, 1 ≤ i ≤ n, such that variable ui is false, the edges ai
ji

ai∗

ji
, ai

ji
hi

ji
;

and for each j ∈ J i, the edges gi
ji

ai
j , ai

jd
i
j .

The proof is completed by showing that the chosen set of edges indeed induces
a triangle-free subgraph of G[K] containing all the basis of 2-cones and two edges
of the basis of each 3-cone. Details are omitted in the extended abstract. ut

For the convenience of the reader, we offer in the Appendix an example of
an RS-family defined by a satisfying truth assignment, according to the proof of
Theorem 6.

3 Polynomially solvable split clique graph classes

In the following three theorems we present non trivial split graph classes for
which clique graphs can be recognized in polynomial time. Let G be a split graph
with split partition (K, S), without loss of generality assume K =

⋃

s∈S N(s),
to obtain a unique possible split partition.

w
G1

y

z

x

s2

s3s1

G2

y

z

x

s2

s3s1

Fig. 3. (a) w is a private neighbour of s2. (b) no vertex in S has a private neighbour.

We say that a vertex x ∈ K is a private neighbor of s ∈ S, if s is the only
vertex in S adjacent to x, i.e. N(x) ∩ S = {s}. Please refer to Figure 3.

Theorem 7. If every vertex s ∈ S has a private neighbor then G is a clique
graph.

Proof. Suppose every vertex s ∈ S has a private neighbor hs. Let x and y be
vertices of K. We say that x is a twin of y when N [x] = N [y]. Observe this is
an equivalence relation, and so the equivalence classes define a partition of K.
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Let Rs be the class of hs for s ∈ S; and R1, R2, ..., Rk the remaining classes, this
means the classes that do not contain any vertex hs for s ∈ S. We notice that
(

(Rs)s∈S , R1, R2, R3, . . . Rk

)

is a partition of K. Since hs is a private neighbor
of s, if s′ ∈ S and s′ 6= s then Rs 6= Rs′ .

For every s ∈ S, we call Is the set {i, 1 ≤ i ≤ k such that Ri ⊆ N(s)}. Let F
be the family of complete sets of G whose members are: K; Fs,i = Rs ∪Ri ∪{s},
for each s ∈ S, Is 6= ∅ and i ∈ Is; Fs = Rs ∪{s}, for each s ∈ S, Is = ∅. We claim
that F is an RS-family of G, and so G is a clique graph.

Details are in the Appendix. ut

Theorem 8. Let |S| ≤ 3. Graph G is a clique graph if and only if G is not the
Hajós graph depicted in Figure 3.(b).

Proof. It is well known that if G is a clique graph then G is not the Hajós graph.
Let us prove the reciprocal implication. Assume G is a graph with split partition
(K, S), | S |≤ 3 and G is not the Hajós graph. By Theorem 1, if the clique family
of G has the Helly property then G is a clique graph. If the clique family does
not satisfy the Helly property, then there exists a subfamily of cliques pairwise
intersecting without a common vertex.

It is clear that such subfamily must contain N [s1], N [s2] and N [s3] as mem-
bers, where s1, s2 and s3 are the vertices in S.

For 1 ≤ i < j ≤ 3, let xi,j be three vertices of K such that xi,j ∈ N [si]∩N [sj ].
Since G is not the Hajós graph, then K must contain at least one more vertex.

Call it u and suppose u is a private neighbor, for instance of s1, then u ∈
N [s1] \ (N [s2] ∪ N [s3]). In this case it is easy to check that the complete set
family F N [s1]\N [s2], N [s1]\N [s3], N [s2], N [s3] and K satisfies the conditions
given by Theorem 1, so G is a clique graph. We depict in Figure 4 such family.
Details are in the Appendix. ut

(a)
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2,3

x
u

x

x

N(s )2N(s )3
(b)

N(s )1
1,3

1,2

2,3

x
u

x

x

N(s )2N(s )3
(c)

N(s )1
1,3

1,2

2,3

x
u

x

x

N(s )2N(s )3
(d)

N(s )1
1,3

1,2

2,3

x
u

x

x

N(s )2N(s )3
(e)

N(s )1
1,3

1,2

2,3

x
u

x

x

N(s )2N(s )3

Fig. 4. Case in which u is a private neighbor, assumed of s1.

Theorem 9. Let |K| ≤ 4. Graph G is a clique graph if and only if: (1) There
are no three bases of 2-cones forming a triangle; and (2) There are no four bases
of cones satisfying: one is the basis B = {a, b, d} of a 3-cone, the other three
bases B1 = {a, c}, B2 = {b, c}, and B3 = {d, c} are bases of 2-cones.
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4 Open related problems

We summarize in a table the results and open problems we have managed to
state about the complexity of the problem of recognizing clique graphs when
restricted to split graphs. Denote by 3split2 the class of 3-split graphs, where
the vertices of the independent set have degree at least 2 and at most 3, and by
3split3 the subclass of 3-split graphs, where the vertices of the independent set
have degree exactly 3.

3split
3

3split
2

∀s ∈ S, s has a |S| |K|
private neighbor. bounded bounded

Split graph
G = (V, E)

partition (K, S).
? NPC P

|S| ≤ 3 general

P ?

|K| ≤ 4 general

P ?

The present work presents three distinct sufficient conditions for a split graph
to be a clique graph that lead to three non trivial polynomial split clique graph
classes. The complexity of recognizing split clique graphs with |K| or |S| bounded
remains open.

Several subclasses of clique graphs have been studied for which polynomial-
time recognition is known. In particular, for several classes of graphs the corre-
sponding class of clique graphs is known [21]. Note that it is well known that
the clique graph of a chordal graph is a dually chordal graph [5, 19] but the com-
plexity of deciding whether a chordal graph is a clique graph was a challenging
open problem. We have proved that deciding whether a given split graph is a
clique graph is an NP-complete problem. Note that the class of split graphs is
the intersection of chordal graphs and complements of chordal graphs.

The NP-completeness of clique graph [1, 2] suggested the study of the
problem restricted to classes of graphs not properly contained in the class of
clique graphs. One such class is the class of split graphs, the object of the present
paper, and the recognition of split clique graphs is proved NP-complete. Another
challenging still open problem is the recognition of planar clique graphs [3].

Let G be a split graph with split partition (K, S). In case G is a 3-split
graph, Theorem 4 says G admits an RS-family containing K. We leave as open
the complexity of deciding if a split clique graph with split partition (K, S)
admits an RS-family containing K.

Our NP-completeness result for split clique graph recognition is optimum in
the sense that each vertex of the independent set of our split instance has degree
at most 3, whereas when each vertex of the independent set has degree at most
2 the problem is polynomial, since it is reduced to check whether the clique
family of the graph satisfies the Helly property. Actually, by Theorem 4 the
problem is polynomial when the input is a 3-split graph such that the number
of 3-cones is bounded, which implies that 3-split clique graph recognition when
|K| is bounded or when |S| is bounded is in P. We leave as open the complexity
of recognizing split clique graphs such that every vertex of the independent set
has degree exactly 3. Note that the problem 3sat

3
when restricted to having

exactly three literals per clause is polynomial [13].
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Now we consider the details omitted in the proofs corresponding to Theorems 7,
8 and 9.

Theorem 7

Statement of Theorem 7: If every vertex s ∈ S has a private neighbor then G is
a clique graph.
Proof of Theorem 7: Suppose every vertex s ∈ S has a private neighbor hs. Let x
and y be vertices of K. We say that x is a twin of y when N [x] = N [y]. Observe
this is an equivalence relation, and so the equivalence classes define a partition
of K. Let Rs be the class of hs for s ∈ S; and R1, R2, ..., Rk the remaining
classes, this means the classes that do not contain any vertex hs for s ∈ S. We
notice that

(

(Rs)s∈S , R1, R2, R3, . . . Rk

)

is a partition of K. Since hs is a private
neighbor of s, if s′ ∈ S and s′ 6= s then Rs 6= Rs′ .

For every s ∈ S, we call Is the set {i, 1 ≤ i ≤ k such that Ri ⊆ N(s)}. Let F
be the family of complete sets of G whose members are: K; Fs,i = Rs ∪Ri ∪{s},
for each s ∈ S, Is 6= ∅ and i ∈ Is; Fs = Rs ∪{s}, for each s ∈ S, Is = ∅. We claim
that F is an RS-family of G, and so G is a clique graph.

Let e ∈ EG. If both end vertices of e are in K then e is covered by K which
is a member of F . If not, since S is a stable set, then e = sx with s ∈ S and
x ∈ K. If there exists i, 1 ≤ i ≤ k, such that x ∈ Ri, since every vertex in Ri is
a twin of x and x is adjacent to s, then Ri ⊆ N(s). It follows that Fs,i covers
e = sx.

If such i does not exist, there must exist s′ ∈ S such that x ∈ Rs′ . Then
N [x] = N [s′] and, since sx ∈ E, it follows that s = s′, so e is covered by Fs.

To prove that F has the Helly property, notice the following facts:

1. Fs is not a member of F if and only if there exists i such that Fs,i is a
member of F .

2. Fs,i ∩ Fs′,i′ 6= ∅ implies i = i′ or s = s′.
3. Fs has empty intersection with all members of F except K.

Now, assume F ′ is a pairwise intersecting subfamily with at least three mem-
bers. Consider the members that are not K. By fact 3, all of them must be of
type Fs,i. Moreover, by fact 2, there must exist i such that all these members
have the same subindex i; or there must exist s such that all of them have the
same subindex s. In the first case, all members of F ′ have the vertices of Ri

in common. In the second case, all members of F ′ have the vertices of Rs in
common. It follows that F ′ has non-empty total intersection. This completes
the proof. ut

Theorem 8

Statement of Theorem 8: Let |S| ≤ 3. Graph G is a clique graph if and only if
G is not the Hajós graph depicted in Figure 3.(b).
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Proof of Theorem 8: It is well known that if G is a clique graph then G is not
the Hajós graph. Let us prove the reciprocal implication. Assume G is a graph
with split partition (K, S), | S |≤ 3 and G is not the Hajós graph. By Theorem
1, if the clique family of G has the Helly property then G is a clique graph. If the
clique family does not satisfy the Helly property, then there exists a subfamily
of cliques pairwise intersecting without a common vertex.

It is clear that such subfamily must contain N [s1], N [s2] and N [s3] as mem-
bers, where s1, s2 and s3 are the vertices in S.

For 1 ≤ i < j ≤ 3, let xi,j be three vertices of K such that xi,j ∈ N [si]∩N [sj ].
Since G is not the Hajós graph, then K must contain at least one more vertex.

Call it u and suppose u is a private neighbor, for instance of s1, then u ∈
N [s1] \ (N [s2] ∪ N [s3]). In this case it is easy to check that the complete set
family F

N [s1] \ N [s2], N [s1] \ N [s3], N [s2], N [s3] and K

satisfies the conditions given by Theorem 1, so G is a clique graph. We depict
in Figure 4 such family. Observe that if N [s1] \ N [s2] (Figure 4(b)) belongs to
a pairwise intersecting family F ′, then N [s2] /∈ F ′ (Figure 4(e)), since their
intersection is empty. The same occurs between N [s1] \N [s3] (Figure 4(c)) and
N [s3] (Figure 4(d)). Hence, three intersecting complete sets of F ′ have x1,2, or
x2,3, or u as a common element.

If u is not a private neighbor, we can assume N(si) \ (N(sj) ∪ N(sk)) = ∅
for the three different possible sub-indices. Then u is adjacent to at least two
vertices of S; without loss of generality assume u ∈ N(s1) ∩ N(s2). In this case
it is easy to check that the complete set family F

N [s1] \ (N [s2]−{u}), N [s1] \N [s3], N [s2] \ (N [s1]−{x1,2}), N [s2] \
N [s3], N [s3] and K

satisfies the conditions given by Theorem 1, so G is a clique graph. We depict
in Figure 7 such family. Observe that if N [s1] \ (N [s2] − {u}) (Figure 7(b))
belongs to a pairwise intersecting family F ′, then N [s2] \ (N [s1] − {x1,2}) /∈
F ′ (Figure 7(d)). The same occurs between N [s1] \ N [s3] (Figure 7(c)) and
N [s3] (Figure 7(f)). Hence, three intersecting complete sets of F ′ have x1,2, or
x2,3, or u as a common element. The proof is complete. ut
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Fig. 7. Case in which u is not a private neighbor.
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Theorem 9

Statement of Theorem 9: Let |K| ≤ 4. Graph G is a clique graph if and only
if: (1) There are no three bases of 2-cones forming a triangle; and (2) There are
no four bases of cones satisfying: one is the basis B = {a, b, d} of a 3-cone, the
other three bases B1 = {a, c}, B2 = {b, c}, and B3 = {d, c} are bases of 2-cones.
Proof of Theorem 9: If |K| ≤ 3, then G is a 3-split graph, and then G is a clique
graph if and only if G is an extended triangle that satisfies the Helly property,
and then G is a clique graph if and only if there is no subset of the set of bases
of cones of G with three bases that correspond to edges of G forming a triangle.

(a) (b)

b

d

a c

b

d

a c

(c)

b

d

a c

Clique 1

Clique 2

Clique 3

(d)

b

d

a c
Clique 4

Fig. 8. The 4 possible different non Helly bases of cones for a split graph G with
|K| = 4.

Suppose |K| = 4, and assume K = {a, b, c, d}. First observe that if for a
vertex s ∈ S we have N(s) = K, then G is a clique graph iff G − s is a clique
graph, so we can consider G as a 3-split graph. We consider when it occurs
exactly one of the five cases below:

1. The set of bases of cones of G satisfy the Helly property - In this case G is
a clique Helly graph, and therefore a clique graph.

2. There is a set of 3 bases of cones of G which does not satisfy the Helly prop-
erty formed by three bases that correspond to edges, say ab, bc, ca (Figure 8(a))
- As these bases correspond to three 2-cones, then G is not a clique graph.

3. There is a set of 3 bases of cones of G which does not satisfy the Helly
property formed by two bases that correspond to a pair of edges say ac, bc
and by the triangle {a, b, d} (Figure 8(b)) - In this case if F is an RS-
cover to G, then the two 2-cones corresponding to the bases {a, c} ,{b, c}
must belong to F . Hence, neither the 3-cones corresponding to the triangle
{a, b, d} nor the 2-cone corresponding to basis {a, b} can belong to F . Thus,
if B is the RS-basis of G related to F , then B = {ac, bc, ad, bd}. Observe
that the elements of B satisfy the Helly property. Notice that every triangle
basis T of G contains exactly one pair of edges of B. Hence, the two cones
corresponding to the pair of bases of B contained in T can be used to cover
the edges of the 3-cone of T . If an edge e, that is not ab nor cd, is a basis
of a 2-cone of G, then e belongs to B. Notice that {a, b} is not a basis of
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a 2-cone of G, since we would have a triangle with 3 basis edges ac, bc, ab
of the case 2. Therefore, G is a clique graph if and only if edge cd does not
belong to the set of bases of G.

4. There is a set of 3 bases of cones of G which does not satisfy the Helly prop-
erty formed by one edge say bc and the two triangles say {a, b, d}, {a, c, d}
(Figure 8(c) ) - In this case {b, c} must belong to any RS-basis of G. If
{a, b, d} belonged to an RS-basis, then neither {a, c} nor {c, d} would belong
to the RS-basis, because {b, c} belongs to the RS-basis, a contradiction with
the basis {a, c, d}. If {a, c, d} belonged to an RS-basis, then neither {a, b}
nor {b, d} would belong to the RS-basis, because {b, c} belongs to the RS-
basis, a contradiction with the basis {a, b, d}. Hence, neither triangle {a, b, d}
nor triangle {a, c, d} can belong to any RS-basis. Besides, sub-basis {a, b}
and {a, c} can not belong at the same time to an RS-basis. Suppose that
{a, b} belong to B an RS-basis. Then, {a, c} does not belong to B, and as
{a, c, d} is a basis of G, we have that {a, d} and {c, d} are sub-bases of B.
Thus, if {a, b} belongs to an RS-basis B1, then B1 = {ab, bc, ad, cd}. Analo-
gously, if {a, c} belongs to an RS-basis B2, then B2 = {ac, ad, bc, bd}. Observe
that ab and ac can not belong to the same time to the set bases of cones
of G, otherwise we have the 3 basis edges ac, bc, ab of the case 2 not of the
case 4. Hence, in this case G is a clique graph.

5. There is a set of 4 bases of cones of G which does not satisfy the Helly
property formed by the four triangles {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}
- In this case if triangle {a, b, c} belongs to an RS-basis B, then no pair
of edges among ad, bd, cd belongs to B. Then we have a contradiction
with triangles {a, b, d}, {a, c, d}, {b, c, d}. Hence, no triangle among {a, b, c},
{a, b, d}, {a, c, d}, {b, c, d} belongs to B. Since, {a, b, c} is a basis of a cone
of G, exactly two among the edges ab, bc, ca are sub-bases of B. Assume
that ab, bc are sub-bases of B. Because ac is not a sub-basis of B, then
ad and cd are sub-bases of B. Hence, if B is an RS-basis for G, then

– If ab, bc are sub-bases of B, then B = {ab, bc, ad, cd}, and analogously
– If ab, ca are sub-bases of B, then B = {ab, ca, bd, cd}, and
– If ac, bc are sub-bases of B, then B = {ac, bc, ad, bd}.

Notice that, if there is an edge belonging to B, then we have case 4. Therefore,
in this case G is clique graph.
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