
RESEARCH ARTICLE

MicroRNA characterization in equine induced

pluripotent stem cells

Lucia Natalia Moro1, Guadalupe Amin1, Veronica Furmento1, Ariel WaismanID
1,

Ximena Garate1, Gabriel Neiman1, Alejandro La Greca1, Natalia Lucia Santı́n Velazque1,

Carlos LuzzaniID
1, Gustavo E. Sevlever1, Gabriel Vichera2, Santiago Gabriel MiriukaID

1*

1 LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina, 2 Kheiron Biotech, Pilar, Buenos Aires,

Argentina

* smiriuka@fleni.org.ar

Abstract

Cell reprogramming has been well described in mouse and human cells. The expression of

specific microRNAs has demonstrated to be essential for pluripotent maintenance and cell

differentiation, but not much information is available in domestic species. We aim to gener-

ate horse iPSCs, characterize them and evaluate the expression of different microRNAs

(miR-302a,b,c,d, miR-205, miR-145, miR-9, miR-96, miR-125b and miR-296). Two equine

iPSC lines (L2 and L3) were characterized after the reprogramming of equine fibroblasts

with the four human Yamanaka‘s factors (OCT-4/SOX-2/c-MYC/KLF4). The pluripotency of

both lines was assessed by phosphatase alkaline activity, expression of OCT-4, NANOG

and REX1 by RT-PCR, and by immunofluorescence of OCT-4, SOX-2 and c-MYC. In vitro

differentiation to embryo bodies (EBs) showed the capacity of the iPSCs to differentiate into

ectodermal, endodermal and mesodermal phenotypes. MicroRNA analyses resulted in

higher expression of the miR-302 family, miR-9 and miR-96 in L2 and L3 vs. fibroblasts

(p<0.05), as previously shown in human pluripotent cells. Moreover, downregulation of miR-

145 and miR-205 was observed. After differentiation to EBs, higher expression of miR-96

was observed in the EBs respect to the iPSCs, and also the expression of miR-205 was

induced but only in the EB-L2. In addition, in silico alignments of the equine microRNAs with

mRNA targets suggested the ability of miR-302 family to regulate cell cycle and epithelial

mesenchymal transition genes, miR-9 and miR-96 to regulate neural determinant genes

and miR-145 to regulate pluripotent genes, similarly as in humans. In conclusion, we could

obtain equine iPSCs, characterize them and determine for the first time the expression level

of microRNAs in equine pluripotent cells.

Introduction

Generating domestic animal embryonic stem cells has been proved to be difficult and has

sparked the interest on induced pluripotent stem cells (iPSCs) in these species [1]. In the

horse, this technology has emerged as a promising therapeutic alternative for musculoskeletal

injuries in athletic animals. In contrast to mesenchymal stem cells that have been used for
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tissue regeneration in the last decade [2–4], iPSCs have the advantages of indefinite prolifera-

tion and higher differentiation potential [5]. In fact, equine iPSCs myogenic differentiation

capability has already been probed for skeletal muscle regeneration [6].

Several groups have reported the generation of iPSCs in the horse by reprogramming adult

fibroblasts, fetal fibroblasts, keratinocytes and adipose-derived stem cells [6–9]. With these

reports, it is clear that equine iPSCs can be generated from different sources, with the capacity

to differentiate into all three germinal layers both in vitro and in vivo. However, there is scarce

information about the processes involved in equine cell reprogramming, stem maintenance

and cell differentiation, in contrast to other species like human or mouse. It is well known

from these two models that the biogenesis of microRNAs is a critical process for cell repro-

gramming and differentiation [10–14]. microRNAs are short non-coding RNA molecules that

mainly regulate mRNAs by post-transcriptional targeting of the 3’UTR tail [15], either bloking

their translation or inducing its degradation [16]. However, interaction of microRNAs with

other regions, such as the 50 UTR, coding sequences, and gene promoters, have also been

reported [17, 18]. It has been demonstrated that a single microRNA can regulate the expres-

sion of hundreds of mRNA targets [19], a property given by a short sequence (called ‘seed’) in

position 2-8 from the 5’ end. The seed is essential for the binding of the microRNA to the

mRNA and complementary to microRNA-recognition sequences present in the 3’UTR tail of

the mRNAs [20]. microRNA regulation capacity is so marked that human and murine iPSCs

have been efficiently generated by only inducing the expression of the miR-302/367 cluster,

without the need of the OCT-4/SOX-2/KLF4/c-MYC reprogramming factors [21, 22]. The mir-

302/367 cluster is a central player of pluripotent stem cell maintenance, self-renewal and dif-

ferentiation [23, 24]. On the other hand, other microRNAs are involved in lineage determina-

tion by repressing the expression of OCT-4, SOX-2 and KLF4, such as miR-145 that is involved

in mesoderm and ectoderm differentiation [25, 26]. miR-9 and miR-96 were shown to be

involved in neurogenesis [27–29], and miR-125b was shown as an important regulator of stem

cells differentiation to mesoderm and cardiac muscle [30], among others. All together, micro-

RNAs has been extensively shown to regulate critical processes in embryo development.

Until now, there is no information about equine microRNA expression neither in iPSCs

nor in embryos. The possibility of elucidating the microRNA expression and regulation in

equine iPSCs could enable us to manipulate them and induce cell reprogramming and differ-

entiation more efficiently in this species as was previously demonstrated in the mouse [31].

The objective of this work is to generate horse iPSCs lines, to characterize them and to evaluate

the expression of specific microRNAs critical for embryo development. We are interested in

exploring whether these processes are similar to those reported for the human and the mouse

that have been extensively studied.

Materials and methods

Reagents

Except otherwise indicated, all chemicals were obtained from Thermo Fisher Scientific (Wal-

tham, Massachusetts, USA). Media were prepared weekly and filtered through 0.22 μm

membranes.

Animal care and use of research animals

The present study was carried out following the Guide for the Care and Use of Agricultural

Animals in Agricultural Research and Teaching. The protocols involving animal manipula-

tions were approved by the Institutional Committee for the Care and Use of Experimental
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Animals of the San Martin National University, Buenos Aires, Argentina (CICUAE-UNSAM,

Permit Number: 001/16).

Cell culture

Equine fibroblasts were obtained from the skin sample of a spontaneously aborted 5-month-

old foetus of Polo Argentino breed. Cells were cultured in Dulbecco´s modified Eagle´s

medium (DMEM, catalog number 12100-46) supplemented with 10% foetal bovine serum

(FBS) and 1% penicillin/streptomycin (Pen/Strep, 15140-122) in a 5% CO2, humidified atmo-

sphere at 37˚C. After reprogramming, the iPSCs were cultured over inactivated mouse embry-

onic fibroblast (iMEFs) in eqHES medium [DMEM/F12 (11320033) with 20% Knock-out

serum replacement (A3181502), 10 ng/ml basic fibroblast growth (PHG0263), 1% Pen/Strep

and 10 ng/ml Human Leukemia Inhibitory Factor (hLIF) (PHC9484)].

Lentiviral vector production

Cell reprogramming was performed by using the EF1a-hSTEMCCA-loxP (STEMCCA) lenti-

viral cassette containing the human genes OCT-4/SOX-2/KLF4/c-MYC, generously provided

by Dr. Gustavo Mostoslavsky [32]. The lentiviral vectors were produced as previously

described by our lab [33], with minor modifications. Briefly, HEK-293 T cells were transfected

with the FuGENE6 containing the STEMCCA and helper plasmids. The supernatants were

collected 72 h post-transfection and ultracentrifuged at 76221 g for 1 h 30 minutes in a SW 40

Ti rotor. The concentrated virus was then resuspended in cold PBS, aliquoted and stored at

-80˚C until used. Viral titer was determined as previously described by our lab [33].

Equine iPSCs lines generation by STEMCCA virus

Equine fibroblasts were thawed and cultured as described above for 7 days before infection.

On day -1, 1x105 cells were plated on 1 well of a 6 well plate previously coated with 0.1% bovine

gelatin. The day of infection (Day 0), cells were incubated for 16 h with the STEMCCA lentivi-

rus at a titer of MOI 1 and 10 μg/ml of polybrene (TR-1003, Sigma Aldrich, San Luis, Missouri,

USA). Spinfection was performed by centrifuging the plate at 700 g for 55 minutes before incu-

bation. On day 1, the virus was removed and the cells were cultured in DMEM medium for 5

days when the first colonies appeared. On day 6, the infected cells were trypsinized and plated

in different dilutions (1:4, 1:16, 1:40) over iMEFs in eqHES medium to allow colonies to grow.

Twelve colonies were selected according to morphology and mechanically picked from the

plate after 2 weeks and cultured in the same conditions. Clonal expansion was performed for

2 colonies, which were amplified and characterized (L2 and L3 lines). For each passage, colo-

nies were detached with collagenase (17100017) centrifuged and plated on iMEF in eqHES

medium. Both L2 and L3 lines were maintained in culture over 25 passages.

Alkaline phosphatase staining

Alkaline phosphatase activity was determined in both iPSC lines and fibroblasts using a com-

mercial kit (86R-1KT, Sigma-Aldrich) following the manufacturer’s instructions.

In vitro differentiation to embryo bodies

Differentiation of L2 and L3 to embryo bodies (EBs) was performed as previously described by

Breton et al. (2013) [9] with minor modifications. Briefly, L2 and L3 colonies were treated with

collagenase to allow detachment, passaged in a non-adherent culture dish and cultured in sus-

pension for 7 days in DMEM with 10% FBS. Under these conditions, EBs were formed and
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after 7 days they were passaged to gelatin-coated adherent-dishes with the same culture

conditions for 2 more weeks. After this time, samples were prepared using TRIzol reagent

(15596026) for total RNA extraction or the cells were fixed for immunostaining, as explained

bellow.

RNA extraction, cDNA synthesis and real time PCR

RNA extraction from the different cell lines was performed with TRIzol reagent. For cDNA

synthesis, 500-1000 ng of the total RNA was retro-transcribed with MMLV reverse transcrip-

tase (Promega, WI, USA), according to manufacturer’s instructions. For microRNA reverse

transcription, cDNA was generated as previously described using SuperScript™ II Reverse

Transcriptase (18080044) [34]. For real-time PCR, cDNA samples were diluted 5-folds and

PCR was performed with StepOne Plus Real Time PCR System (PE Applied Biosystems, CA,

USA). The Fast SYBR Green Master Mix (4385612) was used for all reactions. The housekeep-

ing gene used was RPL7 when mRNAs were analyzed and RNU6B when microRNAs were

analyzed. A list of primers is shown in S1 Table.

Immunostaining

iPSCs lines, EBs, fibroblast cells and horse embryos were fixed in 4% paraformaldehyde for

30 minutes at room temperature, washed with PBS, and then permeabilized for 1 h in a solu-

tion containing 0.1% bovine serum albumin/PBS, 10% FBS and 0.1% Triton. After permeabili-

zation, blocking was assessed by 1 h incubation with 3% FBS and 0.1% Tween-20 (Promega,

H5152), followed by primary antibody incubation for 2 hours at room temperature. They were

then washed and incubated with the secondary antibody and DAPI for 1 h at RT in the dark.

Negative controls were performed using only the secondary antibody. Specific antibodies and

dilutions are detailed in S2 Table.

Somatic cell nuclear transfer

Somatic cell nuclear transfer and embryo transfer were performed as previously described by

Olivera et al [35, 36]. Briefly, equine oocytes were in vitro matured and enucleated by micro-

manipulation. After oocyte enucleation, fusion of one L3 iPSC or one original fibroblast cell

was applied. The reconstructed embryos were then chemically activated and in vitro cultured

for one week in order to achieve the blastocyst stage. On day 2 and day 7 cleavage and blasto-

cyst rates were assessed, respectively. Those embryos that reached the blastocyst stage were

transferred to recipient mares to continue gestation until birth. Mare synchronization, embryo

transfer, gestation monitoring and neonatal care was performed as previously reported by Oli-

vera et al. [35, 36].

In-silico microRNAs target determinations

First we compared the sequences of 10 microRNAs in the horse and the human (miR-302a,

miR-302b, miR-302c, miR-302d, miR-205, miR-145, miR-9, miR-96, miR-125b and miR-296),

which were obtained in the miRBase database (www.mirbase.com) (Table 1). In order to deter-

mine whether the eca-microRNAs could target the same mRNAs as the ones reported in

humans and mice, we evaluated the complementarity of the seed sequence of the miR-302

family, miR-96, miR-9 and miR-145 with the 3‘UTR of possible target genes. In most reports

the microRNA seed sequence is essential for the binding of the microRNA to the mRNA and it

comprises a contiguous string of at least 6 nucleotides beginning at position 2 of the micro-

RNA (the sufficient minimal set of microRNA seed type) [20]. To achieve this, the horse

MicroRNA expression in equine IPSCs
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mRNA sequences were obtained from the NCBI-nucleotide database (www.ncbi.nlm.nih.gov).

The accession numbers of the genes were: eqOCT-4 (XM_001490108.6), eqKLF4 (XM

_005605684.2), eqSOX2 (FJ356148.1), eqCDK2 (XM_001504790.6), eqCYCLIN D1
(XM_023654619.1), eqRHOC (XM_001917242.5), eqE2F1 (XM_023626374.1), eqHES1
(XM_001498844.5) and eqPAX6 (XM_023646562.1). Sequence alignments were performed

with Geneious software and RNA22 software [37].

Transfection of episomal reprogramming vectors

Equine fibroblasts were transfected with different combinations of episomal reprogramming

plasmids that have demonstrated to reprogram human cells [38–40]: pCXLE-hOCT3/

4-shp53-F (addgene N˚27077), pCXLE-hSK (addgene N˚27078), pCXLE-hUL (addgene N˚

27080), pEP4 E02S CK2M EN2L (addgene N˚20924) and pCXWB-EBNA1 (addgene N˚

37624). Either the 100 μl tip NEON system or FuGENE6 transfection reagent (Roche,

1814443) was used for the transfection of the plasmids, following the manufacturer´s instruc-

tions in both cases. The equine fibroblasts were transfected with different conditions of plas-

mid concentrations, plasmid combinations and NEON settings, which are detailed in S3

Table. All the conditions were evaluated twice and the EGFP-N1 plasmid was used as control

of transfection in each procedure. Once transfected, the cells were cultured in gelatin coated

p100 in DMEM 10% SFB medium for 5 days. After that time, they were trypsinized and plated

in different dilutions over iMEFs in eqHES medium.

Statistical analysis

Real time PCRs were analyzed with the LinReg PCR software. Statistical differences were ana-

lyzed using either paired Student‘s t test or ANOVA. Comparisons between means were

assessed using the Tukey test. Statistical analysis for the results of in vitro embryo development

was performed using non parametric Fisher’s exact test (p<0.05).

Results

Fibroblast reprogramming and pluripotency characterization of horse

iPSCs obtained by STEMCCA transduction

We attempted several times to reprogram equine fibroblasts by using different combination of

episomal vectors (S3 Table). However, we could not develop equine iPSCs by this strategy.

Table 1. microRNA sequences used in this study.

microRNA Equine Sequences� Human Sequences�

mir—302a—3p UAAGUGCUUCCAUGUUUUAGUGA UAAGUGCUUCCAUGUUUUGGUGA

mir—302b—3p UAAGUGCUUCCAUGUUUUAGUAG UAAGUGCUUCCAUGUUUUAGUAG

mir—302c—3p UAAGUGCUUCCAUGUUUCAGUGG UAAGUGCUUCCAUGUUUCAGUGG

mir—302d—3p UAAGUGCUUCCAUGUUUUAGUGU UAAGUGCUUCCAUGUUUGAGUGU

mir—205—5p UCCUUCAUUCCACCGGAGUCUG UCCUUCAUUCCACCGGAGUCUG

mir—145—5p GUCCAGUUUUCCCAGGAAUCCCU GUCCAGUUUUCCCAGGAAUCCCU

mir—9—5p UCUUUGGUUAUCUAGCUGUAUGA UCUUUGGUUAUCUAGCUGUAUGA

mir—96—5p UUUGGCACUAGCACAUUUUUGCU UUUGGCACUAGCACAUUUUUGCU

mir—125b—5p UCCCUGAGACCCUAACUUGUGA UCCCUGAGACCCUAACUUGUGA

mir—296—5p GAGGGUUGGGUGGAGGCUUUCC GAGGGUUGGGUGGAGGCUCUCC

� Underlined letters remark differences between equine and human microRNA sequences.

https://doi.org/10.1371/journal.pone.0207074.t001
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Few reports have demonstrated the capacity to reprogram human cells with episomal vectors

[38–40], nevertheless, the equine cells that were transfected with these plasmids showed

changes only in shape morphology and overgrowing correlated with partial reprogramming.

In contrast, after 10-12 days of viral infection with the STEMCCA lentivirus, small repro-

grammed colonies appeared, resulting in horse reprogrammed cells. Several colonies were

obtained, and we selected two of them based on the morphology (named L2 and L3) for full

characterization (Fig 1a). The pluripotency of both iPSCs lines was assessed by different tech-

niques. We observed high alkaline phosphatase activity in L2 and L3 lines, which has demon-

strated to be an indicator of pluripotency, and we did not observe alkaline phosphatase

staining in fibroblasts, as expected (Fig 1b). Moreover, high expression of pluripotency mark-

ers such as OCT-4, NANOG and REX1 was observed by end-point PCR and real time PCR

using horse specific primers (Figs 1 and 2). Lower expression of these markers was observed

for the fibroblast group by real time PRC and no amplification was detected by end-point PCR

in this group (Figs 1 and 2). Moreover, both L2 and L3 iPSCs lines were also positive for

expression of OCT-4, SOX-2 and c-MYC proteins, assessed by immunofluorecence staining,

not observing any positive signal in horse fibroblasts (Fig 1c). As these three genes are also

encoded by the STEMCCA virus, we ensured that the antibodies used can recognize the equine

OCT-4, SOX-2 and c-MYC proteins by evaluating them in equine embryos by immunostain-

ing shown in S1 Fig. With this control we confirmed that the antibodies can be used in the

horse.

In vitro differentiation

We generated in vitro EBs in order to evaluate the capacity of both iPSCs lines to differentiate

into the three germ layers. After colony detachment, EBs were formed in few hours in both

iPSCs lines (Fig 3a). Both EB-L2 (EBs derived from L2) and EB-L3 (EBs derived from L3)

showed expression of the ectodermal markers nestin, βIII-tubulin, the endodermal marker

AFP and the mesodermal markers vimentin and brachyury, by end point PCR. In contrast,

non-differentiated iPSCs cells were negative for these markers (Fig 2b). Immunofluorescent

staining was also used to determine the protein expression of differentiated cells to the three

germ layers. We assessed the expression of GATA-4, βIII-TUBULIN, VIMENTIN,

SMOOTH-MUSCLE ACTIN (SMA) and NKX-2.5 by immunofluorescence in both EB-L2

and EB-L3 and observed a strong specific staining (Fig 3b). As expected, fibroblasts were nega-

tive for GATA-4, βIII-TUBULIN and NKX-2.5, but positive for vimentin and SMA, both

mesodermal markers. In addition, OCT-4 and NANOG, but not REX1, were down-regulated

in the EBs respect to the iPSCs lines (Fig 3c).

Somatic cell nuclear transfer

We compared the capacity of the horse iPSCs and fibroblasts to generate in vitro embryos and

viable foals. Results using L3-iPSCs as nuclear donors are shown in Table 2. In both cases, we

obtained similar cleavage rates between groups (51/56 (91.1%) and 205/246 (83.3%) for

L3-iPSC and fibroblasts, respectively), but no blastocysts were generated with the pluripotent

cells as nuclear donors. Those blastocysts generated with the original fibroblasts were trans-

ferred to recipient mares and 2 healthy foals were born. With these results we could determine

the good quality of the embryos generated.

microRNAs expression in horse iPSCs and differentiated EBs

The expression of 7 different microRNAs were evaluated in fibroblasts, iPSCs lines and EBs

(Figs 4 and 5). We observed that the expression of the miR-302 family (miR-302a, miR-302b,

MicroRNA expression in equine IPSCs
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Fig 1. Pluripotent characterization of two horse iPSC lines, L2 and L3. a) A representative colony of equine iPSCs 2 weeks after reprogramming.

b) Alkaline phosphatase activity analysis of the L2 iPSC line, I) A 60 mm petri dish full of iPSC colonies observed in pink; II) Two iPSC colonies with

high alkaline phosphatase activity; III) Horse fibroblasts negative for alkaline phosphatase activity. c) Inmunostaining of both iPSC lines and horse

fibroblasts with the pluripotent markers OCT-4, SOX-2 and c-MYC. In blue nucleous are stained with DAPI d) RT-qPCR analysis comparing the

expression of OCT-4, NANOG and REX-1 among the original fibroblasts and the L2 and L3 iPSC lines. Results are presented as means ± SEM

(n = 3). Data were relativized to fibroblasts. Different letters indicate significant differences (p<0.05).

https://doi.org/10.1371/journal.pone.0207074.g001
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miR-302c and miR-302d) was strongly induced after cell reprogramming (p<0.05). In addi-

tion to the miR-302, the miR-9 and the miR-96 were also up-regulated (p<0.05). In all cases,

no differences were observed between the two iPSCs lines. After differentiation to EBs, the

miR-96 was upregulated in the EBs respect to the iPSCs, and also the expression of miR-205

was induced but only in the EB-L2 (p<0.05). Finally, while miR-302 was downregulated in

EBs, miR-9 was upregulated compared to iPSCs.

microRNAs seed alignments

We performed in silico analysis of some microRNAs evaluated in this paper. First, we com-

pared the eca-miR-302/367 cluster with the hsa-miR-302/367 cluster and we determined a

75% homology between them (Fig 6a). Moreover, the seed region of the eca-miR-302 family

resulted complementary to the 3‘UTR of horse cell cycle regulator genes CDK2, CYCLIN D1
and E2F1, and to the 3‘UTR of the RHOC gene, which is involved in the epithelial-mesenchy-

mal transition (Fig 6a). The miR-145 seed sequence was complementary to the 3‘UTR region

of the Oct-4 and Klf-4 horse genes (Fig 6b). Respect to the miR-9 and miR-96, the seed

sequence of these genes were complementary to HES1 and PAX-6 genes, as it was previously

demonstrated in humans [27–29]. We also analyzed the target genes with the RNA22 software,

confirming the complementarity evaluated by the seed sequence (S2 Fig).

Discussion

In this report we generated two horse iPSCs lines by using the lentiviral vector STEMCCA

containing the human reprogramming factors OSKM [32]. We cultured the iPSC for more

than 25 passages without losing their pluripotent characteristics and proliferation capacity. In

addition to their morphology, pluripotency was assessed by the expression of OCT-4, NANOG
and REX-1 by end point PCR and qPCR. Similarly as in equine embryos, equine iPSCs have

demonstrated to widely express these markers [8, 9, 41–43]; however, only REX1 has been

associated exclusively with equine pluripotent cells [42], observing a significant expression of

this gene in our iPSCs lines. Furthermore, we confirmed staining for OCT-4, SOX-2 and

Fig 2. End point PCR analysis of iPSCs. a) the pluripotent genes OCT-4, NANOG and REX1 in fibroblasts (Fib) and

both iPSCs lines L2 and L3; and b) representative genes from the three germ layers in L2 and L3 iPSCs, and embryo

bodies (EB), derived from these both iPSCs lines (EB-L2 and EB-L3, respectively). RPL7 was used as the housekeeping

gene.

https://doi.org/10.1371/journal.pone.0207074.g002
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Fig 3. In vitro differentiation of L2 and L3 iPSCs to embryo bodies (EB). a) Generation of EBs, I) EBs in suspension

for 1 week in DMEM medium, II) EBs after 3 days in adherent dishes, III) EBs after 2 weeks in adherent dishes; b)

Inmmunofluorescence of endodermal, ectodermal and mesodermal markers in EBs derived from L2 (EB-L2), L3

(EB-L3) iPSCs lines and fibroblasts as controls. In blue nucleous are stained with DAPI c) RT-qPCR analysis of

pluripotent markers in L2 vs. EB-L2 and L3 vs. EB-L3. Results are presented as means ± SEM (n = 3). Data were

relativized to L2 or L3 for EB-L2 and EB-L3, respectively. �Statistically different (p<0.05).

https://doi.org/10.1371/journal.pone.0207074.g003
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C-MYC by immunocytochemistry and also high alkaline phosphatase activity. Until now, no

reliable equine ESC could be isolated in this species [1, 44, 45], which makes the pluripotent

characterization of the equine iPSCs more challenging [1].

In addition to the identification of these pluripotent markers, both iPSCs lines could differ-

entiate in vitro and form EBs. These EBs showed gene expression for markers of the three

germ layers including NESTIN, βIII-TUBULIN, AFP, VIMENTIN and BRACHYURY, not

observing expression of these genes in the original iPSCs. Moreover, we characterized the EBs

by immunocytochemistry, observing positive staining for markers of the three embryonic

germ layers GATA-4, βIII-TUBULIN, VIMENTIN, SMA and NKX-2.5, despite protein analy-

sis in this model is difficult to achieve due to a lack of reliable antibodies.

We also tried to generate equine iPSCs lines with different combinations of episomal vec-

tors that have demonstrated their potential to efficiently reprogram human cells [38–40]. We

could corroborate the incorporation of the plasmids by co-transfecting a reporter vector with

GFP, but we could not reprogram equine fibroblasts by this technique. Besides human cells,

Table 2. Equine cloning using L3-iPSCs as nuclear donors.

Groups Embryos Cleavage Blastocysts Embryo transfers Pregnancies Offspring (%)

iPSC—L3 56 51 (91.1) 0a - - -

Fibroblasts 246 205 (83.3) 22 (8.9)b 11 2 (18.2) 2 (100)

(a, b) Values with different superscripts in a column are significantly different (Fisher’s exact test p<0.05)

https://doi.org/10.1371/journal.pone.0207074.t002

Fig 4. RT-qPCR analysis of 7 microRNAs in the L2 and L3 iPSCs lines and the original fibroblasts. RT-qPCR analysis of 7 microRNAs in the L2 and L3 iPSCs lines

and the original fibroblasts. Results are presented as means ± SEM (n = 3). Data were relativized to fibroblasts. Different letters indicate significant differences (p<0.05).

https://doi.org/10.1371/journal.pone.0207074.g004
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episomal reprogramming was efficient in few species including only the mouse and the rat

[12, 46], but was not efficient to generate pig iPSCs [47]. Apart from this report, no other one

has been published in domestic species. The strongest hypothesis that might explain the inabil-

ity to generate equine iPSCs with episomal vectors is that domestic iPSCs would require con-

tinuous expression of the transgenes to maintain pluripotency, as was previously observed

[7, 48–50]. This hypothesis is also consistent with our cloning results with one of the iPSC

lines. Whereas 2 viable foals were generated with the original fibroblasts, no blastocysts were

obtained when the iPSCs were used as nuclear donors. The same result was previously pub-

lished in the horse with a different iPSC line [35]. The continuous expression of the transgenes

could be blocking specific cell determination during the first differentiation steps after morula

formation.

In addition to the analysis of mRNAs we were also interested in the expression of micro-

RNAs in horse iPSCs in order to expand our knowledge of the identity of pluripotent cells in

this species. In human embryonic stem cells, specific microRNAs such as the miR-302 family

are tightly connected with OCT-4, SOX-2 and NANOG mRNAs in a relative expression level

that is carefully balanced in order to maintain pluripotency [51, 52]. Conversely, it was

reported that miR-145 represses the expression of OCT-4, SOX-2 and KLF4 [25] and it is

down-regulated in iPSCs when compared with fibroblasts [14], thus controlling reprogram-

ming and differentiation by targeting these stem factors. In our work, we observed similar

Fig 5. RT-qPCR analysis of 7 microRNAs in the iPSCs lines and the embryo bodies (EBs) derived from them, iPSC-L2 vs. EB-L2 and iPSC-L3 vs. EB-L3. Results are

presented as means ± SEM (n = 3). EB-L2 data were relativized to iPSC-L2 data and EB-L3 data were relativized to iPSC-L3 data. �Statistically different (p<0.05).

https://doi.org/10.1371/journal.pone.0207074.g005
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results with the equine iPSCs lines. We also determined that the expression of the miR-302

family was induced in both iPSCs lines respect to the original fibroblasts. In addition, despite

no differences were seen in the expression of miR-145 among the groups because of the data

disparity, there is a tendency of miR-145 to be down-regulated in both horse iPSCs lines

respect to the original fibroblasts, as was reported in human and pig iPSCs [53]. In consistence,

the eca-miR-302/367 cluster conserves the homology and distribution in the genome similarly

as in humans. Moreover, the miR-302 family seed sequence resulted complementary to eqCy-
clin D1 3‘UTR, eqCDK2 3‘UTR and eqE2F1 3‘UTR, important cell cycle regulators, and eqR-
HOC, a regulator of the mesenchymal-epithelial transition (MET). In silico alignments

determined that the eca-miR-145 seed sequence was complementary to the 3‘UTR of pluripo-

tent genes including eqKLF4 3‘UTR and eqOCT-4 3‘UTR. These determinations comple-

mented our experimental results and let us speculate that there are similar regulations of miR-

302 family and miR-145 as in humans [25, 26, 51, 54].

Other differentiation-related microRNAs as the miR-9 and miR-96 are involved in neural

specification. miR-9 promotes neural lineage differentiation by inhibiting neural stem cells

proliferation [55–57], and miR-96 is over-expressed in human pluripotent cells, and it is also

involved in PAX6 repression, inhibiting neural induction [28, 58]. Here we observed that

Fig 6. In-silico analysis of equine microRNAs targets. The green bars and the black zones represent the homology between sequences. a) Comparison

between equine miR-302/367 cluster (eca-miR-302/367) and human miR-302/367 cluster (hsa-miR-302/367) in the genome. In orange are the different

microRNAs positioned in the cluster. Below this alignment, the seed sequence of the miR-302 family is aligned to the 3‘UTR of 4 mRNAs in the equine

(CDK2, E2F1, RHOC and CYCLIN D). b) Seed alignment of the differentiation-related microRNAs miR-9, miR-96 and miR-145, to the 3‘UTR of the

equine mRNAs HES1, PAX6 and KLF4 and OCT-4, respectively.

https://doi.org/10.1371/journal.pone.0207074.g006
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miR-9 and miR-96 were also over-expressed in L2 and L3 iPSCs respect to the original fibro-

blasts and that miR-96 significantly enhanced its expression in the differentiated cells to EBs

respect to the iPSCs. Whether this regulation is related to neural specification was not deter-

mined experimentally, but the seed sequence reported for the hsa-miR-96 [28] that is the same

as the eca-miR-96 is complementary to the 3´UTR of the eqPAX6 gene. Moreover, miR-9 has

demonstrated to bind the 3‘UTR of the HES1 mRNA in the developing brain of the mouse,

regulating the proliferation and differentiation of neural stem cells [55]. In silico alignments

demonstrated that the eca-miR-9 may be able to bind the 30-UTR of eqHes1 mRNA by its seed

sequence, thus regulating the expression of this gene. With these results we consider that both

miR-96 and miR-9 may also be involved in neural specification in the horse.

The other microRNAs evaluated after in vitro differentiation to EBs, did not show statistical

differences respect to the iPSCs lines, but miR-302 tends to be downregulated and miR-9

tends to be upregulated in the EBs. Because the EBs have a mix of heterogenous population of

cells differentiated to the three germ layers, it is possible that it could be some compensation in

the quantification of the expression of the microRNAs.

Conclusion

In summary, we generated and characterized two horse iPSC cell lines derived from embry-

onic fibroblasts by lentiviral infection of the reprogramming factors, but we were not able to

reprogram the same fibroblasts by using episomal vectors. Moreover, several results led us to

think that the equine microRNAs evaluated in our work are highly conserved in sequence and

function respect to the human species. Now, it is necessary to generate directed differentiations

to derivatives of the three germ layers in order to strengthen our results. This is the first report

to evaluate the expression and possible targets of microRNAs in domestic animals pluripotent

cells.
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3. Broeckx S, Zimmerman M, Crocetti S, Suls M, Mariën T, Ferguson SJ, et al. Regenerative therapies for

equine degenerative joint disease: a preliminary study. PLoS One. 2014; 9(1):e85917. https://doi.org/

10.1371/journal.pone.0085917 PMID: 24465787

4. Geburek F, Roggel F, van Schie HTM, Beineke A, Estrada R, Weber K, et al. Effect of single intrale-

sional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-

derived mesenchymal stromal cells: a controlled experimental trial. Stem Cell Res Ther. 2017; 8(1):129.

https://doi.org/10.1186/s13287-017-0564-8 PMID: 28583184

5. Egusa H, Kayashima H, Miura J, Uraguchi S, Wang F, Okawa H, et al. Comparative analysis of mouse-

induced pluripotent stem cells and mesenchymal stem cells during osteogenic differentiation in vitro.

Stem Cells Dev. 2014; 23(18):2156–69. https://doi.org/10.1089/scd.2013.0344 PMID: 24625139

6. Lee EM, Kim AY, Lee EJ, Park JK, Park SI, Cho SG, et al. Generation of Equine-Induced Pluripotent

Stem Cells and Analysis of Their Therapeutic Potential for Muscle Injuries. Cell Transplant. 2016;

25(11):2003–2016. https://doi.org/10.3727/096368916X691691 PMID: 27226077

7. Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, et al. Induced pluripotent

stem cell lines derived from equine fibroblasts. Stem Cell Rev. 2011; 7(3):693–702. https://doi.org/10.

1007/s12015-011-9239-5 PMID: 21347602

8. Khodadadi K, Sumer H, Pashaiasl M, Lim S, Williamson M, Verma PJ. Induction of pluripotency in adult

equine fibroblasts without c-MYC. Stem Cells Int. 2012; 2012:429160. https://doi.org/10.1155/2012/

429160 PMID: 22550508

9. Breton A, Sharma R, Diaz AC, Parham AG, Graham A, Neil C, et al. Derivation and characterization of

induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev. 2013; 22(4):611–21. https://doi.

org/10.1089/scd.2012.0052 PMID: 22897112

10. Greve TS, Judson RL, Blelloch R. microRNA control of mouse and human pluripotent stem cell behav-

ior. Annu Rev Cell Dev Biol. 2013; 29:213–239. https://doi.org/10.1146/annurev-cellbio-101512-

122343 PMID: 23875649

11. Yang CS, Rana TM. Learning the molecular mechanisms of the reprogramming factors: let’s start from

microRNAs. Mol Biosyst. 2013; 9(1):10–7. https://doi.org/10.1039/c2mb25088h PMID: 23037570

12. Li N, Long B, Han W, Yuan S, Wang K. microRNAs: important regulators of stem cells. Stem Cell Res

Ther. 2017; 8(1):110. https://doi.org/10.1186/s13287-017-0551-0 PMID: 28494789

13. Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, et al. miR-34 miRNAs provide a barrier for somatic cell

reprogramming. Nat Cell Biol. 2011; 13(11):1353–60. https://doi.org/10.1038/ncb2366 PMID:

22020437

MicroRNA expression in equine IPSCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0207074 December 3, 2018 14 / 17

https://doi.org/10.1111/j.1439-0531.2012.02059.x
http://www.ncbi.nlm.nih.gov/pubmed/22827354
https://doi.org/10.1371/journal.pone.0075697
http://www.ncbi.nlm.nih.gov/pubmed/24086616
https://doi.org/10.1371/journal.pone.0085917
https://doi.org/10.1371/journal.pone.0085917
http://www.ncbi.nlm.nih.gov/pubmed/24465787
https://doi.org/10.1186/s13287-017-0564-8
http://www.ncbi.nlm.nih.gov/pubmed/28583184
https://doi.org/10.1089/scd.2013.0344
http://www.ncbi.nlm.nih.gov/pubmed/24625139
https://doi.org/10.3727/096368916X691691
http://www.ncbi.nlm.nih.gov/pubmed/27226077
https://doi.org/10.1007/s12015-011-9239-5
https://doi.org/10.1007/s12015-011-9239-5
http://www.ncbi.nlm.nih.gov/pubmed/21347602
https://doi.org/10.1155/2012/429160
https://doi.org/10.1155/2012/429160
http://www.ncbi.nlm.nih.gov/pubmed/22550508
https://doi.org/10.1089/scd.2012.0052
https://doi.org/10.1089/scd.2012.0052
http://www.ncbi.nlm.nih.gov/pubmed/22897112
https://doi.org/10.1146/annurev-cellbio-101512-122343
https://doi.org/10.1146/annurev-cellbio-101512-122343
http://www.ncbi.nlm.nih.gov/pubmed/23875649
https://doi.org/10.1039/c2mb25088h
http://www.ncbi.nlm.nih.gov/pubmed/23037570
https://doi.org/10.1186/s13287-017-0551-0
http://www.ncbi.nlm.nih.gov/pubmed/28494789
https://doi.org/10.1038/ncb2366
http://www.ncbi.nlm.nih.gov/pubmed/22020437
https://doi.org/10.1371/journal.pone.0207074


14. Barta T, Peskova L, Collin J, Montaner D, Neganova I, Armstrong L, et al. Brief Report: Inhibition of

miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells.

Stem Cells. 2016; 34(1):246–51. https://doi.org/10.1002/stem.2220 PMID: 26418476

15. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS. Post-transcriptional gene silencing by siRNAs and miR-

NAs. Curr Opin Struct Biol. 2005; 15(3):331–41. https://doi.org/10.1016/j.sbi.2005.05.006 PMID:

15925505

16. Aravin A, Tuschl T. Identification and characterization of small RNAs involved in RNA silencing. FEBS

Lett. 2005; 579(26):5830–40. https://doi.org/10.1016/j.febslet.2005.08.009 PMID: 16153643

17. Xu W, San Lucas A, Wang Z, Liu Y. Identifying microRNA targets in different gene regions. BMC Bioin-

formatics. 2014; 15 Suppl 7:S4. https://doi.org/10.1186/1471-2105-15-S7-S4 PMID: 25077573

18. Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals

that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A. 2008;

105(39):14879–84. https://doi.org/10.1073/pnas.0803230105 PMID: 18812516

19. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2):215–33. https://

doi.org/10.1016/j.cell.2009.01.002 PMID: 19167326
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